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Abstract

Consider a network ofN decentralized computing agents col-
laboratively solving a nonconvex stochastic composite prob-
lem. In this work, we propose a single-loop algorithm, called
DEEPSTORM, that achieves optimal sample complexity for
this setting. Unlike double-loop algorithms that require a
large batch size to compute the (stochastic) gradient once in a
while, DEEPSTORM uses a small batch size, creating advan-
tages in occasions such as streaming data and online learning.
This is the first method achieving optimal sample complexity
for decentralized nonconvex stochastic composite problems,
requiring O(1) batch size. We conduct convergence analysis
for DEEPSTORM with both constant and diminishing step
sizes. Additionally, under proper initialization and a small
enough desired solution error, we show that DEEPSTORM
with a constant step size achieves a network-independent
sample complexity, with an additional linear speed-up with
respect to N over centralized methods. All codes are made
available at https://github.com/gmancino/DEEPSTORM.

Introduction
Recent years have seen an increase in designing efficient al-
gorithms for solving large-scale machine learning problems,
over a network of N computing agents connected by a com-
munication graph G = (V, E). Agents collaboratively solve
the following composite problem:

min
x

1

N

N∑
i=1

{
φi(x) , fi(x) + r(x)

}
, (1)

where the decision variable x ∈ R1×p is treated as a row
vector; fi is a smooth, possibly nonconvex function known
only to agent i; and r is a convex, possibly non-smooth reg-
ularizer common to all agents. Agents i and j can commu-
nicate only if (i, j) ∈ E . Many real-world applications in
machine learning (Vogels et al. 2021; Ying et al. 2021; Yuan
et al. 2021; Chamideh, Tärneberg, and Kihl 2021) and re-
inforcement learning (Zhang et al. 2018; Qu et al. 2019) fit
the form of (1). Such scenarios differ from the centralized
setting (McMahan et al. 2017; T. Dinh, Tran, and Nguyen
2020), where the agents are assumed to be able to communi-
cate with one another globally via either a parameter server
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or a collective communication protocol. This setting arises
naturally when data is distributed over a large geographic
region or when a centralized communication structure is too
costly (Xin, Khan, and Kar 2021a).

Utilizing the communication topology induced by G, we
reformulate (1) into the following equivalent decentralized
consensus optimization problem:

min
x1,...,xN

1

N

N∑
i=1

φi(xi), s.t. xi = xj , ∀(i, j) ∈ E . (2)

Problem (2) allows for agents to maintain and update a local
copy of the decision variable by locally computing gradients
and performing neighbor communications.

The existence of a non-smooth regularizer r renders many
decentralized optimization methods for a smooth objective
inappropriate. We assume that r admits an easily com-
putable (e.g. closed form) proximal mapping. Moreover, we
are interested in the case where each local function fi takes
the following expectation form:

fi(x) , Eξ∼Di [fi(x; ξ)] , (3)

with a slight abuse of notation for ease of exposition. In such
a case, agents locally compute stochastic gradients of fi. We
adapt ideas from recent advances of stochastic optimization
to the decentralized setting, by combining variance reduc-
tion techniques (Johnson and Zhang 2013; Nguyen et al.
2017; Allen-Zhu 2018; Wang et al. 2019; Cutkosky and
Orabona 2019; Tran-Dinh et al. 2022) with gradient track-
ing (Lorenzo and Scutari 2016; Nedic, Olshevsky, and Shi
2017; Lu et al. 2019; Zhang and You 2020; Koloskova, Lin,
and Stich 2021), to produce an algorithmic framework that
achieves the optimal sample complexity bounds established
in (Arjevani et al. 2022) for nonconvex stochastic methods.

Our framework, coined DEEPSTORM, is a single-loop
algorithm with an attractive property that, besides the ini-
tial iteration, each agent only needs O (1) stochastic sam-
ples to compute a gradient estimate. Further, when a di-
minishing step size is used, even the first iteration does not
need a large batch, at the expense of an additional loga-
rithmic factor in the sample complexity result. Intuitively,
DEEPSTORM utilizes a momentum based variance reduc-
tion technique (Cutkosky and Orabona 2019; Xu and Xu
2023; Levy, Kavis, and Cevher 2021; Tran-Dinh et al. 2022)
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Method r 6≡ 0 Batch size Sample complexity (per agent)

D-PSGD (Lian et al. 2017) 7 O (1) O
(

max
{

1
Nε2 ,

N2

(1−ρ)2ε

})
DSGT (Xin, Khan, and Kar 2021b) 7 O (1) O

(
max

{
1

Nε2 ,
ρN

(1−ρ)3ε

})
D-GET (Sun, Lu, and Hong 2020) 7 O

(
1
ε

)
or O

(
1
ε0.5

)
O
(

1
(1−ρ)aε1.5

)
GT-HSGD (Xin, Khan, and Kar 2021a) 7 O

(
1
ε0.5

)
then O (1) O

(
max

{
1

Nε1.5 ,
ρ4

N(1−ρ)3ε ,
ρ1.5N0.5

(1−ρ)2.25ε0.75

})
SPPDM (Wang et al. 2021) 3 Ω(Nε ) O

(
1

(1−ρ)bε2

)
ProxGT-SR-O/E (Xin et al. 2021) 3 O

(
1
ε

)
or O

(
1
ε0.5

)
O
(

1
Nε1.5

)†
Theorem 1 3 O

(
1
ε0.5

)
then O (1) O

(
max

{
1

Nε1.5 ,
1

(1−ρ)2ε ,
N0.5

ε0.75

})‡
Theorem 2 3 O (1) Õ

(
1
ε1.5

)
Table 1: Comparison between DEEPSTORM (bottom two rows) and representative decentralized stochastic nonconvex meth-
ods. The sample complexity takes into account both the stationarity and consensus violation. Since D-GET and SPPDM do not
show the dependence on ρ, we use unspecified powers a and b, following the practice of (Xin, Khan, and Kar 2021a). †The
sample complexity of ProxGT-SR-O/E is independent of ρ by requiring multiple communications per update; this is similar
to our result in Theorem 2. ‡With multiple communications and ε ≤ N−2, Theorem 1 guarantees our algorithm attains the
optimal O

(
N−1ε−1.5

)
sample complexity, but with a smaller batch size than ProxGT-SR-O/E .

to guarantee convergence under a small batch size. The
use of momentum simultaneously accelerates the computa-
tion and communication complexities over non-momentum
based methods in the small batch setting; see Table 1 for a
comparison. The recent ProxGT-SR-O/E (Xin et al. 2021)
method can also achieve optimal sample complexity for
solving (2), but at the expense of performing a double-loop
which requires a large (stochastic) gradient computation ev-
ery time the inner loop is completed. In scenarios where
the batch size is uncontrollable, such as streaming or online
learning, DEEPSTORM is advantageous.

When discussing sample complexity, it is paramount to
specify the impact of the communication graph G. With a
constant step size, we show that under a sufficient amount
of initial, or transient, iterations and proper initialization,
DEEPSTORM behaves similarly to its centralized counter-
parts (Cutkosky and Orabona 2019; Levy, Kavis, and Cevher
2021; Tran-Dinh et al. 2022), while enjoying a linear speed-
up with respect to N .

We summarize the contributions of this work below:

• We propose a novel decentralized framework, DEEP-
STORM, for nonconvex stochastic composite optimiza-
tion problems. We show that DEEPSTORM achieves the
optimal sample complexity with respect to solution accu-
racy, where each agent needs only O (1) samples to com-
pute a local stochastic gradient. To the best of our knowl-
edge, this is the first decentralized method that achieves
optimal sample complexity for solving stochastic com-
posite problems by using only small batches.

• Additionally, we establish convergence guarantees of
DEEPSTORM with both constant and diminishing step
sizes. When a constant step size is used, we show that
under sufficiently many transient iterations and proper

initialization, DEEPSTORM achieves a linear speed-up
with respect to N , signifying an advantage over analo-
gous centralized variance reduction methods (Cutkosky
and Orabona 2019; Levy, Kavis, and Cevher 2021; Tran-
Dinh et al. 2022).

Related Works
A rich body of literature exists for solving the problem (2)
in the decentralized setting. We discuss related works below.

Nonconvex decentralized methods. Of particular rele-
vance to this work are methods for nonconvex fi’s. When fi
takes the finite-sum form, deterministic methods (with full
gradient computation) such as DGD (Zeng and Yin 2018),
Near-DGD (Iakovidou and Wei 2021), Prox-PDA (Hong,
Hajinezhad, and Zhao 2017), xFILTER (Sun and Hong
2019), and SONATA (Scutari and Sun 2019) converge to an
ε-stationary point in O

(
ε−1
)

iterations. They all work for
the case r ≡ 0 only, except SONATA. For stochastic meth-
ods, we summarize a few representative ones in Table 1, in-
cluding the information of whether they handle r 6≡ 0. Note
that D-PSGD (Lian et al. 2017) extends the convergence re-
sults of DGD; D2 (Tang et al. 2018) further improves over
D-PSGD by relaxing a dissimilarity assumption.

Gradient tracking (Lorenzo and Scutari 2016; Nedic, Ol-
shevsky, and Shi 2017) has been introduced as a tool to
track the gradient of the global objective and has been
studied extensively in the nonconvex and stochastic set-
ting, under different names (Zhang and You 2020; Lu et al.
2019; Koloskova, Lin, and Stich 2021; Xin, Khan, and Kar
2021b). Many works now utilize this technique to improve
the performance of their methods; those that mimic the
SARAH (Nguyen et al. 2017) and Spider (Wang, Yin, and
Zeng 2019) updates have become popular for their improved
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theoretical convergence rates. D-SPIDER-SFO (Pan, Liu,
and Wang 2020) and D-GET (Sun, Lu, and Hong 2020) are
two such methods. When fi takes the finite-sum form, GT-
SARAH (Xin, Khan, and Kar 2022) and DESTRESS (Li,
Li, and Chi 2022) improve the analysis of D-GET by obtain-
ing an optimal sample complexity and an optimal commu-
nication complexity, respectively. All these methods require
computing a stochastic gradient with a large batch size every
few iterations.

GT-HSGD (Xin, Khan, and Kar 2021a) can be consid-
ered a special case of our method. It uses a stochastic
gradient estimator of the form proposed in (Cutkosky and
Orabona 2019; Levy, Kavis, and Cevher 2021), requiring a
large initial batch size, followed by O (1) batch size sub-
sequently. The convergence analysis of GT-HSGD requires
r ≡ 0; hence part of our work is to extend it to the case
of r 6≡ 0. Similar extensions have been proposed for other
methods; for example, ProxGT-SR-O/E (Xin et al. 2021) ex-
tends D-GET, GT-SARAH, and DESTRESS. Additionally,
the primal-dual method SPPDM (Wang et al. 2021) is shown
to converge in O

(
ε−1
)

communications, but it requires a
large batch size proportional to ε−1. Using such a batch size
can negatively impact the performance on machine learning
problems (Keskar et al. 2017).

Other decentralized methods. Several other decentral-
ized methods exist for scenarios differing from that consid-
ered here. They include methods which study asynchronous
updates, communication compression, time-varying net-
work topologies, or convex-only problems. For examples of
such works, please refer to the longer version of this pa-
per (Mancino-Ball et al. 2022).

DEEPSTORM Framework
We first state the assumed conditions of each φi and the com-
munication graph G. They are standard in variance reduc-
tion (Cutkosky and Orabona 2019; Xu and Xu 2023; Tran-
Dinh et al. 2022) and decentralized methods (Lian et al.
2017; Sun, Lu, and Hong 2020; Xin, Khan, and Kar 2021b).

Assumption 1 The following conditions hold.
(i) The regularizer function r is convex and admits an

easily computable proximal mapping.
(ii) Each component function fi is mean-squared L-

smooth; i.e. there exists a constant 0 < L < ∞ such
that ∀a,b ∈ R1×p and ∀ i = 1, . . . , N ,

Eξ ‖∇fi(a; ξ)−∇fi(b; ξ)‖22 ≤ L
2 ‖a− b‖22 . (4)

(iii) There exists σ > 0 such that ∀a ∈ R1×p,

Eξ[∇fi(a; ξ)] = ∇fi(a),

E ‖∇fi(a; ξ)−∇fi(a)‖22 ≤ σ
2.

(5)

(iv) The global function φ = 1
N

∑N
i=1 φi is lower

bounded; i.e. there exists a constant φ∗ such that

−∞ < φ∗ ≤ φ(a), ∀a ∈ R1×p. (6)

Assumption 2 The graph G is connected and undirected. It
can be represented by a mixing matrix W ∈ RN×N such
that:

Algorithm 1: DEEPSTORM

Input: Initial X(0), mixing rounds T0, T , iteration K, and
{αk}, {βk}

1: Compute d
(0)
i = 1

m0

∑
ξ∈B(0)

i
∇fi(x(0)

i ; ξ) ∀i
2: Communicate to obtain Y(0) = WT0

(D(0))
3: for k = 0, . . . ,K − 1 do
4: Communicate to obtain Z(k) = WT (X(k))
5: Update local decision variables by (9)
6: Obtain local gradient estimator by (10)
7: Communicate to update gradient tracking variable

Y(k+1) = WT (Y(k) + D(k+1) −D(k))
8: end for

Output: Z(τ) with τ chosen randomly from {0, . . . ,K− 1}

(i) (Decentralized property) wij > 0 if (i, j) ∈ E and
wij = 0 otherwise;

(ii) (Symmetric property) W = W>;
(iii) (Null-space property) null (I−W) = span{e},

where e ∈ RN is the vector of all ones; and
(iv) (Spectral property) the eigenvalues of W lie in the

range (−1, 1] with

ρ ,

∥∥∥∥W − 1

N
ee>

∥∥∥∥
2

< 1. (7)

Note that the entry values of W can be flexibly designed
as long as Assumption 2 holds. One example is W = I −
L/τ , where L is the combinatorial Laplacian of G and τ is a
value greater than half of its largest eigenvalue. It is not hard
to see that the consensus constraint xi = xj for all (i, j) ∈ E
in (2) is equivalent to WX = X, where the i-th row of X
is xi. The value ρ in (7) indicates the connectedness of the
graph. The quantity 1 − ρ is sometimes referred to as the
spectral gap; a higher value suggests that the graph is more
connected and consensus of the xi’s is easier to achieve.

Under Assumptions 1 and 2, we now present the DEEP-
STORM framework. We start with the basic algorithm and
later generalize the simple communication (using W) with
a more general communication operator, denoted by WT .

Basic algorithm. Let x(k)
i be the k-th iterate for agent i,

and let the matrix X(k) contain all the k-th iterates among
agents, stacked as a matrix. We will similarly use such vector
and matrix notations for other variables. Our DEcEntralized
Proximal STOchastic Recursive Momentum framework,
DEEPSTORM, uses a variance reduction variable d

(k)
i and

a gradient tracking variable y(k)
i to improve the convergence

of x(k)
i . DEEPSTORM contains the following steps in each

iteration k:
1. Communicate the local variables:

Z(k) = WX(k). (8)

2. Update each local variable (e.g. by using proximal map-
pings):

x
(k+1)
i = argmin

xi

{αkr(xi) +
1

2

∥∥∥xi −
(
z
(k)
i − αky

(k)
i

)∥∥∥2}.
(9)
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3. Update the variance reduction variable:

d
(k+1)
i = (1−βk)

(
d
(k)
i + v

(k+1)
i − u

(k+1)
i

)
+βkṽ

(k+1)
i ,

(10)
where

v
(k+1)
i =

1

m

∑
ξ∈B(k+1)

i

∇fi(x(k+1)
i ; ξ),

u
(k+1)
i =

1

m

∑
ξ∈B(k+1)

i

∇fi(x(k)
i ; ξ).

(11)

Here, B(k+1)
i is a batch of m samples at the current it-

eration. Note that while v
(k+1)
i is evaluated at the cur-

rent iterate, u(k+1)
i is evaluated at the previous iterate.

We make the assumption that for all k and all agents i
and j, B(k+1)

i and B(k+1)
j contain independent and mu-

tually independent random variables. The part ṽ(k+1)
i can

be any unbiased estimate of ∇fi(x(k+1)
i ) with bounded

variance; its details will be elaborated soon.
4. Update the gradient tracking variable via communica-

tion:

Y(k+1) = W
(
Y(k) + D(k+1) −D(k)

)
. (12)

The step that updates the variance reduction variable,
(10), is motivated by Hybrid-SGD (Tran-Dinh et al. 2022),
which allows for a single-loop update. Intuitively, this vari-
able is a convex combination of the SARAH (Nguyen et al.
2017) update and ṽ

(k+1)
i , allowing for strong variance re-

duction and meanwhile flexibility in design. By doing so,
a constant batch size m suffices for convergence. This is a
useful property in scenarios of online learning and real-time
decision making, where it is unrealistic to obtain and store
mega batches for training (Xu and Xu 2023; Xin, Khan, and
Kar 2021a).

Examples of ṽ
(k+1)
i . The vector ṽ

(k+1)
i in (10) can be

any unbiased local gradient estimate. In this work, we con-
sider two cases: either ṽ(k+1)

i is evaluated on another set of
samples B̃(k+1)

i , defined analogously to B(k+1)
i that is used

to compute v
(k+1)
i in (11), such that

B̃
(k+1)
i is independent of B(k+1)

i with

E
∥∥∥ṽ(k+1)

i −∇fi(x(k+1)
i )

∥∥∥2
2
≤ σ̂2;

(v1)

or simply

ṽ
(k+1)
i = v

(k+1)
i with E

∥∥∥v(k+1)
i −∇fi(x(k+1)

i )
∥∥∥2
2
≤ σ̂2,

(v2)
for some σ̂ > 0. Two possible unbiased estimators that sat-

isfy (v1) are

ṽ
(k+1)
i =

1

m

∑
ξ̃∈B̃(k+1)

i

∇fi(x(k+1)
i ; ξ̃), (v1-SG)

ṽ
(k+1)
i =

1

m

∑
ξ̃∈B̃(k+1)

i

∇fi(x(k+1)
i ; ξ̃)

+
1

m

∑
˜̃
ξ∈ ˜̃B

(τk+1)

i

∇fi(x
(τk+1)
i ;

˜̃
ξ)− 1

m

∑
ξ̃∈B̃(k+1)

i

∇fi(x
(τk+1)
i ; ξ̃),

(v1-SVRG)

for some τk+1 < k + 1. The first estimator is a stan-
dard one, evaluated by using a batch B̃

(k+1)
i independent

of B(k+1)
i . The second estimator, which introduces fur-

ther variance reduction, uses an additional past-time iter-
ate x

(τk+1)
i and a batch ˜̃B

(τk+1)
i , whose size is generally

greater than m. Such an update is inspired by the SVRG
method (Johnson and Zhang 2013). Here, we have σ̂2 =
m−1σ2 for the estimators (v1-SG) and (v2); while σ̂2 =(

3m−1 + 6
∣∣∣ ˜̃B

(τk+1)
i

∣∣∣−1)σ2 for (v1-SVRG), where we re-

call that σ2 comes from (5). Note that beyond the two exam-
ples, our proof techniques hold for any unbiased estimator
satisfying (v1), leaving more open designs.

Generalized communication. Steps (8) and (12) use the
mixing matrix to perform weighted averaging of neighbor
information. The closer W is to 1

N ee>, the more uniform
the rows of X(k+1) are, implying agents are closer to con-
sensus. Hence, to improve convergence, we can apply mul-
tiple mixing rounds in each iteration. To this end, we gener-
alize the network communication by using an operator WT ,
which is a degree-T polynomial in W that must satisfy As-
sumption 2 parts (ii)–(iv). We adopt Chebyshev accelera-
tion (Auzinger and Melenk 2011; Scaman et al. 2017; Xin
et al. 2021; Li, Li, and Chi 2022), which defines for any input
matrix B0, BT = WT (B0), where B1 = WB0, µ0 = 1,
µ1 = 1

ρ for ρ defined in (7), and recursively,

µt+1 =
2

ρ
µt − µt−1 and

Bt+1 =
2µt
ρµt+1

WBt −
µt−1
µt+1

Bt−1, for t ≤ T − 1.

(13)

It is not hard to see that e is an eigenvector of WT , as-
sociated to eigenvalue 1, whose algebraic multiplicity is 1.
Therefore,

ρ̃ ,

∥∥∥∥WT −
1

N
ee>

∥∥∥∥
2

< 1. (14)

Moreover, ρ̃ converges to zero exponentially with T , bring-
ing WT rather close to an averaging operator (for details,
see Appendix B in (Mancino-Ball et al. 2022)). Notice with
T = 1, WT reduces to W.

We summarize the overall algorithm in Algorithm 1, by
replacing W in (8) and (12) with WT . Additionally, see the
discussions after Theorems 1 and 2 regarding the probability
distribution for choosing the output of Algorithm 1.

9058



Method Train loss Stationarity % Non-zeros Test accuracy

a9a

DSGT 0.3308±1.272e-4 0.0003±1.819e-4 74.18±160.09e-4 84.89±271.02e-4
SPPDM 0.5457±20.014e-4 0.001±2.99e-4 46.19±51.04e-4 76.38±0.0e-4
ProxGT-SR-E 0.545±85.017e-4 0.0491±64.099e-4 98.04±15.035e-4 76.38±0.0e-4
DEEPSTORM v1-SG 0.3306±9.46e-4 0.0002±1.292e-4 2.99±60.066e-4 84.96±1235.0e-4
DEEPSTORM v1-SVRG 0.3308±7.689e-4 0.0001±0.21278e-4 2.86±45.018e-4 84.94±929.04e-4
DEEPSTORM v2 0.3277±7.461e-4 0.0001±0.8179e-4 1.92±53.073e-4 85.11±478.03e-4

MiniBooNE

DSGT 0.3735±3.844e-4 0.0003±2.076e-4 81.83±227.0e-4 84.24±202.07e-4
SPPDM 0.5699±61.016e-4 0.0025±5.565e-4 35.32±77.02e-4 72.02±0.0e-4
ProxGT-SR-E 0.5663±32.027e-4 0.0115±7.57e-4 97.88±17.017e-4 72.02±0.0e-4
DEEPSTORM v1-SG 0.3637±19.015e-4 0.0002±0.6464e-4 4.34±60.07e-4 84.24±1902.0e-4
DEEPSTORM v1-SVRG 0.3653±23.054e-4 0.0002±0.9716e-4 4.42±65.068e-4 84.15±1974.0e-4
DEEPSTORM v2 0.3637±18.046e-4 0.0001±0.4136e-4 4.2±61.073e-4 84.25±1752.0e-4

MNIST

DSGT 0.1055±24.03e-4 0.0024±3.554e-4 51.05±896.0e-4 97.61±1346.0e-4
SPPDM 0.1851±55.065e-4 0.0051±2.058e-4 66.81±616.03e-4 95.55±1488.0e-4
ProxGT-SR-E 1.699±903.07e-4 0.21299±268.0e-4 91.4±70.087e-4 52.25±41480.0e-4
DEEPSTORM v1-SG 0.081±33.014e-4 0.0027±5.376e-4 10.31±70.031e-4 97.97±1261.0e-4
DEEPSTORM v1-SVRG 0.078±34.022e-4 0.0031±7.366e-4 10.99±82.095e-4 98.08±1485.0e-4
DEEPSTORM v2 0.0768±29.095e-4 0.0016±1.83e-4 7.36±50.07e-4 98.15±659.04e-4

Table 2: Comparisons of different methods by running them with the same number of data passes. Bold values indicate the best
results and underlined values indicate the second best.

Convergence Results
For the convergence of DEEPSTORM, we start with the
following standard definitions (Xu and Xu 2023; Xin et al.
2021).

Definition 1 Given x ∈ dom(r), y, and η > 0, define the
proximal gradient mapping of y at x to be

P (x,y, η) , 1
η

(
x− proxηr(x− ηy)

)
, (15)

where prox denotes the proximal operator proxg(v) =

argminu

{
g(u) + 1

2‖u− v‖22
}

.

Definition 2 A stochastic matrix X ∈ RN×p is called a
stochastic ε-stationary point of (2) if

E

[
1

N

N∑
i=1

‖P (xi,∇f(xi), η)‖22 +
L2

N
‖X⊥‖2F

]
≤ ε,

(16)
where η > 0, ∇f , 1

N

∑N
j=1∇fj , xi is the i-th row of X,

and X⊥ , X − 1
N ee>X is the difference between all xi

and their average 1
N

∑N
j=1 xj .

Our analyses rely on the construction of two novel Lya-
punov functions as indicated by Theorems 1 and 2 below.
These Lyapunov functions guarantee convergence through
the careful design of function coefficients which result from
solving non-linear systems of inequalities in either the con-
stant or diminishing step size case. We first consider the use
of a constant step size. The convergence rate result is given
in the following theorem. Its proof is given in Appendix C.2
in (Mancino-Ball et al. 2022).

Theorem 1 Under Assumptions 1 and 2, let{(
X(k),D(k),Y(k),Z(k)

)}
be obtained by Algorithm 1

via (9), (12), and (10) such that ṽ
(k+1)
i is any unbiased

gradient estimator that satisfies either (v1) or (v2). Further,
let αk and βk be chosen as

αk =
α

K
1
3

, βk =
144L2α2

NK
2
3

, with

α ≤ min

{
K

1
3

32L
,

(1− ρ̃)2K
1
3

64L

}
,

(17)

for all k = 0, . . . ,K − 1. Then, it holds that βk ∈ (0, 1) for
all k ≥ 0 and that

1

K

K−1∑
k=0

E

(
1

N

N∑
i=1

∥∥∥P (z
(k)
i ,∇f(z

(k)
i ), αk)

∥∥∥2
2

+
L2

N

∥∥∥Z(k)
⊥

∥∥∥2
F

)

≤ 512

αK
2
3

(
Φ(0) − φ∗

)
+

(
2048

L(1− ρ̃)2K

)
1442L4α3σ̂2

N2

+

(
128

3L2αK
2
3

+
8192α

K
4
3

+
2048α

NK
4
3

)
1442L4α3σ̂2

N2
,

(18)

for some Φ(0) > φ∗ that depends on the initialization. Note
that Φ(k) is defined in (C.43) in (Mancino-Ball et al. 2022)
for any k ≥ 0.

Network-independent sample complexity, linear
speed-up, and communication complexity. Theorem 1
establishes convergence based on the sequence {Z(k)}
defined in (8). As a consequence, if we let each agent

start with the same initial variable x(0), set α = N
2
3

64L and
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Figure 1: Comparison of different methods by running them with the same number of iterations (x-axis is iteration number).
From top to bottom: a9a, MiniBooNE, MNIST. From left to right: training loss, stationarity violation (log scale), average per-
centage non-zeros, testing accuracy. The shaded regions indicate standard deviations (with some being small and unnoticeable).

the initial batch size m0 = 3
√
NK, and choose initial

communication rounds T0 = Õ
(
(1− ρ)−0.5

)
for Y(0),

then for all K ≥ N2

(1−ρ̃)6 , DEEPSTORM achieves stochastic

ε-stationarity for some iterate Z(τ), where τ is selected
uniformly from {0, . . . ,K − 1}, by using

O

(
max

{
(L∆)

3
2 + σ̂3

Nε
3
2

,
σ̂2

(1− ρ̃)2ε
,

√
Nσ̂

3
2

ε
3
4

})
(19)

local stochastic gradient computations. For the formal state-
ment, see Corollary 1 in Appendix C.2 in (Mancino-Ball
et al. 2022). Here, ∆ = Φ(0)−φ∗ denotes an initial function
gap, which is independent of ρ̃, N , and K. Moreover, when
ε ≤ N−2(1 − ρ̃)4, we see that O

(
N−1ε−1.5

)
dominates

in (19); hence, this result manifests a linear speed-up with
respect to N over the centralized counterparts (Cutkosky
and Orabona 2019; Tran-Dinh et al. 2022) of DEEPSTORM.
Furthermore, if the number of Chebyshev mixing rounds is
T = d 2√

1−ρe, we have (1 − ρ̃) ≥ 1√
2

, which suggests that
ε does not need to be small for the linear speed-up to hold.
For details, see Lemma B.1 and Remark C.2 in (Mancino-
Ball et al. 2022). The communication cost is O (T0 + TK).

In parallel, we state a result for the case of diminishing
step size. Its proof is given in Appendix C.3 in (Mancino-
Ball et al. 2022).

Theorem 2 Under the same assumptions as Theorem 1, let
αk and βk be chosen as

αk =
α

(k + k0)
1
3

, βk = 1− αk+1

αk
+ 48L2α2

k+1, with

α ≤ min

{
k

1
3
0

32L
,

(1− ρ̃)2k
1
3
0

64L

}
,

(20)

for all k = 0, . . . ,K−1, where k0 ≥ d 2
1−ρ̃3 e. Then, it holds

that βk ∈ (0, 1) for all k ≥ 0 and that

K−1∑
k=0

cαkE

(
1

N

N∑
i=1

∥∥∥P (z
(k)
i ,∇f(z

(k)
i ), αk)

∥∥∥2
2

+
L2

N

∥∥∥Z(k)
⊥

∥∥∥2
F

)

≤ 12
(

Φ̂(0) − φ∗
)

+

K−1∑
k=0

(
1

L2αk+1
+

48

L(1− ρ̃)2

)
β2
kσ̂

2,

(21)

for some Φ̂(0) > φ∗ that depends on initialization and c ,
k

1
3
0

2k
1
3
0 +(k0+1)

1
3

> 1
4 . Note that Φ̂(k) is defined in (C.69) in

Appendix C in (Mancino-Ball et al. 2022) for any k ≥ 0.

Sample complexity. Theorem 2 establishes the conver-
gence rate of DEEPSTORM with diminishing step sizes.
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If we choose k0 = d 2
(1−ρ̃)6 e in (20), then DEEPSTORM

achieves stochastic ε-stationarity for some iterate Z(τ),
where τ is chosen according to (C.87) in (Mancino-Ball
et al. 2022), by using Õ

(
(1− ρ̃)−3ε−1.5

)
local stochastic

gradient computations; this sample complexity is network-
dependent. However, by using an initialization technique
similar to the case of constant step sizes above and letting
the initial batch size be O (1), we can set the Chebyshev
mixing rounds to be T = d 2√

1−ρe, so that (1− ρ̃)−1 ≤
√

2.
This leads to the network-independent sample complexity
reported in Table 1. For a full statement of the complexity
results, see Corollary 2 in Appendix C.3 and Remark C.4
in (Mancino-Ball et al. 2022).

Experiments
In this section, we empirically validate the convergence the-
ory of DEEPSTORM and demonstrate its effectiveness in
comparison with representative decentralized methods. We
compare all versions of DEEPSTORM with DSGT (Lu et al.
2019; Zhang and You 2020; Koloskova, Lin, and Stich 2021;
Xin, Khan, and Kar 2021b), SPPDM (Wang et al. 2021),
and ProxGT-SR-O/E (Xin et al. 2021). DSGT uses gradi-
ent tracking but it is not designed for non-smooth objec-
tives; nevertheless, it outperforms strong competitors (e.g.
D-PSGD (Lian et al. 2017) and D2 (Tang et al. 2018))
in practice (Zhang and You 2020; Xin, Khan, and Kar
2021b). SPPDM is a primal-dual method, but it does not
utilize gradient tracking and its convergence theory requires
a large batch size. ProxGT-SR-O/E is a double-loop algo-
rithm, which requires using a mega-batch to compute the
(stochastic) gradient at each outer iteration. All experiments
are conducted using the AiMOS1 supercomputer with eight
NVIDIA Tesla V100 GPUs in total, with code implemented
in PyTorch (v1.6.0) and OpenMPI (v3.1.4).

Problems. We conduct tests on three classification prob-
lems. Each local agent i has the objective φi(xi) =
1
M

∑M
j=1 ` (g (xi,aj) ,bj) + λ ‖xi‖1 , where g(x,a) is the

output of a neural network with parameters x on data a,
and ` is the cross-entropy loss function between the output
and the true label b. The data is uniformly randomly split
among the agents, each obtaining M training examples. The
L1 regularization promotes sparsity of the trained network.
The regularization strength λ is set to 0.0001 following gen-
eral practice.

Data sets and neural networks. The three data sets we
experiment with are summarized in Table 2 in Appendix A
in (Mancino-Ball et al. 2022). Two of them are tabular data
and we use the standard multi-layer perceptron for g (one
hidden layer with 64 units). The other data set contains im-
ages; thus, we use a convolutional neural network. Both neu-
ral networks use the tanh activation to satisfy the smoothness
condition of the objective function.

Communication graphs. Each data set is paired with a
different communication graph, indicated by, and visualized
in, Table 2 in Appendix A in (Mancino-Ball et al. 2022).
For the ladder and random graphs, the mixing matrix is set

1See: https://cci.rpi.edu/aimos

as W = I − γL, where γ is reciprocal of the maximum
eigenvalue of the combinatorial Laplacian L. For the ring
graph, self-weighting and neighbor weights are set to be 1

3 .
Performance metrics. We evaluate on four metrics: train-

ing loss, stationarity violation, solution sparsity, and test
accuracy. Further, we compare the methods with respect
to data passes and algorithm iterations, which reflect the
sample complexity and communication complexity, respec-
tively. Note that for each iteration, all methods except SP-
PDM communicate two variables. For the training loss, sta-
tionarity violation, and test accuracy, we evaluate on the
average solution x̄. The stationarity violation is defined as
‖x̄− proxr (x̄−∇f(x̄))‖22+

∑N
i=1 ‖xi − x̄‖22, which mea-

sures both optimality and consensus. For sparsity, we use
the average percentage of non-zeros in each xi prior to local
communication.

Protocols. For hyperparameter selection, see Appendix A
in (Mancino-Ball et al. 2022). We perform ten runs with dif-
ferent starting points for each dataset. In several runs for the
MNIST dataset, DSGT and SPPDM converge to solutions
with � 1% non-zero entries, but the training loss and test
accuracy are not competitive at all. We keep only the five
best runs for reporting the (averaged) performance.

Results. Table 2 summarizes the results for all perfor-
mance metrics, by using the same number of data passes
for all methods when convergence has been observed. For
a9a and MiniBooNE, the results are averaged over passes 80
to 100; while for MNIST, over passes 180 to 200. Figure 1
compares different methods by using the same number of
algorithm iterations.

Overall, we see that DEEPSTORM (all variants) gener-
ally yields a lower training loss and significantly fewer non-
zeros in the solution than the other decentralized algorithms.
This observation suggests that DEEPSTORM indeed solves
the optimization problem (2) much more efficiently in terms
of both data passes and iterations. Moreover, the test accu-
racy is also highly competitive, concluding the practical use-
fulness of DEEPSTORM.

Conclusion

We have presented a novel decentralized algorithm for solv-
ing the nonconvex stochastic composite problem (2) by
leveraging variance reduction and gradient tracking. It is the
first such work that achieves optimal sample complexity for
this class of problems by using O (1) batch sizes. Our al-
gorithm is a framework with an open term (see (10)), for
which we analyze two examples that allow the framework to
achieve network-independent complexity bounds, suggest-
ing no sacrifice over centralized variance reduction methods.
Our proof technique can be used to analyze more designs of
the open term. While our work is one of the few studies on
the nonconvex stochastic composite problem (2), our anal-
ysis is for the synchronous setting with a static communi-
cation graph. Analysis (or adaptation of the algorithm) for
asynchronous or time-varying settings is an avenue of future
investigation.

9061



Acknowledgments
This work was supported by the Rensselaer-IBM AI Re-
search Collaboration, part of the IBM AI Horizons Net-
work, NSF grants DMS-2053493 and DMS-2208394, and
the ONR award N00014-22-1-2573.

References
Allen-Zhu, Z. 2018. Katyusha: The First Direct Accelera-
tion of Stochastic Gradient Methods. Journal of Machine
Learning Research, 18(221): 1–51.
Arjevani, Y.; Carmon, Y.; Duchi, J. C.; Foster, D. J.; Srebro,
N.; and Woodworth, B. 2022. Lower bounds for non-convex
stochastic optimization. Mathematical Programming.
Auzinger, W.; and Melenk, J. M. 2011. Iterative Solution of
Large Linear Systems. TU Wien, Lecture Notes.
Chamideh, S.; Tärneberg, W.; and Kihl, M. 2021. Evalua-
tion of Decentralized Algorithms for Coordination of Au-
tonomous Vehicles at Intersections. In 2021 IEEE In-
ternational Intelligent Transportation Systems Conference
(ITSC), 1954–1961.
Cutkosky, A.; and Orabona, F. 2019. Momentum-Based
Variance Reduction in Non-Convex SGD. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d’ Alché-Buc, F.; Fox, E.;
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