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Abstract

Are Federated Learning (FL) systems free from backdoor
poisoning with the arsenal of various defense strategies de-
ployed? This is an intriguing problem with significant prac-
tical implications regarding the utility of FL services. De-
spite the recent flourish of poisoning-resilient FL methods,
our study shows that carefully tuning the collusion between
malicious participants can minimize the trigger-induced bias
of the poisoned local model from the poison-free one, which
plays the key role in delivering stealthy backdoor attacks and
circumventing a wide spectrum of state-of-the-art defense
methods in FL. In our work, we instantiate the attack strategy
by proposing a distributed backdoor attack method, namely
Cerberus Poisoning (CerP). It jointly tunes the backdoor trig-
ger and controls the poisoned model changes on each ma-
licious participant to achieve a stealthy yet successful back-
door attack against a wide spectrum of defensive mechanisms
of federated learning techniques. Our extensive study on 3
large-scale benchmark datasets and 13 mainstream defensive
mechanisms confirms that Cerberus Poisoning raises a signif-
icantly severe threat to the integrity and security of federated
learning practices, regardless of the flourish of robust Feder-
ated Learning methods.

Introduction
The distributed nature of federated learning makes it vul-
nerable to backdoor attacks carried out by malicious par-
ticipants, as unveiled in recent studies (Fung, Yoon, and
Beschastnikh 2018; Baruch, Baruch, and Goldberg 2019;
Xie et al. 2020; Bagdasaryan et al. 2020; Wang et al. 2020;
Fang et al. 2020; Shejwalkar and Houmansadr 2021). Sev-
eral malicious participants can collude to embed a well-
designed backdoor trigger into their local training data to
poison the global aggregated model. The perturbed global
model then misclassifies the input instances embedded with
the backdoor trigger as the target label specified by the ad-
versary. However, the perturbed global model performs nor-
mally on clean input instances. In security-critical applica-
tions, e.g., distributed video surveillance and credit risk as-
sessment, the adversary can compromise several local com-
puting devices of the target federated learning system to
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launch such backdoor attacks. The adversary can mislead the
jointly trained global model to misidentify malicious activi-
ties with the trigger signal on one hand. On the other hand,
the poisoned model works normally on other inputs without
the trigger. It is thus difficult for the FL service owners to
flag the malfunction caused by colluding backdoor attacks.

There has been a long line of efforts exploring various de-
fensive mechanisms to prevent distributed poisoning attacks,
including backdoor attacks. These defense methods detect
anomalies in the submitted local models to mitigate poten-
tial poisoning effects (Blanchard et al. 2017; Yin et al. 2018;
Mhamdi, Guerraoui, and Rouault 2018; Pillutla, Kakade,
and Harchaoui 2019; Shejwalkar and Houmansadr 2021;
Cao et al. 2021), introduce additional random perturbations
to model parameters to gain certified robustness against the
backdoor noise (Geyer, Klein, and Nabi 2017; Sun et al.
2019; Wei et al. 2021; Xie et al. 2021; Sun et al. 2021),
down-weigh the poisoned local model updates sharing sim-
ilar model parameters to mitigate colluding poisoning (Fu
et al. 2019; Fung, Yoon, and Beschastnikh 2020), and build
a voting-based defense mechanism to filter poisoned local
models (Cao, Jia, and Gong 2021; Andreina et al. 2021).
As confirmed in our empirical study, these defensive mech-
anisms can indeed effectively mitigate the existing backdoor
attacks. They provide a rich arsenal of robust learning solu-
tions for service providers of FL systems.

However, our study shows that the distributed backdoor
poisoning threat against federated learning is far from be-
ing well addressed. We demonstrate that adversaries can
organize the collusion of malicious participants to easily
dodge various state-of-the-art defensive mechanisms while
successfully launching distributed backdoor attacks. The ad-
versary achieves this goal by exploiting the fundamental as-
sumptions of different defensive mechanisms and adjusting
the learning objectives of backdoor attacks accordingly.

Our contributions can be summarized in the following
perspectives.
1) Theoretically, we establish lower and upper bounds
on the trigger-induced local model changes for malicious
participants in general federated learning tasks. Instead
of requiring the local model parameters of different partici-
pants to be IID, we assume the gradients of the local mod-
els are bounded and Lipschitz-continuous. This assumption
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holds for most practically deployed machine learning mod-
els and is generic enough for both IID and non-IID feder-
ated learning scenarios. Our analysis identifies the key fac-
tors controlling the local model bias induced by backdoor
triggers, thus deciding the feasibility of federated backdoor
attacks exposed to defense methods.
2) We propose a stealthy distributed backdoor attack,
namely Cerberus Poisoning (CerP) by exploiting the al-
gorithmic principles of current defense methods in fed-
erated learning. Despite originating from different perspec-
tives and threat model settings, these defensive mechanisms
share the same core assumption: regardless of the data dis-
tribution of participants, each poisoned local model trained
with poisoned data is biased largely from those trained by
the poison-free data. Exploiting the limit of this assump-
tion, CerP casts the distributed backdoor attack as a joint
optimization process of three learning objectives.

Automatic fine-tuning of backdoor triggers. Based on
the theoretical analysis, we believe that the injected trigger
is an important factor in determining the magnitude of vari-
ation in the parameter bias of the poisoned local models. In
CerP, we propose to fine-tune the backdoor trigger to facili-
tate the learning of the poisoned data and reduce the param-
eter bias of the poisoned local models.

Control over local model bias. For each malicious par-
ticipant, we suppress the model parameter bias between the
poisoned local model and its poison-free counterpart that
would have been derived if no trigger noise was injected.
We also explain the theoretical rationality of explicitly sup-
pressing the bias in the poisoned local models.

Diversity of poisoned local models. To bypass the sybil-
attack mitigation methods (Fung, Yoon, and Beschastnikh
2018), we require the poisoned local models submitted by
malicious participants to be as dissimilar as possible. We
enlarge the divergence of the poisoned local models to avoid
being flagged by the similarity-based defenses.
3) Our comprehensive empirical evaluation shows that
the proposed CerP method circumvents all the 13 defense
methods on 3 large-scale benchmark datasets (CIFAR-
100, Fashion-MNIST, and LOAN). Compared to other
state-of-the-art distributed backdoor attack methods (Sybil
attack (Fung, Yoon, and Beschastnikh 2018), LIE (Baruch,
Baruch, and Goldberg 2019), and DBA (Xie et al. 2020)), the
experimental results show that CerP achieves consistently
higher attack success rates and maintains the accuracy of the
main learning task, no matter which defense strategy is em-
ployed. In contrast, none of the 3 distributed backdoor attack
methods can neutralize all defenses.

Related Work
Backdoor Attacks against Federated Learning. Pioneer-
ing studies on backdoor attacks against federated learning
systems (Fung, Yoon, and Beschastnikh 2018; Bagdasaryan
et al. 2020) assume that each malicious participant trains
their local models individually, without any collusion be-
tween them. Since they use the same backdoor trigger, the
poisoned local models tend to share similar parameter values
and are largely deviated from benign local models. These at-
tacks are thus easily mitigated by the Byzantine-robust ag-

gregation methods and sybil-attack mitigation methods like
Foolsgold (Fung, Yoon, and Beschastnikh 2018).

More advanced distributed backdoor threats (Baruch,
Baruch, and Goldberg 2019; Sun et al. 2019) consider how
to evade Byzantine-robust aggregation rules. They clip the
parameters of the poisoned local model according to the pa-
rameter range of the benign local models. However, they ei-
ther assume the parameters of the benign local models are
IID Gaussian variables so that the bounds on benign param-
eter values can be estimated (Baruch, Baruch, and Gold-
berg 2019), or assume that the benign parameter bounds
are known as prior knowledge (Sun et al. 2019). Neither of
these assumptions holds in practice, especially in non-IID
federated learning tasks. Therefore, the manually configured
parameter clipping bounds may be overestimated (down-
grading the learning capability), or underestimated (failing
the attack task). Besides, some methods require knowing
the model parameters committed by the benign participants,
which violates the protocol of federated learning.

Alternatively, DBA (Xie et al. 2020) manages stealthy
backdoor attacks by manually decomposing a global back-
door trigger into different local triggers and assigning sepa-
rately the local triggers to each malicious participant. The
malicious participants learn to fit different local triggers,
and thus have dissimilar poisoned local models to bypass
the sybil-attack mitigation methods. However, how to prop-
erly decompose global triggers to guarantee successful back-
door attacks remains an open issue. Manual decomposition
of global triggers unavoidably introduces artifacts into lo-
cal triggers. DBA may thus lead to large deviations of the
poisoned local models from the benign ones. Therefore, this
method fails to attack the popular Byzantine-robust aggre-
gation methods such as Krum and Bulyan.

Byzantine-robust aggregation methods. These methods
(Blanchard et al. 2017; Yin et al. 2018; Mhamdi, Guerraoui,
and Rouault 2018; Pillutla, Kakade, and Harchaoui 2019;
Shejwalkar and Houmansadr 2021; Cao et al. 2021) follow
the spirit of anomaly detection. The core hypothesis assumes
that the parameters of all benign local models stay within
a bounded lp-ball centered on the global model. Therefore,
the poisoned local models are considered to be outliers that
largely deviate from benign local models. Nevertheless, they
may fail to detect distributed backdoor attacks that are dedi-
cated to minimizing the distance between the malicious and
benign local models.

Differential privacy-based methods. These defense
methods (Geyer, Klein, and Nabi 2017; Wei et al. 2021;
Sun et al. 2021; Xie et al. 2021) adopt the core ideas of
differential privacy theory and random smoothing (Cohen,
Rosenfeld, and Kolter 2019). These methods add Gaussian
or Laplace noises to the parameters of the global model or
local models. The injected perturbation makes the disturbed
models insensitive to backdoor triggers. However, how to
properly set the noise magnitude is still open in practice.
Too strong or too weak noise may either harm the utility of
the target model or weaken the capability to defend against
the attack.

Other defense methods like Foolsgold (Fung, Yoon, and
Beschastnikh 2018) identify poisoning sybils based on the
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similarity of local model updates. Nevertheless, the adver-
sary can encourage the diversity of poisoned local models to
bypass these defense methods. Ensemble FL method (Cao,
Jia, and Gong 2021) trains multiple global models to make
a majority vote on prediction decisions. Similarly, BaFFLe
(Andreina et al. 2021) is also a voting-based defense, where
participants validate the global model on their local data and
vote to accept or reject the global model. Since benign par-
ticipants are agnostic to attacker-designed triggers, it is dif-
ficult to recognize and flag backdoor poisoning efforts only
by inspecting the overall classification performance of the
poison-free testing data.

Algorithm Description of Cerberus Poisoning
Preliminaries
Federated Learning. We focus on the setting of Federated
Learning with partial participation, i.e. Np out of N par-
ticipants are selected in each training iteration of federated
learning. Compared to the full participation setting, the par-
tial participation setting of FL is better adapted to real-world
machine learning applications, such as mobile edge com-
puting, where local devices may join or leave the FL ser-
vice at will. Each participant i hosts a local dataset Di ={
{xi,j ∈ Rm, yi,j}di

j=1

}
, where di = |Di| and {xi,j , yi,j}

represents the features and label of each data instance. At
each training iteration t, we use gt−1 and ht

i to represent
the global model shared with the selected participants and
the local model of each participant i respectively. The server
updates the global model by aggregating the local model up-

dates with a learning rate η: gt = gt−1+ η
Np

Np∑
i=1

(ht
i − gt−1).

Adversary’s goal. The goal of backdoor attacks on FL is
twofold: 1) The classifier derived by the poisoned federated
training process should produce the expected decision out-
put set by the backdoor trigger. 2) The accuracy of the main
learning task on poison-free data should not be perturbed.
Adversary’s capability. The adversary compromises C of
the total N participants (C ≪ N ). In a training iteration of
partial-participation federated learning, each selected mali-
cious participant controlled by the adversary injects back-
door poisoned instances into the local training set. Note that
the adversary cannot know or tamper with the global ag-
gregation rules or the local training process of benign par-
ticipants. The malicious participants can collude by sharing
their poisoned local models with the adversary. The adver-
sary can then share back to each malicious participant the
poisoned local models submitted by other malicious partic-
ipants as additional knowledge to guide how to control the
local model changes of the malicious participants.

The Objective of Cerberus Poisoning
We define CerP as a distributed optimization problem with
an objective function given in Eq.1. The aggregated global
model is trained to fit both the clean training data and poi-
soned training data with the trigger. Given a federated train-
ing iteration t, the adversary launches the backdoor attack

to derive the poisoned local models h∗,t
i of the compro-

mised participants via jointly optimizing the learning objec-
tive with compromised participants, which gives in Eq.1.

∆x∗,t, {h∗,t
i }i∈S = argmin

∆x,ht
i(i∈S)

{
∑
i∈S

(
∑

j∈Dnor
i

ℓht
i
(xi,j , yi,j)

+
∑

j∈Dmal
i

ℓht
i
(xi,j +∆x, ŷi,j)) + α

∑
i∈S

∥∥ht
i − hnor,t

i

∥∥
Fro

+ β
∑

i,i′∈S

cs(ht
i, h

t
i′)}

s.t.
∥∥∆x−∆x0

∥∥
2
≤ φ

(1)

where ℓht
i

denotes the classification loss function given the
labelled data instance (x, y) and the local classifier model
ht
i of each participant i. ∥∥Fro is the Frobenius norm of a

matrix. We use S to represent the set of compromised par-
ticipants in the t-th federated training iteration. The attack
process of CerP can be summarized from two perspectives:

For a compromised participant i ∈ S, Dmal
i and Dnor

i
represent the backdoor-poisoned and the poison-free train-
ing data hosted by the participant i, respectively. hnor,t

i is
the poison-free model trained by the compromised partic-
ipant i at the iteration t. cs(ht

i, h
t
i′) is the pairwise cosine

similarity between the local models submitted by a pair of
compromised participants i and i′ (i, i′ ∈ S). According
to the threat model setting, each compromised participant
can access the poisoned local models derived by other com-
promised participants via the adversary. Except that, all of
the compromised participants follow the standard federated
learning setting. Besides, we consider the backdoor trigger
∆x as an optimization variable in CerP. ∆x0 is the initial
backdoor trigger designed by the adversary before launch-
ing the optimization process of Eq.1. The parameter φ in
Eq.1 limits the distance between the finely tuned trigger ∆x
and the initial trigger ∆x0.

At the iteration t, solving the constrained optimization
problem in Eq.1 produces the tuned backdoor trigger ∆x∗,t

and the poisoned local model h∗,t
i . The finely tuned back-

door trigger ∆x∗,t can be used in the attack. The poisoned
local models h∗,t

i are committed to the central server to gen-
erate the poisoned global model for the next iteration. The
learning objective of CerP (Eq.1) is four-fold:

Objective 1. Learning both clean and backdoor poisoned
training data. The classification accuracy of the main learn-
ing task and the backdoor attack task is optimized. The main
learning task is to train ht

i on the clean training data hosted
by the compromised participants (the first term in Eq.1).
The backdoor attack task is to make ht

i fit the backdoor poi-
soned training data hosted by the compromised participants
(the second term of Eq.1).

Objective 2. Trigger fine-tuning for stealthy backdoor
attacks. The backdoor trigger ∆x is considered as an op-
timization variable of the attack objective. Intuitively, the
backdoor trigger ∆x and the poisoned local models are
jointly tuned to minimize the learning loss of the backdoor
poisoned training data. This is used to facilitate the poisoned
local model ht

i to accurately fit the backdoor poisoned data
without inducing large biases in the local model parameters.
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We establish the following theoretical analysis to explain the
rationality of backdoor trigger tuning.

Without loss of generality, we use a multi-layer neu-
ral network H for C-class classification with K fully con-
nected layers as the target model for the federated learning
task. The classification function can be written as H(x) =
σK−1hK−1(σK−2hK−2(σK−3hK−3(· · ·σ0h0(x)))), where
σk and hk ∈ Rdk×dk+1 (k = 0, 1, 2, ...,K−1 and dK = C)
are the activation function and the parameter matrix of each
layer, respectively. Following (Wang et al. 2020), we define
an ϵ-adversarial equivalent sample x′ to a backdoor poisoned
sample x+∆x.
Definition 1. Given a targeted classifier Hnor and a back-
door poisoned classifier Hmal, an ϵ-adversarial equivalent
x′ is defined as:

Hnor(x′) = Hmal(x+∆x),

x′ = x+∆x+ ϵx,

s.t. ∥ϵx∥2 ≤ ϵ

(2)

Assume that the backdoor attack is successfully delivered
at the training iteration t. Let hnor,t

i,k and hmal,t
i,k denote the

parameter matrix of the layer k of the poison-free and poi-
soned local model of the compromised participant i. Let
gnor,t−1
k be the parameter matrix of the layer k of the ag-

gregated global model at the training iteration t − 1. The
distance between hmal,t

i,k and gnor,t−1
k (the trigger-induced

local model bias) can be bounded in Theorem 1.
Theorem 1 Let ℓH(x, y) be the classification risk function
of a federated learning task. Its gradient with respect to
each coordinate j of ht

i,k, ∇ht
i,k,j

ℓH(x, y) is bounded by the
Lipschitz constant L, i.e. |∇ht

i,k,j
ℓH(x, y)| ≤ L. Thus the

coordinate-wise gradient follows a γ-subgaussian distribu-
tion with mean µ. X(k) represents the input to the layer
k of H by feeding a set of input instances X to H. For a
given layer k (1 ≤ k ≤ K), the distance between hmal,t

i,k and
gnor,t−1
k can be bounded from above with a probability of

p≥1 − 2dkdk+1mNδe
{−nmin{

√
dkdk+1L/γ,2dkdk+1L

2/γ2}}.
The constant Nδ is defined such that Nδ ≤ (1+D/δ)dkdk+1 ,
where δ is the covering number of the layer k parameter ma-
trix hnor,t

i,k (Vershynin 2011).

∥hmal,t
i,k − gnor,t−1

k ∥Fro ≤
∥ϵ∥2

√
dmal
i

∏k
s=0 ∥h

nor,t
i,s ∥∗

ρk

+2ηt
√

dkdk+1L+ ∥gnor,t
k − gnor,t−1

k ∥Fro

(3)

where ρk is the minimum eigenvalue of X(k). ϵ is the pertur-
bation bound of the adversarial equivalent to the backdoor
poisoned sample x +∆x. ∥∥∗ denotes the spectral norm of
the parameter matrix. ηt is the learning rate of the federated
training iteration t.

Corollary 1.1 Inheriting the setting of Theorem 1, if the
classification loss ℓH(x, y) is Lc-Lipschitz continuous, the
upper bound Eq.3 can be further formulated as:

∥hmal,t
i,k − gnor,t−1

k ∥Fro ≤
∥ϵ∥2

√
dmal
i

∏k
s=0 ∥h

nor,t
i,s ∥∗

ρk

+ 2ηk
√

dkdk+1L+ ηtLc∥gnor,t
k − gnor,∗

k ∥Fro

(4)

where gnor,∗k as the optimal parameters of the layer k de-
rived once converged.

Theorem 2 Following the same setting in Theorem 1, if the
classification loss ℓH(x, y) is Lc-Lipschitz continuous, for a
given layer k (1 ≤ k ≤ K), the distance between hmal,t

i,k and
gnor,t−1
k can be bounded from below as:

∥hmal,t
i,k − gnor,t−1

k ∥Fro ≥
νk∥ϵ∥2

max
xnor
i,k

,xmal
i,k

∥xnor
i,k − xmal

i,k ∥2

− ηtLc∥gnor,t
k − gnor,∗

k ∥Fro

(5)

where νk is the minimum non-zero singular value of the
product of the parametric matrices hnor

i,k , hnor
i,k−1 · · · hnor

i,0 .
xnor
i,k and xmal

i,k are the poison-free and poisoned samples in
X(k) hosted by the participant i respectively.

Our unveilings in the analysis can be summarized in two
aspects. First, under the adversary-free scenario, ∥gnor,tk −
gnor,t−1
k ∥Fro in Eq.3 and ∥gnor,tk − gnor,∗k ∥Fro in Eq.5 van-

ish when the federated training is close to convergence.
Bearing this in mind, it is generally impossible to ensure
the success of backdoor attacks without causing local model
changes on compromised participants, unless ϵ = 0 accord-
ing to Eq.3 and Eq.5. However, the exception with ϵ = 0
holds only when Hnor(x+∆x) = ŷ. In this case, the trigger
∆x should be chosen in a way that a classifier can produce
accurately the target label of an input instance carrying the
trigger, even without poisoning the classifier with the back-
door data. This situation is difficult to meet in practice.

Second, according to Eq.3 in Theorem 1, minimizing the
value of the product ∥ϵ∥2

∏k
s=0 ∥h

nor,t
i,s ∥∗ is the key to mini-

mize the trigger-induced parameter changes to evade defen-
sive methods. We propose to achieve this goal by adjusting
the designated backdoor trigger ∆x via Eq.6 (the second
term in Eq.1). It aims at adapting the trigger to minimize
the classification loss of the poisoned local model ht

i on
the backdoor poisoned instance (x + ∆x, ŷ). According to
the definition of ϵ-adversarial equivalent, Eq.6 directly min-
imizes the adversarial noise magnitude ∥ϵ∥2 with respect to
the local model ht

i. Consequently, the derived finely tuned
trigger ∆x∗,t can reduce both the upper and lower bounds of
the trigger-induced model changes, as ∥ϵ∥2 decreases with-
out changing the local model ht

i (thus
∏k

s=0 ∥h
nor,t
i,s ∥∗ keeps

unchanged in the product ∥ϵ∥2
∏k

s=0 ∥h
nor,t
i,s ∥∗). Mean-

while, fine-tuning the trigger helps reduce the learning loss
on the backdoor poisoned training data, which alleviates the
difficulty of memorizing the trigger-induced feature-label
correlation.

∆x∗,t = argmin
∆x

∑
i∈S,j∈Dmal

i

ℓht
i
(xi,j +∆x, ŷi,j)

s.t.
∥∥∆x−∆x0

∥∥
2
≤ φ

(6)

Without loss of generality, we adopt L2 distance to measure
the magnitude of changes adapted to the finely tuned trigger.

Objective 3. Deviation regularization on local models.
To bypass the defense methods, we control the parameter
changes of the poisoned local models at the participant level.
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For each compromised participant i, we minimize the dis-
tance between the poisoned local model ht

i and the poison-
free local model that could be derived if no trigger noise
was injected (noted as hnor,t

i ). The distance is measured us-
ing the Frobenius norm as ∥ht

i − hnor,t
i ∥Fro. Enforcing the

distance regularization (the third term of Eq.1) helps re-
duce the spectral norm of ht

i. Assuming hnor,t
i is close to

convergence on the poison-free training data, hnor,t
i can be

considered as a constant as the gradient vanishes. Following
the matrix norm inequality, it can be found that minimizing
∥ht

i −hnor,t
i ∥Fro suppresses the upper bound of the spectral

norm of ht
i:

∥ht
i − hnor,t

i ∥Fro ≥ ∥ht
i∥∗ − const (7)

where all the factors independent of the poisoned training
data are absorbed into const. More intuitively, dragging ht

i

and hnor,t
i close together helps evade from the Byzantine-

robust aggregation methods, e.g., Trimmed mean and Krum.
The closer the poisoned local model ht

i stays to the benign
one hnor,t

i , the more difficult it is for these defense methods
to identify and exclude the compromised participants with-
out raising false alarms.

The joint application of the trigger fine-tuning and the
deviation regularization term over the poisoned local mod-
els makes both ∥ϵ∥2 and the classifier’s spectral norm in
Eq.3 and Eq.5 decrease. They form the core of the pro-
posed CerP attack method: controlling trigger-induced local
model changes to deliver stealthy yet successful federated
backdoor attacks.

Objective 4. Pairwise similarity regularization. We sup-
press the cosine similarity between the poisoned local mod-
els of the compromised participants (the fourth term of
Eq.1). Foolsgold (Fung, Yoon, and Beschastnikh 2018)
against sybil attacks reduces the aggregated weights of par-
ticipants that repeatedly contribute similar local model up-
dates. We enhance the diversity of the malicious local mod-
els to evade similarity-based defense methods.

Optimization Algorithm
We provide the pseudocodes of CerP in Algorithm 1. Mul-
tiple malicious participants introduce the backdoor trigger
designated by the adversary into local training data. The ma-
licious participants jointly optimize the CerP’s attack objec-
tive by fine-tuning the backdoor trigger and suppressing the
trigger-induced local model biases, as defined in Eq.1. The
fine-tuning trigger stage utilizes only the poisoned training
data hosted by the malicious participants. Both the poisoned
and poison-free local models are aggregated at the central
server to produce a poisoned global model.

Experimental Evaluation
We evaluate the attack performance of the distributed back-
door attack methods using 3 benchmark datasets of differ-
ent application scenarios. We implement all the involved
algorithms using PyTorch on an Ubuntu workstation with
NVIDIA 3090 GPUs. Our code can be found at the link 1.

1https://github.com/xtlyu/CerP

Algorithm 1: Cerberus Poisoning
Input: The global model g and the local model hi of malicious

participant i. The set of malicious participants S.
Output: The finely tuned backdoor trigger ∆x∗,t and the back-

door poisoned local model h∗,t
i .

1: for t = E → T do
2: The central server sends the global model gt−1 to all the

selected participants.
3: for all participants i ∈ S in parallel do
4: ht

i ← gt−1;
5: The adversary uses the data instances hosted by the ma-

licious participants based on the model ht
i to optimize the trig-

ger ∆x∗,t by Eq. 6;
6: Patch x, x ∈ Dmal

i with finely tuned backdoor trigger
∆x∗,t;

7: Calculate h∗,t
i by optimizing Eq.1 with Dmal

i and
Dnor

i ;
8: Send the poisoned local model h∗,t

i to the server.
9: end for

10: end for

Datasets, triggers, models, and hyperparameters. We
evaluate CerP on 3 large-scale benchmark datasets: the ap-
plications of image classification (CIFAR-100 (Krizhevsky,
Hinton et al. 2009) and Fashion-MNIST (Xiao, Rasul, and
Vollgraf 2017)), and the loan/credit risk assessment (LOAN
(George 2020)). On each dataset, we adopt the setting of
non-IID data distribution. The datasets, hyperparameters,
and model structures are summarized in Table 1.
Baseline backdoor attacks. To organize a comparative
study, the 3 distributed backdoor attacks (LIE (Baruch,
Baruch, and Goldberg 2019), Sybil attack (Fung, Yoon, and
Beschastnikh 2018), and DBA (Xie et al. 2020)) are in-
volved.
Defense methods. We study the attack performance under
the 13 defense methods: Trimmed mean (Yin et al. 2018),
Median (Yin et al. 2018), Krum (Blanchard et al. 2017),
MKrum (Blanchard et al. 2017), Bulyan (Mhamdi, Guer-
raoui, and Rouault 2018), RFA (Pillutla, Kakade, and Har-
chaoui 2019), DnC (Shejwalkar and Houmansadr 2021),
FLTrust (Cao et al. 2021), Foolsgold (Fung, Yoon, and
Beschastnikh 2018), CRFL (Xie et al. 2021), FedCDP
(Geyer, Klein, and Nabi 2017), FedLDP (Wei et al. 2021),
and FL-WBC (Sun et al. 2021).
Attack settings. To define a partial-participation FL set-
ting, the global server selects 20 out of 100 participants
on CIFAR-100 and Fashion-MNIST and 80 participants on
LOAN respectively for parameter aggregation in each feder-
ated training iteration. During the backdoor attack, in each
attack iteration, we constraint no more than 4 participants
involved in aggregation as malicious participants. We ap-
ply this setting to make our studied attack scenario com-
patible with the feasibility assumption of Byzantine-robust
FL algorithms, in order to organize a fair comparison. These
defenses are assumed to work in the case where no more
than 50% or 25% of the participants are malicious. For the
LOAN, CIFAR-100, and Fashion-MNIST datasets, the ad-
versary starts to attack from the 10-th, 10-th, and 70-th train-
ing iterations of FL, respectively.
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Dataset Instances Features Model Benign lr |S| N Poison lr Poison Ratio r α β
CIFAR-100 60,000 1024 Resnet-18 0.01 4 100 0.005 5/64 0.0001 0.0001

Fashion-MNIST 60,000 784 2 conv and 2 fc 0.1 4 100 0.05 5/64 0.0001 0.0001
LOAN 887,380 53 3 fc 0.001 3 80 0.0005 5/64 0.0001 0.0001

Table 1: Dataset, model structure, and hyperparameter description.

Defense
Attack Sybil DBA LIE CerP

ACC ASR ACC ASR ACC ASR ACC ASR
Krum 61.15 89.03 69.41 0.07 70.42 0.98 63.03 90.76

MKrum 65.24 88.08 66.01 88.17 63.91 2.57 64.03 99.34
Bulyan 68.69 87.48 69.29 5.59 66.80 37.67 68.11 99.74

Trimmed mean 66.05 56.72 64.78 3.85 69.77 9.39 66.84 90.24
Median 67.23 60.25 65.64 2.49 70.23 10.36 67.68 92.25

RFA 70.60 73.39 70.34 11.60 70.86 6.61 70.53 81.80
Foolsgold 69.28 72.73 69.98 0.44 69.97 0.92 69.29 91.48
FLTrust 71.20 77.32 71.53 63.55 71.34 5.52 71.30 94.58

DnC 62.64 92.38 62.89 73.36 70.24 4.90 66.19 97.21
FedLDP 70.91 73.01 70.89 73.50 70.86 8.94 71.19 93.67
FedCDP 70.35 85.16 70.36 71.42 70.14 66.58 70.68 95.52
CRFL 70.71 71.88 71.14 73.74 70.74 11.18 70.59 93.66

FL-WBC+Median 67.17 60.10 32.26 0.44 70.32 10.31 67.67 92.13
FL-WBC+Trim 66.22 56.58 34.93 0.72 69.81 7.37 66.94 89.72

Table 2: ASR and ACC of different distributed backdoor attacks on CIFAR-100(%).

Evaluation metrics. We involve two popularly used bench-
marks ACC and ASR (Xie et al. 2020) to measure the attack
performance of backdoor attack methods. ASR denotes the
attack success rates, measuring the classification accuracy
of the derived poisoned global model on the poisoned test-
ing data. In parallel, ACC measures the main task’s classifi-
cation accuracy on the poisoned-free testing data.

Attack Performance
We compare CerP with 3 state-of-the-art distributed back-
door attacks against 13 defense methods. We show the ACC
and ASR values of all the backdoor attacks involved in the
comparison. We compare the ASR values of different back-
door attacks at the same ACC level. Due to the space limit,
we show the results on CIFAR-100 and LOAN in this sec-
tion. In the following tables, we use the bolded fonts to high-
light the highest ASR values obtained among all the attack
methods facing various defense methods. As seen in Tables
2–3, CerP can achieve higher ASR values than other baseline
attack methods given the same ACC level and against all the
deployed defense methods.

LIE is proved to conceal the robust aggregation meth-
ods under the IID data assumption. However, with the non-
IID data setting in our study, we can find that LIE cannot
bypass most defense methods. The ASR of LIE varies sig-
nificantly across different datasets. Moreover, LIE requires
knowing the model parameters committed by benign partic-
ipants, which violates the protocol of FL. The empirical re-
sults show that the lack of the context knowledge of benign
participants brings a noticeable drop to the ASR value of
LIE. For example, LIE can hardly bypass any defense meth-
ods except FedCDP on CIFAR-100. The results show the
limitations of LIE for general federated learning.

The decentralized nature of DBA facilitates defeating both

the robust aggregation methods and Foolsgold. However,
DBA cannot bypass most defense methods on CIFAR-100
and LOAN. The main reason is that DBA uses local triggers
manually separated from the global trigger. Manually split-
ting the global trigger into chunks can bring unexpected ar-
tifacts to the learning of the backdoor poisoned data, which
leads to large deviations of the poisoned local models and
make it easy to be flagged by the Byzantine-robust FL meth-
ods. For Sybil attack, malicious participants submit simi-
lar local model updates, which makes it mitigated easily by
Foolsgold. The ASR of Sybil attack against Foolsgold is less
than 1% on LOAN. In addition, Sybil attack does not con-
sider suppressing the deviations between the malicious and
benign local models. Therefore, it is difficult for Sybil attack
to bypass robust aggregation methods.

Attack Effectiveness
The finely tuned trigger. According to the previous the-
oretical analysis, fine-tuning the trigger is dedicated to re-
shaping the backdoor trigger to suppress the trigger-induced
local model biases and facilitate the learning of the poi-
soned data to achieve stealthy backdoor attacks. To illus-
trate the impact of fine-tuning triggers, we compare the at-
tack performance of our proposed method using only the
original triggers (denoted as CerP-NT) and using the finely
tuned triggers (CerP). The results in Table 4 show a signif-
icant increase in attack performance by simply integrating
the trigger tuning module into the CerP attack, compared
to the CerP-NT attack with the original triggers. For exam-
ple, CerP can achieve ASR values higher than 90% against
Krum and Bulyan on LOAN. On the contrary, CerP-NT can-
not attack successfully, and the ASR values are only 0%.
Ablation study. To better understand the parameter sensi-
tivity of CerP, we alternately set one of α (CerP-ND) and β
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Defense
Attack Sybil DBA LIE CerP

ACC ASR ACC ASR ACC ASR ACC ASR
Krum 90.99 0 90.83 0 90.78 0 91.16 99.98

MKrum 91.17 0 91.17 0 91.10 0 91.16 99.98
Bulyan 91.15 0 91.12 0 91.06 0 91.11 99.98

Trimmed mean 91.15 0 91.13 0 91.09 0 91.15 99.98
Median 91.18 0 91.16 0 91.10 0 91.19 99.99

RFA 92.34 100 92.38 100 92.06 98.97 92.22 100
Foolsgold 90.95 0 91.05 0.85 90.95 0 90.80 99.97
FLTrust 92.37 100 92.37 100 92.12 99.98 92.31 100

DnC 91.38 99.99 91.35 99.98 91.08 0 91.32 100
FedLDP 92.30 100 92.53 100 92.05 99.80 92.26 100
FedCDP 92.53 100 92.60 100 92.17 99.98 92.31 100
CRFL 92.07 100 91.83 100 91.64 99.79 91.66 100

FL-WBC+Median 91.19 0 91.16 0 91.10 0 91.14 99.99
FL-WBC+Trim 91.15 0 91.13 0 91.10 0 91.11 99.98

Table 3: ASR and ACC of different distributed backdoor attacks on LOAN(%).

Attack
Defense Krum MKrum Bulyan Trim Median Fools FLtrust DnC FedLDP FL-WBC

+Median
FL-WBC

+Trim
Fashion-MNIST

CerP-NT 64.67↓ 70.36↓ 73.01↓ 86.98↓ 95.90↓ 99.55↓ 99.47↓ 99.61↓ 96.72 82.10↓ 87.04↓
CerP-ND 62.46↓ 90.75↓ 85.16↓ 90.67↓ 97.63 99.83 99.63↓ 99.72↓ 96.10↓ 91.43↓ 91.33↓
CerP-NS 94.75 90.53↓ 85.75 91.07↓ 97.63 99.80↓ 99.65↓ 99.71↓ 96.16↓ 91.53↓ 91.37

LOAN
CerP-NT 0↓ 0↓ 0↓ 0↓ 0↓ 0↓ 100 99.99↓ 100 0↓ 0↓
CerP-ND 99.98 99.98 99.98 99.98 99.99 99.96↓ 100 100 100 99.99 99.98
CerP-NS 99.98 99.99 99.98 99.98 99.99 99.96↓ 100 100 100 99.99 99.98

Table 4: ASR of CerP-NT, CerP-NS, and CerP-ND.
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Figure 1: ASR of CerP on CIFAR-100 and Fashion-MNIST
with different number of the poison local training rounds.

(CerP-NS) to 0, while keeping the other unchanged in Eq.1.
Parameter α controls the regularization strength over the
model deviation. As seen in Table 4, the deviation module is
important to bypass the Byzantine robust aggregation meth-
ods. Removing it induces a drop in the ASR values of our
attack when exposed to multiple defense methods. Remov-
ing the regularization of similarity (β = 0) causes CerP’s
ASR against Foolsgold to drop.

Impact of the poison local training rounds. Figure 1
shows the ASR value changes of CerP on Fashion-MNIST
and CIFAR-100 when the number of the poison local train-
ing rounds increases from 1 to 6. Intuitively, more poi-
son local training rounds can lead to better attack perfor-
mance. However, when the number of the poison local train-
ing rounds is too large, the attack performance of our attack
degrades. One possible reason is that too many poison local
training rounds make the malicious local models deviate too
much from the benign local models, resulting in the mali-
cious local model being identified as an abnormal model by
the defense methods.

Concluding Remarks
In this work, we establish theoretical and empirical studies
on the feasibility of organizing stealthy yet effective back-
door attacks on FL against defense methods. Our study ex-
plicitly unveils the key factors deciding the magnitude of
malicious local model biases in general federated learning
tasks. Instantiating the theoretical discussion, we propose
a unified and highly flexible optimization framework Cer-
berus Poisoning (CerP) to coordinate effective backdoor at-
tacks even with various defense methods deployed, which
conducts the fine-tuning of the backdoor triggers and regu-
larizes the trigger-induced local model bias. Substantial ex-
perimental results show that the CerP attack demonstrates
an effective and stealthy backdoor poisoning threat to FL.
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