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Abstract

Detecting abnormal crowd motion emerging from complex
interactions of individuals is paramount to ensure the safety
of crowds. Crowd-level abnormal behaviors (CABs), e.g.,
counter flow and crowd turbulence, are proven to be the cru-
cial causes of many crowd disasters. In the recent decade,
video anomaly detection (VAD) techniques have achieved re-
markable success in detecting individual-level abnormal be-
haviors (e.g., sudden running, fighting and stealing), but re-
search on VAD for CABs is rather limited. Unlike individual-
level anomaly, CABs usually do not exhibit salient difference
from the normal behaviors when observed locally, and the
scale of CABs could vary from one scenario to another. In
this paper, we present a systematic study to tackle the impor-
tant problem of VAD for CABs with a novel crowd motion
learning framework, multi-scale motion consistency network
(MSMC-Net). MSMC-Net first captures the spatial and tem-
poral crowd motion consistency information in a graph rep-
resentation. Then, it simultaneously trains multiple feature
graphs constructed at different scales to capture rich crowd
patterns. An attention network is used to adaptively fuse the
multi-scale features for better CAB detection. For the empiri-
cal study, we consider three large-scale crowd event datasets,
UMN, Hajj and Love Parade. Experimental results show that
MSMC-Net could substantially improve the state-of-the-art
performance on all the datasets.

Introduction
In real-world crowd events, many self-organizing crowd be-
haviors could emerge from the complex interactions of in-
dividuals, where some of those behaviors, such as counter
flow, stop-and-go waves and crowd turbulence, can bring
excessive contact forces, making people lose balance, get
crushed, or even suffocated (Helbing and Mukerji 2012; Li
et al. 2020). Such hazardous self-organizing behaviors are
often referred to as crowd-level abnormal behaviors (CABs).
Many post-disaster analyses have revealed that CABs are the
causes of fatalities in many crowd disasters (Helbing, Jo-
hansson, and Al-Abideen 2007; Helbing and Mukerji 2012;
Helbing 2013; Ma et al. 2013; Zhao et al. 2020). In the
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(a) Individual-level anomaly (b) Crowd-level anomaly

Figure 1: An illustrative example of individual-level
vs. crowd-level abnormal behaviors: (a) individual-level
counter-direction pedestrian, whose motion in the local re-
gion (red rectangle) exhibits salient difference from neigh-
bouring regions; (b) crowd-level turbulence, in which indi-
viduals’ motions in the local region (yellow rectangle) do
not differ much from neighbouring regions. (Legend: yellow
arrows represent optical flow fields; black/blue arrows show
the average velocity in each unit-region/circled-region; red/-
green dashed lines imply low/high motion consistency.)

past decade, more than ten thousand people have lost their
lives or got injured in the crowd disasters recorded world-
wide (Wikipedia 2022). Thus, it is crucial to detect these
CABs during large-scale crowd events to reduce crowd risks.

In recent decades, video anomaly detection (VAD) re-
search has gained tremendous momentum. The task of VAD
is to detect behaviors or events that are rare and/or have
significantly different characteristics from the normal ones
in videos. Despite the remarkable success achieved by the
existing VAD methods, most of them are designed and
testified for detecting individual-level abnormal behaviors,
such as sudden running, fighting and stealing, thanks to
the full range of publicly available datasets of this kind
(e.g., UCSD (Mahadevan et al. 2010), ShanghaiTech (Liu
et al. 2018), UCF Crime (Sultani, Chen, and Shah 2018),
etc.). However, VAD for CABs is still very limited. We
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argue that it is challenging to directly apply the existing
VAD methods to detect CABs due to the intrinsic difference
between individual-level and crowd-level behaviors. First,
crowd behavior patterns emerge in crowd motion at macro-
scopic level (Helbing 2013). Unlike individual-level behav-
iors whose anomaly could be distinguished by the appear-
ance or motion of abnormal individual(s) in a local region
of a crowd, crowd-level anomaly does not always exhibit
salient differences from normal ones when observed locally
(see an example in Figure 1). Thus, the existing VAD mod-
els, which are mostly designed to distinguish anomaly pat-
terns by learning features related to local appearance (e.g.,
raising arm) or local motion (e.g., an unusual acceleration),
are insufficient for detecting CABs. Second, the scale of
crowd-level behaviors can vary more considerably under dif-
ferent environmental conditions and crowd densities (Sol-
maz, Moore, and Shah 2012) as compared to individual-
level behaviors, which often have a relatively unified scale
(e.g., in the range of one or a small group of pedestrians).
Therefore, developing the VAD model against the varying
scale of CABs is needed.

To the best of our knowledge, this paper is the first work
that formally considers bridging deep learning-based VAD
techniques and the CAB detection tasks. To tackle the afore-
mentioned challenges of CAB detection, our work has the
following two distinguishing properties. First, instead of de-
tecting anomalies locally like conventional VAD methods,
we advocate the analysis of global patterns of collective
crowd motion to distinguish CABs from normal behaviors.
To this end, we consider the modeling of crowd motion con-
sistency, an informative feature to quantify the collective-
ness of crowd (Zhou, Tang, and Wang 2013; Li, Chen, and
Wang 2020), for CAB detection tasks. Specifically, we in-
troduce a graph-based crowd motion consistency represen-
tation, which aims to capture both spatial and time-varying
characteristics of crowd motion based on the optical flows
extracted from videos. Second, to make the detection robust
to the varying scales of the CABs, we design a novel multi-
scale motion learning framework, where the model could re-
ceive rich crowd behavior information from various feature
graphs extracted under different scales for pattern recogni-
tion. We also introduce an attentional decoding module to ef-
fectively synthesize the multi-scale feature graphs for learn-
ing high-quality features for CAB detection.

In a nutshell, our paper has the following contributions:

(i) We motivate and introduce the first work that aims to de-
velop a VAD method specifically for tackling the detec-
tion of large-scale crowd-level abnormal behaviors.

(ii) We propose a novel graph-based method, multi-scale
motion consistency network (MSMC-Net), which comes
with a crowd motion consistency representation learning
module to capture both spatial and temporal motion con-
sistency, as well as a multi-scale decoding module that
leverages multiple feature graphs at different scales to
capture the crowd behaviors with varying scales.

(iii) We present an extensive empirical evaluation study,
where we implement five related baselines, adopt three
datasets and demonstrate that our method leads to supe-

rior performance consistently across all the datasets.

Related Work
Video Anomaly Detection. Given the ambiguity and diver-
sity of abnormal behaviors in crowd videos, the mainstream
of the current VAD research is the data-driven approach,
which learns the normal behavior patterns in the training
phase using only normal data and detecting the abnormal
behavior in the testing phase by evaluating the deviation
from the normal patterns. Most existing deep learning meth-
ods fall into either reconstruction-based (Nguyen and Me-
unier 2019; Zhou et al. 2019; Park, Noh, and Ham 2020)
or prediction-based (Liu et al. 2018; Ye et al. 2019; Cai
et al. 2021; Chen et al. 2022) strands, in which often testing
samples with high reconstruction or prediction errors are re-
garded as anomalies. More recently, the weakly-supervised
approach of adding the video-level anomaly label data for
training has also gained popularity (Zhong et al. 2019; Feng,
Hong, and Zheng 2021; Li, Liu, and Jiao 2022). In this
work, we adopt the unsupervised learning approach for de-
tecting CABs. The weakly-supervised learning approach is
not considered because crowd-level abnormal behaviors oc-
cur less frequently (usually during crowd disasters) than
individual-level anomalies, and the crowd anomaly data is
thus too scarce to be sufficiently utilized for training. Among
recent unsupervised VAD methods (Cai et al. 2021; Chen
et al. 2022), the concept of consistency has been considered.
However, their consistency modeling is mainly used to cap-
ture the individual-level correlation patterns (e.g., the con-
sistency between detected objects’ appearance and motion).
In contrast, our work exploits the global spatial-temporal
consistency of crowd motion and considers the multi-scale
issue unique for crowd-level abnormal behaviors.
Crowd Behavior Analysis. Research on crowd behavior
in public space has been an intriguing topic for the past
decades (Sánchez et al. 2020; Luo et al. 2022). However,
the analysis of crowd behaviors during crowd disasters is
still very limited due to the scarcity of data. Based on the
Hajj 2006 disaster videos, the local density, local velocity,
and crowd pressure are measured to analyze the transitions
from the normal crowd to stop-and-go wave and crowd tur-
bulence (Helbing, Johansson, and Al-Abideen 2007). His-
tograms of optical flow extracted from Love Parade 2010
disaster videos are used to cluster the motion patterns, and
the magnitude and standard deviation of optical flow mo-
tion are combined to assess shock waves in crowd turbu-
lence (Krausz and Bauckhage 2012). The temporal patterns
in the Love Parade stampede are analyzed based on distance-
based and point process representations of pedestrian move-
ments using the extracted trajectories (Lian et al. 2017). The
measurements used in the above methods can capture certain
aspects of abnormal behavior patterns. For instance, a high
standard deviation of magnitude of optical flow is used to re-
flect the co-existence of moving people due to pushing and
non-moving people in crowd turbulence (Krausz and Bauck-
hage 2012). However, other normal situations (e.g., visiting
market) could also show high variation in speed. Thus, such
measurements adopted to evaluate certain characteristics of
anomalies are difficult to capture the full range of behav-
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ior patterns that are sufficient to distinguish CABs from all
normal behaviors. In our work, we leverage the fine-grained
feature learning capability of graph convolutional network
(GCN) to comprehensively capture the correlations in crowd
motion to distinguish CABs from normal ones.

Methodology
In this section, we first present how the spatial and tempo-
ral features of crowd motion consistency are extracted from
videos and represented in a graph form. Then, we intro-
duce the multi-scale motion consistency network, denoted
as MSMC-Net, which utilizes the multi-scale motion con-
sistency information to train the network and detect CABs
through attention-based unsupervised learning.

Crowd Motion Consistency Representation
To capture global features of crowd motion, we first present
the measurements of the spatial consistency and temporal
consistency, respectively. Then, we introduce a graph-based
representation that encompasses both spatial and temporal
consistency features at multiple scales.
Spatial Crowd Motion Consistency. To measure the spatial
consistency of crowd motion, we first extract the optical flow
field (Farnebäck 2003) for every two consecutive frames and
then divide the optical flow field of H×W area of the video
frame into h×w number of regions. The optical flow vectors
within each region are used to calculate an average velocity
over each region. The average velocity field of this frame
can be expressed as a matrix Mt = {v̄t,ci}h×w

i=1 , where v̄t,ci
represents the average velocity at region ci of frame t.

We propose to use spatial-inner consistency (Ωsp) to mea-
sure the uniformity degree within one region and spatial-
inter consistency (Γsp) to measure the similarity of the av-
erage velocities of two adjacent regions. The spatial-inner
consistency is used to capture the internal disorganization,
such as the case of escape in different directions (Zhao et al.
2019). The spatial-inter consistency is used to evaluate the
relationship between neighbor regions. For example, two
opposite crowds in counter flows can produce the lowest
spatial-inter consistency (Crociani et al. 2017).

The spatial-inner consistency is calculated using the spa-
tial velocity entropy within a region. Based on the opti-
cal flow vectors of a region, the vector direction space is
discretized into D classes: {v1,v2, . . . ,vD}, such as up,
down, left, right, etc. Hsp

t,ci(vp) is used to represent the num-
ber of optical flow vectors whose direction belongs to vp

at region ci of frame t. The distribution probability of op-
tical vectors at region ci of frame t can be computed by
P sp
t,ci(vp) = Hsp

t,ci(vp)/n, where n is the total number of
the pixel-level optical flow vectors at the region ci of frame
t. The spatial-inner consistency at region ci of frame t can
be calculated as follows:

Ωsp
t,ci = −

D∑
p=1

P sp
t,ci(vp) logP

sp
t,ci(vp). (1)

For the spatial-inter consistency, the difference in the av-
erage velocities of two regions is measured based on the

adjusted cosine similarity, which measures the angular dif-
ference and the absolute value difference of vectors. The
spatial-inter consistency can be calculated as follows:

Γsp
t,(ci,cj)

= cos(v̄t,ci , v̄t,cj )(1−
∣∣∥v̄t,ci∥ −

∥∥v̄t,cj

∥∥∣∣
∥v̄t,ci∥+

∥∥v̄t,cj

∥∥ ), (2)

where ci and cj are two adjacent regions and v̄t,ci , v̄t,cj are
their average velocities at frame t.
Temporal Crowd Motion Consistency. To measure the
temporal consistency of crowd motion over a period of time,
a sliding window approach is adopted to separate the given
video of T frames into sliding snippets. Each sliding snip-
pet contains m frames, and the window is slid by τ frames
each time. An average velocity field sequence of the snippet
starting with frame t can be expressed as {Mt, ...,Mt+m}.
Temporal features are then extracted over each snippet.

Similar to spatial consistency, we propose temporal-inner
consistency (Ωtp) to measure the uniformity degree of one
region’s average velocity during its change over time and
temporal-inter consistency (Γtp) to measure the uniformity
degree of two adjacent regions’ average velocities over
time. The temporal consistency compensates for the spa-
tial consistency for obtaining time-varying features. For in-
stance, the temporal-inner consistency can help detect the
frequent velocity change over time when crowd turbulence
starts (Helbing, Johansson, and Al-Abideen 2007; Ma et al.
2013). The temporal-inter consistency can capture pedes-
trians’ synchronized movement over time in turbulence re-
gions (Lian et al. 2016).

Based on the average velocity field sequence of a snip-
pet starting with frame t, temporal velocity entropy is cal-
culated to measure the temporal-inner consistency. Similar
to the calculation of spatial-inner consistency, the average
velocities are divided into D categories, and Htp

t+m,ci(vp)
measures the number of times, in which the direction of av-
erage velocity of region ci belongs to vp during frame t to
t + m. The velocity distribution probability over this pe-
riod can be computed by P tp

t+m,ci(vp) = Htp
t+m,ci(vp)/m,

where m is the length of the snippet. Temporal velocity en-
tropy at region ci of frame t is calculated as follows:

Ωtp
t+m,ci = −

D∑
p=1

P tp
t+m,ci(vp) logP

tp
t+m,ci(vp). (3)

To measure the temporal-inter consistency between two
regions, we leverage the concept of mutual information
to describe the correlations between two regions’ motion
over time. The distribution probability of two adjacent re-
gions’ velocities P tp

t+m,ci(vp), P
tp
t+m,cj (vq) and their joint

distribution probability P tp
t+m(vp,vq) are first obtained. The

temporal-inter consistency between region ci and cj from
frame t to frame t+m can be calculated as follows:

Γtp
t+m,(ci,cj)

=

D,D∑
p,q

P tp
t+m(vp,vq)log

P tp
t+m(vp,vq)

P tp
t+m,ci

(vp)P
tp
t+m,cj

(vq)
. (4)

Construction of Motion Consistency Graphs. To char-
acterize the crowd motion consistency of frame t, the spa-
tial consistency feature of frame t and the temporal consis-
tency feature of the snippet ending with frame t are used.
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Figure 2: Overview of our MSMC-Net. Part (a) receives the extracted MSMC graphs to generate multi-scale embedding vectors.
Two decoding processes in parts (b) and (c) are then performed to reconstruct the MSMC graphs for anomaly detection.

A graph structure capturing both spatial and temporal con-
sistency information of snippet t is proposed as follows:
Gt = {Vt,Et}, where each divided region in the frame
is considered as a vertex, adjacent regions are connected
by edges, and Vt and Et represent the set of vertexes and
edges at frame t, respectively. Each vertex for a region ci
contains the information of the spatial-inner consistency and
temporal-inner consistency in the form of vectors:

Vt,ci = [Ωsp
t,ci ; Ω

tp
t,ci ].

The weight of the edge connecting two adjacent regions ci
and cj contains the information of the spatial-inter consis-
tency and temporal-inter consistency in the form of vectors:

Et,(ci,cj) = [Γsp
t,(ci,cj)

; Γtp
t,(ci,cj)

].

For a given video, a sequence of motion consistency graphs
is generated, and each graph is generated per snippet. The
first graph Gm is constructed based on the first sliding snip-
pet from frame 1 to m. The subsequent graphs are generated
when the window of snippet is slid by τ frames.

However, using only a unified scale to analyze crowd mo-
tion makes it difficult to adapt to the variable range of crowd
behaviors. Therefore, it is necessary to extract multi-scale
crowd motion features for adaptive learning of crowd be-
haviors. To this end, we define the baseline scale using the
average size of the pedestrians in a given video. The video
frame of W ∗H size is divided into h1 × w1 number of re-
gions, where W/w1 and H/h1 are ensured to be closest to
the pedestrians’ average shoulder pixel count as the baseline
scale (1x-scale). Based on s times the baseline scale, we can
perform a sx-scale division to obtain

⌈
h1

s

⌉
×

⌈
w1

s

⌉
num-

ber of regions. The motion consistency graphs above can
be extracted at different scales. The multi-scale motion con-
sistency (MSMC) graphs at frame t containing 1x-scale to
Sx-scale can be expressed as {Gs

t}Ss=1 and a sequence of
MSMC graphs can then be generated for the entire video.

Multi-scale Motion Consistency Network

Based on the construction of the MSMC graphs described
above, we aim to learn the behavioral patterns of the normal
crowd under a proper scale level so that crowd-level abnor-
mal behaviors can be detected by examining the deviation
from the normal patterns. To this end, our MSMC-net is pro-
posed to perform a multi-scale fusion-based reconstruction
of the MSMC graphs in training and reconstruction-based
anomaly detection in testing.
Network Architecture. Figure 2 shows our proposed crowd
motion learning framework, which consists of (a) GCN en-
coding, (b) multi-scale fusion decoding, and (c) auxiliary de-
coding. Part (a) receives the MSMC graphs extracted from
the input video, and the GCN-based encoders (Welling and
Kipf 2017) are used to exploit the structural features in
these graphs to capture the correlation in crowd motion. The
GCN-based encoders produce a set of multi-scale embed-
ding vectors. To solve the scale variation problem, part (b)
takes the multi-scale embedding vectors and fuses them into
a multi-scale fusion vector based on a self-attention mech-
anism. Fusion-based decoding is then performed to recon-
struct the MSMC graphs. To prevent the fusion-based re-
construction from falling into a local optimum, part (c) in-
troduce an auxiliary decoding process that reconstructs the
MSMC graphs at each scale separately during training.

In part (a), the MSMC graphs {Gs}Ss=1 extracted from a
given sliding snippet are encoded into multi-scale embed-
ding vectors {zs}Ss=1. Since the edges in an MSMC graph
are presented as two-dimensional vectors containing spatial
and temporal consistency information, we adopt two GCNs
for encoding each graph. One GCN aggregates spatial and
temporal features of nodes using only spatial features of
edges, and another uses only temporal features of edges. The
embedding vectors from the two GCNs are concatenated to
obtain the graph embedding vector zs ∈ Rws×hs×2C at each
scale s, where ws × hs equals to the number of vertexes in
the motion consistency graph of scale s and C is the em-
bedding dimension of the encoder. The benefit of using two
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GCNs for multidimensional edge problem lies in its simple
implementation and capability to tune GCN parameters sep-
arately for each dimension. For knowledge sharing between
different scales, the reconstruction tasks are considered as
a multi-task operation, and soft sharing constraints (Ls1,s2

Sof )
are applied between the encoders at two different scales.

In part (b), the dimensions of multi-scale vectors are first
reshaped to a unified one through nearest-neighbor unpool-
ing. A self-attention mechanism is then leveraged to gen-
erate the self-attention maps representing each scale’s rela-
tive importance. The multi-scale fusion process is performed
via aggregating the reshaped vectors based on the attention
maps, and a multi-scale fusion vector zFus is generated. Fi-
nally, the MSMC graphs are reconstructed with the multi-
scale fusion vector, and a fusion loss (LFus) is defined to
assess the multi-scale fusion-based reconstruction.

In part (c), the MSMC graphs are reconstructed at each
scale using only the corresponding scale’s embedding vec-
tors obtained from part (a). For a given scale s, the decoder
receives the embedding vector zs at each scale s and recon-
structs the graph’s edges (Ês

Aux) via inner-product opera-
tion. This auxiliary reconstruction task helps to prevent the
fusion-based reconstruction process in part (b) from falling
into a local optimal solution. This is because if only fusion
loss is used to perform both the scale selection and recon-
struction learning, the scale that is preferred in scale selec-
tion will be more beneficial for reconstruction learning. This
may lead to the optimization at a particular scale too much.
The auxiliary loss (Ls

Aux) is thus used in part (c) to learn the
reconstruction at each scale separately so as to prevent the
neglect of some scales that do not perform well initially.
Self-attention based Multi-scale Fusion. In different
crowd scenarios, the scale of crowd behaviors can vary,
which affects the quantification of crowd behavior patterns
and detecting anomalies. To solve the scale variation prob-
lem, we leverage a self-attention mechanism, which is used
to aggregate the motion consistency features at different
scales to perform the multi-scale fusion-based reconstruc-
tion in part (b) of our MSMC-Net. During the reconstruction
training process, the scale of the fusion model is automati-
cally tuned such that the fusion loss (see in the next section)
yields a minimum value.

To perform self-attention-based multi-scale fusion, the
graph embedding vectors {zs}Ss=1 are first unsampled across
multiple scales to have the same size as the maximum scale
through nearest-neighbor unpooling. The unified-scale vec-
tors {z̃s}Ss=1 are obtained. Then, the embedding vectors are
used to guide the generation of attention maps through a
cross-scale attention mechanism. The cross-scale attention
map asxy for scale s at position x, y of the map is calculated
as follows:

asxy =

(
Wqryz̃

s
xy

) (
Wkeyz̃

s
xy

)T∥∥Wqryz̃sxy
∥∥ ∥∥Wkeyz̃sxy

∥∥ , (5)

where s ∈ {1, 2, . . . , S}, x ∈ {1, 2, . . . , w}, y ∈
{1, 2, . . . , h}, ∥·∥ represents the norm function, Wqry,Wkey

are the trainable weight matrices for generating query
(qsxy = Wqryz̃

s
xy) and key (ksxy = Wkeyz̃

s
xy) for scale s

Algorithm 1: Reconstruction procedure of our MSMC-Net
Input: MSMC graphs {Gs}Ss=1

1: for s = 1 → S do
2: zs = GCNs (Gs) # GCN encoding
3: z̃s = Unpoolings (zs) # reshape into a unified scale
4: Obtain attention map [asxy] based on Eq. 5
5: end for
6: Obtain normalized attention maps A based on Eq. 6-7
7: Obtain fusion vector zFus using Eq. 8
8: for s = 1 → S do
9: Ãs = Poolings (As) # reshape into original scales

10: z̃sFus = Poolings (zFus)

11: Ês = Decode (z̃sFus) # part (b) reconstruction
12: Ês

Aux = Decode (zs) # part (c) reconstruction
13: end for
14: return {Ês}Ss=1, {Ês

Aux}Ss=1 and {Ãs}Ss=1.

at position x, y. It can be further normalized to denote the
current relative importance of scales:

âsxy =
exp

(
asxy

)∑S
s′=1 exp

(
as′xy

) . (6)

The set of normalized attention maps for all the scales A =
{As}Ss=1 can be utilized as the weight for the fusion vector:

As =

â
s
11 · · · âsw1
...

. . .
...

âs1h · · · âswh

 =
[
âsxy

]
, (7)

zxyFus =

S∑
s=1

âsxyWvalz̃
s
xy, (8)

where Wval is the trainable weight matrix for generating
value (vsxy = Wvalz̃

s
xy) for scale s at position x, y.

To achieve fusion-based reconstruction, the fusion vector
zFus = [zxyFus] , and normalized attention map A are passed
through pooling layers to reshape into the original scales.
The reshaped fusion vectors {z̃sFus}Ss=1 are used for recon-
structing the MSMC graphs. The set of reshaped attention
maps Ã = {Ãs}Ss=1 is used to represent the importance of
each scale for the aggregation of multi-scale fusion loss.
Summary of reconstruction procedure. The reconstruc-
tion procedure of our MSMC-Net is shown in Algorithm 1.

Loss Functions. In the training phase, the MSMC-Net
is optimized by minimizing the fusion loss LFus, auxiliary
losses LAux and soft sharing losses LSof :

L = λFusLFus + λAux

S∑
s=1

Ls
Aux + λSof

S,S∑
s1,s2

Ls1,s2
Sof , (9)

where the hyper-parameters λFus, λSof , λAux are used to
tune the importance of each part.

To achieve multi-scale fusion-based reconstruction, the
reshaped attention map Ã is utilized to weigh different
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method
dataset UMN Hajj Love Parade

AUC (%, ↑) EER (%, ↓) AUC (%, ↑) EER (%, ↓) AUC (%, ↑) EER (%, ↓)
AMC 85.4 ± 1.3 20.3 ± 1.3 65.3 ± 0.5 33.5 ± 0.8 59.6 ± 1.4 39.4 ± 1.2
FramePred 87.9 ± 1.7 19.6 ± 1.4 70.2 ± 1.3 32.2 ± 0.9 58.7 ± 2.2 40.9 ± 1.7
AMMC-Net 87.5 ± 2.3 20.3 ± 1.9 71.4 ± 1.8 30.1 ± 1.8 53.7 ± 1.6 45.4 ± 2.7
MNAD (recons) 85.1 ± 0.7 24.2 ± 1.1 82.4 ± 2.6 24.3 ± 1.8 57.6 ± 1.6 42.3 ± 2.1
MNAD (pred) 88.6 ± 0.4 19.3 ± 0.7 73.2 ± 0.7 31.8 ± 0.9 56.8 ± 1.1 46.9 ± 1.7
MSMC-Net (Ours) 94.4 ± 0.5 12.1 ± 1.0 92.3 ± 0.5 18.0 ± 1.8 82.2 ± 0.9 22.5 ± 0.5

Table 1: Frame-level detection results of our method and the compared baseline methods. All the results support the statistically
significant improvement of our method over the baseline methods by a two-sample t-test at a 0.05 significance level.

scales’ losses to obtain the fusion loss as follows:

LFus=
S∑

s=1

1

ws×hs

∑
xiyi,xjyj

ãsxiyi
ãsxjyj

Ls
(xiyi,xjyj)

, (10)

where Ls
(xiyi,xjyj)

=
∥∥∥Es

(xiyi,xjyj)
− Ês

(x1y1,x2y2)

∥∥∥ denotes
the ℓ2 distance between the fusion-based reconstructed edge
and the original edge at scale s.

To avoid the pitfall in multi-scale fusion-based decoding
as described previously, the auxiliary loss is used in auxiliary
decoding, which is defined as the ℓ2 distance between the
auxiliary reconstructed edges and the original at each scale
s as follows:

Ls
Aux =

∥∥∥Es − Ês
Aux

∥∥∥ , (11)

where Ês
Aux denotes the reconstructed edges via auxiliary

decoding at scale s. To share knowledge between the GCN
encoders at two different scales, the soft sharing loss is de-
fined as:

Ls1,s2
Sof = ∥W s1 −W s2∥ , (12)

where W s1 ,W s2 are the sets of parameters of the encoders
at scale s1 and s2 , respectively.
Fusion-based Anomaly Score. In the testing phase, given
the learned normal correlation patterns of crowd motion,
anomalies are detected by examining the deviation from
these normal correlation patterns. Since the scale of crowd
behavior has been learned during the training phase, only the
multi-scale fusion loss LFus is used for detecting anomaly in
the testing phase. Considering that crowd-level abnormal be-
haviors tend to last for a period of time, the moving average
is used for the anomaly score St at each frame t as follows:

St = (1− λMov)× St−1 + λMov ×N (LFus), (13)

where λMov is the weight of moving average, N (·) denotes
the min-max normalization, St−1 is the anomaly score in the
previous frame and S0=N (LFus). A higher anomaly score
(in the range of 0 to 1) indicates a higher degree of anomaly.

Experiments
Datasets
We evaluate the performance of our method on three pub-
licly available datasets, UMN, Hajj and Love Parade,
which contain crowd-level abnormal behaviors including
crowd escaping, counter flow and crowd turbulence. UMN

consists of walking and escaping captured by CCTV cam-
eras in three wild scenes. Hajj is derived from surveillance
videos of the annual religious pilgrimage in Saudi Arabia.
Love Parade contains surveillance videos of the 2010 Love
Parade crowd disaster. Note that our work is the first to in-
troduce Hajj and LoveParade for VAD study. More details
on these datasets are described in Appendix.

Baseline Methods
Four state-of-the-art unsupervised VAD methods are con-
sidered as baselines, which can be categorized as predic-
tion and reconstruction-based methods. Two prediction-
based methods include AMC (Nguyen and Meunier 2019)
and FramePred (Liu et al. 2018). Two reconstruction-
based methods include AMMC-Net (Cai et al. 2021) and
MNAD (Park, Noh, and Ham 2020). Note that MNAD also
offers a variant of prediction-based version, and we evaluate
both versions of MNAD (recons) and MNAD (pred). Details
on these baseline methods and our settings are in Appendix.

Evaluation Metrics
We use two commonly adopted metrics for the evaluation of
frame-level anomaly detection. AUC measures the area un-
der ROC curve, and the value is larger the better (↑). EER
measures the equal error rate in terms of the location on
ROC curve, where the false acceptance rate and false rejec-
tion rate are equal, and the value is smaller the better (↓).

Benchmark Results
In our evaluation, ten independent training and testing runs
for each method are performed. The average results of dif-
ferent VAD methods in terms of AUC and EER are shown
in Table 1. It can be seen that our model achieves the highest
average AUC indicating the best overall performance, and
the lowest EER indicating that our method generates fewer
false and missed alarms. It can also be seen that different
datasets exhibit different complexities for anomaly detec-
tion. In the Love Parade dataset that contains crowd tur-
bulence, our proposed method exceeds the existing meth-
ods significantly. This is probably because pedestrians are
packed tightly and move coherently in crowd turbulence,
which makes it more difficult to distinguish from the normal
congested crowd by their appearance or motion. However,
our method can discover its difference by examining both
spatial and temporal crowd motion consistency. It should
also be noted that the original UMN videos contain a text tag
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Ablated Method Spec UMN Hajj Love Parade
AUC (%, ↑) EER (%, ↓) AUC (%, ↑) EER (%, ↓) AUC (%, ↑) EER (%, ↓)

Consistency
modules

Spatial + Multi-scale 88.4 ± 3.7 17.5 ± 2.8 73.6 ± 1.1 38.1 ± 0.7 51.6 ± 2.1 47.9 ± 0.5
Temporal + Multi-scale 91.6 ± 1.9 19.1 ± 3.8 86.0 ± 0.8 24.8 ± 1.0 80.3 ± 1.7 25.1 ± 2.6

Single scale
Spatial+Temporal (1x) 89.6 ± 0.8 20.6 ± 0.9 90.5 ± 1.1 22.5 ± 0.4 67.6 ± 0.2 34.6 ± 0.3
Spatial+Temporal (2x) 73.2 ± 1.4 32.1 ± 2.1 84.6 ± 0.4 27.5 ± 1.3 74.9 ± 0.3 32.3 ± 0.7
Spatial+Temporal (4x) 68.6 ± 1.8 33.1 ± 2.0 72.3 ± 0.6 38.1 ± 0.7 76.9 ± 0.5 30.2 ± 0.2

Our full method
√

94.4 ± 0.5 12.1 ± 1.0 92.3 ± 0.5 18.0 ± 1.8 82.2 ± 0.9 22.5 ± 0.5

Table 2: Ablation study on (1) crowd motion representation and (2) multi-scale fusion learning in our proposed method.
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Figure 3: Frame-level anomaly score of our MSMC-Net on
three datasets in the testing phase. Each pink area indicates
the time interval that the anomaly occurs, and the red curve
shows how the anomaly score changes over time.

whenever an anomaly appears in the video (see Appendix),
which unnecessarily makes the detection task easier. To pre-
vent the influence of the tag, the UMN results in Table 1 are
based on the trimmed videos removing those tags.

In Figure 3, we show how our anomaly scores change
over time. It can be observed that our method can effec-
tively produce low anomaly scores for normal situations and
high ones for abnormal situations containing various CABs.
The changes in anomaly score also reflect how crowd-
level abnormal behavior evolves over time. For instance, in
UMN, the anomaly score is low at the very beginning of
the crowd escape event. It is because only pedestrians’ di-
rections change when they just start escaping, while their
speed changes take a while due to inertia. The corresponding
anomaly score is thus low when escape starts and gradually
increases, as shown in Figure 3. In Love Parade, the anomaly
score fluctuates in crowd turbulence, since pedestrians are
sometimes pushed to move or halted in crowd waves. More
results on the evolution of anomaly scores in training and
average running time in testing are in Appendix.

Ablation Study
Effectiveness of Motion Consistency Representation.
Two variants of our model are trained using the spatial and
temporal motion consistency features to construct MSMC
graphs, respectively. It can be seen in Table 2 that our full
method gives the best results indicating that both the spa-
tial and temporal motion consistency are useful for detect-

ing CABs. It can also be seen in Table 2 that the model
with only the temporal consistency feature outperforms the
one with only the spatial consistency feature. This indi-
cates that the unusual time-varying patterns occur more fre-
quently than the unusual instantaneous patterns in some
CABs. For instance, pedestrians in crowd turbulence fre-
quently change their speeds, causing incongruence in crowd
motion over time, whereas instantaneous patterns show sub-
tle differences from the high-density normal crowd. How-
ever, the model with only the temporal consistency feature
is not enough to achieve the best result. Adding spatial con-
sistency can bring an AUC improvement of 2.8%, 6.3%, and
1.9% for the three datasets.
Effectiveness of Multi-scale Learning. To validate the sig-
nificance of multi-scale learning, three single-scale variants
were trained using motion consistency graphs constructed
at 1x, 2x, and 4x scales, respectively. The reconstruction
loss at a single scale as defined in our auxiliary loss is used
for each ablated model. It can be observed in Table 2 that
the scales achieving the best detection result are different
for the three datasets. This demonstrates that the scale of
crowd behaviors indeed varies for different scenarios. The
1x-scale single-scale model achieves the best result in UMN
and Hajj, whereas the 4x-scale model performs best in Love
Parade. A larger scale is required for Love Parade probably
because the crowd turbulence patterns emerge from the in-
teractions of many pedestrians in the high-density crowd.
Moreover, the best scale for detecting CABs can change
slightly over time for a given scenario. For example, it is
found that the vortex size of crowd turbulence changes as the
crowd moves (Ivancevic and Reid 2012). Since our multi-
scale fusion mechanism can adaptively estimate the proper
scale over time when continuously reading the video input,
our method can thus achieve better results than any single-
scale variant, demonstrating the ability of scale adaptation.

Conclusion
This paper proposes a detection method for crowd-level ab-
normal behaviors, which have not yet been fully investi-
gated in the VAD research. Our method exploits the macro-
scopic crowd motion patterns via multi-scale motion con-
sistency learning and a deep learning network is introduced
to learn crowd motion features extracted at multi-scale and
estimate the proper scale of crowd behavior for detecting
CABs. Evaluations on real-world datasets show the effec-
tiveness of our method. Our future work may include vali-
dation on more datasets and cross-scenario detection.
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Ethical Statement
This work involves the use of crowd videos containing hu-
man subjects. However, the proposed method does not rely
on the extraction of individual identity (e.g., face recogni-
tion) but rather the motion of the crowd for anomaly detec-
tion. Since the optical flow based on the tracking of mov-
ing pixels (e.g., head area) is used as our primary input, the
proposed method should work even if the human faces in
the video are obfuscated. Thus, privacy can be preserved to
some extent.
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