
PINAT: A Permutation INvariance Augmented Transformer for NAS Predictor

Shun Lu1, 2, Yu Hu1,2*, Peihao Wang3, Yan Han3, Jianchao Tan4, Jixiang Li4, Sen Yang5, Ji Liu6

1 Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences
2 School of Computer Science and Technology, University of Chinese Academy of Sciences

3 University of Texas at Austin
4 Kuaishou Technology.

5 Snap Inc.
6 Meta Platforms, Inc.

{lushun19s, huyu}@ict.ac.cn, {peihaowang, yh9442}@utexas.edu, {jianchaotan, lijixiang}@kuaishou.com,
syang3@snap.com, ji.liu.uwisc@gmail.com

Abstract

Time-consuming performance evaluation is the bottleneck
of traditional Neural Architecture Search (NAS) methods.
Predictor-based NAS can speed up performance evaluation
by directly predicting performance, rather than training a
large number of sub-models and then validating their perfor-
mance. Most predictor-based NAS approaches use a proxy
dataset to train model-based predictors efficiently but suffer
from performance degradation and generalization problems.
We attribute these problems to the poor abilities of existing
predictors to character the sub-models’ structure, specifically
the topology information extraction and the node feature rep-
resentation of the input graph data. To address these prob-
lems, we propose a Transformer-like NAS predictor PINAT,
consisting of a partial Permutation INvariance Augmentation
module serving as both token embedding layer and atten-
tion head, as well as a Laplacian matrix to be the positional
encoding. Our design produces more representative features
of the encoded architecture and outperforms state-of-the-art
NAS predictors on six search spaces: NAS-Bench-101, NAS-
Bench-201, DARTS, ProxylessNAS, PPI, and ModelNet. The
code is available at https://github.com/ShunLu91/PINAT.

Introduction
Neural architecture search (NAS) has made great progress
in many domains by automatically designing effective ar-
chitectures. One of the key factors behind these progress is
the innovation of efficient search methods, such as one-shot
methods (Bender et al. 2018; Dong and Yang 2019; Guo
et al. 2020; Chu et al. 2021b), differentiable methods (Liu
et al. 2019a; Xie et al. 2019; Chen et al. 2019; Chu et al.
2020), and predictor-based methods (Liu et al. 2018; Luo
et al. 2018; Zhang et al. 2019; Shi et al. 2020). In particular,
predictor-based methods are promising as they can learn an
accurate mapping from the architecture’s representation to
its corresponding performance in a pre-defined search space
with only a few training samples, and thus significantly im-
proving NAS efficiency.

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Most predictor-based methods usually train a perfor-
mance predictor with a proxy dataset, i.e. architecture-
accuracy pairs as the training dataset. By utilizing the pre-
trained predictor, the performance of arbitrary network ar-
chitectures in the same search space can be directly queried,
thus greatly facilitating the search process. As architectures
are represented by discrete encodings, most predictor-based
methods first embed the discrete data into a continuous la-
tent space and then excavate useful features to model the
mapping relationship. Therefore, how to effectively encode
the discrete architecture becomes essential.

Moreover, in our scenarios, when permuting the operation
matrix and adjacency matrix, we can get the same graphs,
which can be referred to as the graph isomorphism (GI) (Le-
man and Weisfeiler 1968). Generally, how to enable the per-
mutation invariance properties for the input graph features to
let our predictor recognize such architecture graph isomor-
phism becomes another challenge.

Previous works have proposed the sequence-based
scheme and the graph-based methods to address this issue in
the NAS predictor scenario. The former is encoding compu-
tation flow of graph instead of the graph itself, and the latter
is usually taking a GNN with a kind of isomorphism prop-
erty to process architecture graph data directly, for example,
Graph Isomorphism Networks (Xu et al. 2018). However,
both methods suffer from the poor encoding abilities and
still struggle to handle architecture permutation invariance.

In this paper, we aim to design a more powerful NAS
predictor while behaving permutation invariance for archi-
tectural isomorphism. Several recent NAS predictor works
(Yan et al. 2021; Lu et al. 2021) have proven the effective-
ness of self-attention in encoding architectures with global
permutation invariance, which can output the same results
when permuting the inputs. And PINE (Gui et al. 2021) pro-
posed a partial permutation invariance embedding method
by modeling the dependence of each node to its neighbors,
and achieved promising results on various tasks. Inspired by
the novel combination of the global and the local attention
in previous works (Chen et al. 2021a; Raghu et al. 2021),
we propose to combine the partial and global permutation
invariance properties together, to excavate more representa-
tive features for input graph data.
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Specifically, to let the predictor better recognize the NAS
architecture isomorphism, which is due to the permutation
invariance property on the operation and adjacency matrix,
we propose a partial permutation invariant token embed-
ding (PITE) and a partial permutation invariant self-attention
(PISA) by plugging the partial permutation invariance mod-
ule (PIM) into different places of Transformer, to obtain par-
tial and global permutation invariance augmented architec-
tural representations. Our method does not need to compute
message flow from the architecture graph or create augmen-
tation data pairs during training like previous work. The con-
tributions are summarized as:
• We propose a Transformer-like NAS predictor PINAT

which consists of a partial permutation invariance mod-
ule (PIM) serving as both token embedding layer (PITE)
and self-attention head (PISA), as well as a Laplacian
matrix based positional encoding.

• PINAT enables partial and global permutation invariance
on graph node features to handle architectural isomor-
phism for the NAS predictor task, which belongs to the
graph regression task, and captures good representations
from discrete architectures in the meantime. Therefore,
it is especially good at predicting network performance
with limited data, and it can help to design good models
on general graph tasks.

• With the same data splits as prior works, our proposed
PINAT outperforms recent state-of-the-arts in terms of
the ranking performance on NAS-Bench-101 (Ying et al.
2019) and NAS-Bench-201(Dong and Yang 2020). By
conducting open-domain search on DARTS (Liu et al.
2019a) and ProxylessNAS (Cai, Zhu, and Han 2019)
search spaces, our searched CNN architectures reach
state-of-the-art performance on CIFAR-10 and ImageNet
dataset. When searching for GCN architectures as SGAS
(Li et al. 2020a), PINAT also achieves comparable per-
formance on PPI and ModelNet (Wu et al. 2015) datasets.

Related Works
Neural architecture search With the widespread use of
deep neural networks for various tasks, it is becoming in-
creasingly difficult to create cutting-edge hand-crafted de-
signs based on expert knowledge. NAS has emerged as a
promising technique to automatically search for superb ar-
chitectures. However, due to the unaffordable search cost
of reinforcement learning-based NAS methods (Baker et al.
2017a; Zoph and Le 2017), many researchers turn to ef-
ficiently search for optimal architectures in a pre-defined
search space. These methods can be roughly divided into
three categories: one-shot NAS methods (Bender et al. 2018;
Guo et al. 2020), differentiable NAS methods (Liu et al.
2019a; Xie et al. 2019; Chu et al. 2021a), and predictor-
based NAS methods (Baker et al. 2017b; Luo et al. 2018;
Zhang et al. 2019; Li et al. 2020b; Shi et al. 2020) which are
described in the following subsection.

Predictor-based NAS methods Most predictor-based
NAS methods follow a two-stage paradigm: (1) train a per-
formance predictor to model the mapping relationship be-
tween architectures and their corresponding performance,

(2) use a heuristic algorithm to search for good architec-
tures. As architectures are represented by discrete encod-
ings, the effectiveness of the modeling process is of vital im-
portance. Various encoding tools have been utilized to trans-
form the discrete representation into a meaningful continu-
ous latent space, such as the embedding matrix (Deng, Yan,
and Lin 2017; Luo et al. 2018; Zhang et al. 2019; Ning et al.
2020b; Cheng et al. 2021), GCN (Li, Gong, and Zhu 2021;
Wen et al. 2020; Shi et al. 2020; Chen et al. 2021b), and
MLPs (Xu et al. 2021). Behind the encoding module, a sim-
ple regressor is employed to predict the performance of the
encoded architecture. With the pre-trained predictor, prior
works have explored Bayes Optimization methods (Zhang
et al. 2019; Yan et al. 2020; Shi et al. 2020; Ru et al. 2021),
Evolutionary methods (Ning et al. 2020b; Xu et al. 2021)
or the simple random methods (Deng, Yan, and Lin 2017;
Baker et al. 2017b; Wen et al. 2020; Luo et al. 2020; Cheng
et al. 2021; Chen et al. 2021b) to search for superb architec-
tures. Detailed surveys can be referred to (White et al. 2020;
Ning et al. 2020a; White et al. 2021a).

Besides, CATE (Yan et al. 2021) and TNASP (Lu et al.
2021) are the most similar works to ours. However, CATE
(Yan et al. 2021) adopts more Transformer encoder blocks
with more parameters and requires more training data, while
TNASP (Lu et al. 2021) tries to further improve the perfor-
mance by the proposed Self-evolution framework, which in-
troduces more hyper-parameters and consumes more train-
ing time. Moreover, they directly borrow the original Trans-
former encoder block which only has global permutation in-
variance property, while our method enabled both the global
and partial permutation invariance property, thus outper-
forming them obviously on public benchmark datasets.

Permutation invariance for graphs As mentioned be-
fore, in our scenarios, when permuting the operation matrix
and adjacency matrix, we can get the same graphs, which
can be referred to as the graph isomorphism (GI) (Leman
and Weisfeiler 1968). How to enable the permutation in-
variance augmentation on the input graph features to let our
predictor recognize the architecture graph isomorphism be-
comes another challenge. Previous works have proposed the
sequence-based scheme and the graph-based method to ad-
dress this issue in the NAS predictor scenario. The former
is to encode the computation flow instead of the graph, and
the latter is usually taking GNN with isomorphism property
to process architecture graph data. BANANAS (White et al.
2021b) introduced a path-based sequence encoding scheme,
which naturally has the property of permutation invariance
but scales exponentially with the network depth. D-VAE
(Zhang et al. 2019) and GATES (Ning et al. 2020b) simu-
lated the computation flow by sequentially performing mes-
sage passing for nodes following a topological ordering of
the DAG, which ensures the encoder is invariant to node
permutations. Arch2vec (Yan et al. 2020) directly utilized
the Graph Isomorphism Networks (GINs) (Xu et al. 2018) to
encode architectures to handle the permutation invariance is-
sue. Moreover, NAO (Luo et al. 2018) and CATE (Yan et al.
2021) computationally generated similar data pairs to aug-
ment the encoder training, by assuming similar input graphs
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Figure 1: Our Transformer-like NAS predictor. We map the information of operations and connections into continuous repre-
sentation, followed by 3 encoder blocks and a 2-layer fully-connected regressor to derive the final prediction.

should have similar latent space representations. NASGEM
(Cheng et al. 2021) and InterpretableNAS (Ru et al. 2021)
adopted WL-Kernel (Shervashidze et al. 2011) to measure
the similarity of two graphs to obtain a similarity loss. These
four works are a little related to the permutation invariance
augmentation purpose.

To overcome the aforementioned issues, we propose a
novel NAS predictor PINAT, including a novel permutation
invariance module (PIM) severing for token embedding and
self-attention calculation. PINAT produces more representa-
tive features for architecture graph data, while also ensuring
partial permutation variance in end-to-end training.

Methodology
Preliminary
In the context of deep neural networks, we can construct var-
ious neural architectures by assembling numerous operation
units (O = {o1, o2, ..., oF }, where F denotes the number of
operations) with different connections. As long as the can-
didate operation corpus O is finite, a unified encoding rule
can be applied to define the candidate operations. For exam-
ple, in neural architecture search, an architecture α with N
layers in a pre-defined search space S can be represented by
a discrete operator V ∈ RN×1 with selected operation in-
dices and a definite connection matrix i.e. adjacency matrix
A ∈ RN×N as below,

V = [o1, o2, ..., oN ], α = (V,A), α ∈ S (1)

where oi represents the index of the selected operation from
the candidate operation corpus O for i-th layer. In this vein,
each architecture owns an encoding sequence with an ad-
jacency matrix, and thus all of them can be represented by
a unified encoding rule, which is also regarded as Directed
Acyclic Graph structure (DAG) in some literature.

In light of that, predictor-based NAS methods usually
adopt an encoder E to transform the discrete architecture

α into continuous representation, followed by a regressorR
to predict the architecture’s performance Y , which can be
formulated as below:

Y = R(E(α)) (2)

By learning from a few labeled data, most predictor-based
NAS methods have the ability to model the potential re-
lationship between the architecture α and performance Y .
Such predictor can be plugged into standard NAS search
methods, for example, one kind of heuristic algorithm to
help discover architectures efficiently and effectively, thus
reducing the total search cost.

Permutation Invariance Module (PIM)
As has been frequently mentioned in previous works (Luo
et al. 2018; Zhang et al. 2019; Yan et al. 2020; White et al.
2021b; Cheng et al. 2021; Ru et al. 2021), the permutation
invariance is a necessary and crucial property for input graph
data of NAS predictor task. In this paper, we expect to dis-
cover a fruitful and efficient module design to augment such
property for the NAS predictor without the need of any labo-
rious and tedious data augmentation as in (Luo et al. 2018;
Yan et al. 2021).

Recently, CATE (Yan et al. 2021) and TNASP (Lu et al.
2021) have demonstrated the effectiveness of the self-
attention module in encoding the architectures. This widely
used self-attention module proposed by Transformer struc-
ture (Vaswani et al. 2017) has global permutation invariance
as it computes the pairwise interactions using row-wise com-
putation functions. On the other hand, PINE (Gui et al. 2021)
has introduced a partial permutation invariant graph node
embedding method via effectively modeling the dependence
of each node to its neighbors. They apply a neural network to
approximate the desired partial permutation invariant func-
tion and achieve promising results on various tasks. Inspired
by previous works (Chen et al. 2021a; Raghu et al. 2021), we
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Figure 2: Structure of the permutation invariance module
(PIM). XVk is the concatenation of feature vectors for all
neighbors of node Vk. We adopt ReLU function as the acti-
vation layer inside residual block and ELU for the activation
layer outside the residual block. Transform Matrix here is a
concatenation of multiple weight matrices with rank 1, fol-
lowing the original settings in PINE (Gui et al. 2021).

propose to obtain more representative features by enabling
both global and partial permutation invariance.

Specifically, we propose to aggregate permutation invari-
ant features extracted from the self-attention module and the
partial permutation invariance module (PIM) together. The
design of PIM is inspired by PINE (Gui et al. 2021), where
they have proved that such a set function can be approxi-
mated as at least a four-layer neural network, including a
linear layerW1 (with each sub-matrix’s rank equal to 1) per-
formed on concatenated neighborhood node features XVk , a
linear layer W2 to transform the aggregated neighborhood
features into final features for the center node, and activation
layers. We propose to adopt a variant of their design: we re-
peat W1 associated with an additional residual connection
for three times, as shown in Fig.2. In this way, our design
can approximate a map function PIM(x), whose extracted
features epim ∈ RN×M inherently have the partial permu-
tation invariance property,

epim = PIM(oneHot(V )) (3)

whereM denotes the embedding dimension. We further pro-
pose to incorporate this structure into the process of token
embedding and self-attention to produce more representa-
tive features.

PIM for Token Embedding We apply PIM at the token
processing stage, by simply adding the partial permutation
invariance augmented node features epim into standard node
embeddings and node positional encodings, noted as PITE.
As a result, the combined features will consist of three prop-
erties: original node identities, topology information, and
partial permutation invariance, which are sufficient to repre-
sent the whole graph data. We combine three embedding fea-
tures together by simple addition as the input feature xpinat
of subsequent layers,

xpinat = eop + epos + epim (4)

where eop = B(V ) denotes the continuous representation
of the discrete operation vector extracted by an embedding

matrixB ∈ RF×M , and epos ∈ RN×M stands for positional
encodings transformed from the Laplacian matrix of graph.

PIM for Self-Attention To further augment the permuta-
tion invariance property during the information passing for
such cascaded stacking structure, we propose to concatenate
the partially augmented feature epim together with the global
permutation invariant feature of the standard self-attention
head at each stacked layer. We denote the PIM module for
self-attention as PISA. The insight is that PIM actually per-
forms a local self-attention between nodes and their neigh-
bors. The calculation of the j-th layer is formulated as:

Tj(xj−1) = Aggregation(Concat(SA1(xj−1), . . . , SAn(xj−1),

PISA1(xj−1), . . . ,PISAm(xj−1)))
(5)

where xj−1 = Tj−1(xj−2), j = 2, ..., n. The number of SA
heads and PISA heads are denoted by n andm, respectively.
We use the operator Aggregation to represent the ensemble
operation, including linear, element-wise addition, and layer
normalization operations, which follow the standard atten-
tion block. By aggregating the features with global and par-
tial permutation invariance properties, we get a more distin-
guishable representation of input architectures, which helps
in modeling the mapping relationship for the predictor.

A Transformer-Like NAS Predictor
By assembling the proposed modules PITE and PISA, and
attaching a regression head R at the end to model the rela-
tionship between the representative features xn and its actual
performance, the ensemble model design of our proposed
PINAT is shown in Fig.1 and can be formulated as below,{

x1 = eop + epim + epos
xj = Ti(xj−1), j = 2, ..., n
Y = R(xn)

(6)

There are many choices for the regressor and even the
classical machine learning methods can be applied here (Wu
et al. 2021) such as Gradient Boosting Regression Tree and
Random Forest. To achieve end-to-end training, we choose
two fully connected layers and compute mean square loss
between Y and Yture. In the following, we perform exten-
sive experiments to verify the effectiveness of our design.

Experiments
We conduct experiments over six public benchmark search
spaces. We first compare the ranking ability of PINAT via
various train-test data splits on NAS-Bench-101 (Ying et al.
2019) and NAS-Bench-201 (Dong and Yang 2020). Then
we search for CNN architectures on CIFAR-10 and Ima-
geNet (Krizhevsky et al. 2017) datasets using DARTS (Liu
et al. 2019a) and ProxylessNAS (Cai, Zhu, and Han 2019)
search spaces, respectively. Next, we further search for GCN
architectures on PPI and ModelNet10 datasets to compare
the performance of the searched GCN with SGAS (Li et al.
2020a). We provide detailed ablation studies to discuss the
effect of PITE and PISA, compare our design with the orig-
inal PINE module, and analyze the better performance of
PINAT. We provide the ablations of positional encodings,
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PIM hidden dimensions, SA and PISA heads number, the
application of the ranking loss, and more implementation
details about each search space, and the visualization of our
searched architectures in the supplementary material.

Ranking Results on NAS Benchmarks
NAS-Bench-101 (Ying et al. 2019) and NAS-Bench-201
(Dong and Yang 2020) are widely used benchmarks in re-
cent years. The former contains 423,624 architectures in to-
tal and each architecture is comprised of basic layers and
9 repeated cells, each of which has 7 nodes and 9 edges at
most. Each node represents 3 candidate operations and their
connection are denoted by the edges. The latter has a differ-
ent search space, where each edge can be selected from 5
candidate operations. Architectures are also constructed by
a pre-defined skeleton, i.e. 15 repeated cells and 4 nodes in
each cell, which results in 15,625 network structures.

Both benchmarks provide the validation accuracy and
the test accuracy for each architecture, and we utilize the
former to train our predictor while using the latter for
evaluation. To provide an apples-to-apples comparison, we
follow the same data splits in TNASP (Lu et al. 2021),
and noted as S1, S2, S3, S4, S5 on NAS-Bench-101 and
S′1, S

′
2, S
′
3, S
′
4, S
′
5 on NAS-Bench-201, detailed in Tab.10

of our Supp. We evaluate the ranking performance using
Kendall’s Tau (Sen 1968) between the predicted accuracy
and the actual accuracy of test samples.

Results The ranking results of PINAT are shown in Tab.1.
Noticeably, our PINAT gets the highest scores in all data
splits on both benchmarks, surpassing recent state-of-the-art
methods such as TNASP (Lu et al. 2021) and GMAE-NAS
(Jing, Xu, and Li 2022). Such results substantiate the over-
whelming advantages of our design, clearly demonstrating
that aggregating the features with global and partial permu-
tation invariance is effective.

Search for CNN Architectures on CIFAR-10
CIFAR-10 is a standard image classification dataset, con-
taining 50,000 training samples and 10,000 test samples
of image size 32×32×3, which are divided into 10 object
classes. Based on the CIFAR-10 dataset, DATRS (Liu et al.
2019a) proposed a cell search space, which is popular and
adopted by many previous works. We also choose it as one
of our open-domain experiments.

We follow main procedures of CTNAS (Chen et al.
2021b) and TNASP (Lu et al. 2021) to search for CNN
architectures on DARTS (Liu et al. 2019a) search space.
Specifically, we utilize the uniform sampling method (Guo
et al. 2020) to pre-train a supernet on the training set for
120 epochs and evaluate 1k architectures on the validation
dataset by inheriting the pre-trained supernet weights to per-
form efficient inference to get architecture-accuracy pairs
for our predictor to learn a mapping relationship. In this way,
our pre-trained predictor can be used to query any architec-
ture’s performance in this search space and we choose the
evolutionary algorithm (Deb et al. 2002) to search for op-
timal architectures for 100 generations and maintain a pop-
ulation of size 100 in each generation. Finally, we re-train

NAS-Bench-101 S1 S2 S3 S4 S5

SPOS† - - 0.196 - -
FairNAS† - - -0.232 - -
ReNAS† - - 0.634 0.657 0.816
RegressionNAS† - - 0.430 - -
NP‡ 0.391 0.545 0.710 0.679 0.769
NAO‡ 0.501 0.566 0.704 0.666 0.775
Arch2Vec? 0.435 0.511 0.561 0.547 0.596
D-VAE? 0.530 0.549 0.671 0.626 0.698
GATES? 0.605 0.659 0.666 0.691 0.822
GraphTrans? 0.330 0.472 0.600 0.602 0.700
Graphormer? 0.564 0.580 0.596 0.611 0.797
CTNAS - - 0.751 - -
TNASP 0.600 0.669 0.752 0.705 0.820
GMAE-NAS? 0.666 0.697 0.788 0.732 0.775

PINAT 0.679 0.715 0.801 0.772 0.846
NAS-Bench-201 S′

1 S′
2 S′

3 S′
4 S′

5

NP‡ 0.343 0.413 0.584 0.634 0.646
NAO‡ 0.467 0.493 0.470 0.522 0.526
Arch2Vec? 0.542 0.573 0.601 0.606 0.605
GraphTrans? 0.409 0.550 0.594 0.588 0.673
Graphormer? 0.505 0.630 0.680 0.719 0.776
TNASP 0.539 0.589 0.640 0.689 0.724

PINAT 0.549 0.631 0.706 0.761 0.784

Table 1: Ranking results on NAS-Bench-101 and NAS-
Bench-201. †: results from CTNAS (Chen et al. 2021b). ‡:
reported by TNASP (Lu et al. 2021). ?: implemented by our-
selves using their released models.

our searched architectures with common DARTS strategies,
i.e. 600 epochs by the SGD optimizer with the initial learn-
ing rate 2.5e-2 and weight decay 3e-4, and use the Cutout
(DeVries and Taylor 2017) as the data augmentation.

Results Tab. 2 summarizes the comparison of evaluation
results with recent state-of-the-arts and we report the aver-
age accuracy of three searched architectures and the best ac-
curacy to ensure a fair comparison. The first row shows the
performance of well-known NAS methods, and predictor-
based NAS methods are placed in the second row. We can
see that PINAT obtains the best accuracy of 97.58 and the av-
erage accuracy of 97.46± 0.08, outperforming all the others
with similar model parameters and the least GPU days 0.3.

Search for CNN Architectures on ImageNet
To further validate the robustness of our method, we trans-
fer the best searched architecture on DARTS to ImageNet
(Krizhevsky et al. 2017) noted as PINAT-T and perform an-
other architecture search on ImageNet with a distinct chain-
styled search space proposed by ProxylessNAS (Cai, Zhu,
and Han 2019) namely PINAT-S.

ImageNet is a large-scale dataset with 1.28 million train-
ing images and 50,000 validation images, consisting of
1,000 classes. We strictly follow the transferring configu-
ration of DARTS (Liu et al. 2019a) to re-train PINAT-T
and adopt the same search procedure as mentioned above
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Method #P Best Average Cost
(M) Acc.(%) Acc.(%) (G·D)

NASNet-A? 3.3 97.35 - 1,800
AmoebaNet-A 3.2 - 96.66 ± 0.06 3,150
ENAS 4.6 97.11 - 0.5
GHN 5.7 - 97.16 ± 0.07 0.8
DARTS 3.3 - 97.24 ± 0.09 4

PNAS† 3.2 - 97.17 ± 0.07 -
NAO? 10.6 97.52 - 200
D-VAE - 94.80 - -
GATES 4.1 97.42 - -
Arch2vec-BO 3.6 97.52 97.44 ± 0.05 100
GP-NAS 3.9 96.21 - 0.9
BONAS-D 3.3 97.57 - 10.0
BANANAS‡ 3.6 - 97.33± 0.07 11.8
NAS-BOWL 3.7 97.50 97.39 ± 0.08 3
CATE? 3.5 - 97.45 ± 0.08 3.3
CTNAS 3.6 - 97.41 ± 0.04 0.3
TNASP 3.6 97.48 97.43 ± 0.04 0.3

PINAT 3.6 97.58 97.46 ± 0.08 0.3

Table 2: Comparison with state-of-the-art NAS methods on
CIFAR-10 using DARTS search space. Search cost is mea-
sured by the GPU days. ?: we report the results with simi-
lar budget to get a fair comparison. †: results from CTNAS
(Chen et al. 2021b). ‡: reported by CATE (Yan et al. 2021).

to search for the PINAT-S. We employ the training strate-
gies of EfficientNet (Tan and Le 2019) to re-train PINAT-S
from scratch for evaluation. Concretely, we re-train PINAT-
S for 450 epochs with the batch size of 320. RMSpropTF
optimizer is adopted with the initial learning rate 0.16 and
weight decay 1e-5. To prevent over-fitting, we also use the
AutoAug (Cubuk et al. 2019) and RE (Zhong et al. 2020) to
augment the training images.

Results We summarize the results in Tab. 3. PINAT-T con-
sumes fewer FLOPs and exceeds PNAS (Liu et al. 2018),
NAO (Luo et al. 2018), Arch2vec-BO (Yan et al. 2020),
BONAS-D (Shi et al. 2020), BANANAS (White et al.
2021b), and CATE (Yan et al. 2021). PINAT-S achieves the
highest accuracy compared with others and outperforms CT-
NAS (Chen et al. 2021b) by 0.5 in terms of top-1 accuracy
with fewer FLOPs. Such improvement is non-trivial com-
pared with those improvements claimed in previous works.

Search for GCN Architectures on PPI
To demonstrate the generality of our method, we also adopt
our predictor to conduct architecture search for GCN archi-
tectures on Protein-Protein Interactions (PPI) dataset, which
collects motif gene sets and immunological signatures as
features and gene ontology sets as labels from the Molec-
ular Signatures Database (Liberzon et al. 2011). We need to
specify each protein role according to the interactions in a
pre-defined graph, which can be regarded as a node classifi-
cation task. The average number of nodes per graph is 2373,
with an average degree of 28.8.

Following SGAS (Li et al. 2020a), we build the supernet

Method #P(M) #F(M) Top-1(%) Top-5(%)

PNAS 5.1 588 74.2 91.9
NAO 11.4 584 74.3 91.8
Arch2vec-BO 5.2 580 74.5 -
BONAS-D 4.8 532 74.6 92.0
BANANAS 5.1 - 73.7 -
CATE 5.0 - 73.9 -

PINAT-T 5.2 583 75.1 92.5

MnasNet-A3 5.2 403 76.7 93.3
MobileNetV3 5.4 219 75.2 -
FBNet-C 5.5 375 74.9 -
ProxylessNAS 7.1 465 75.1 92.3
EfficientNet-B0 5.3 390 76.3 -
OFA w/ PS #75 - 230 76.9 -
SPOS 5.4 472 74.8 -
RLNAS 5.3 473 75.6 92.6
NP 6.4 536 74.8 -
CTNAS - 482 77.3 93.4
TNASP-B 5.1 478 75.5 92.5

PINAT-S 5.1 452 77.8 93.5

Table 3: Comparison with SOTAs on ImageNet. Transfer-
ring results of predictor-based NAS methods are shown in
the first row; Search results of recent NAS methods on the
ProxylessNAS search space are placed in the third row.

Method micro-F1(%) #P(M) Cost(G·D)

GraphSAGE 61.2 0.26 manual
GeniePath 97.9 1.81 manual
GAT 97.3±0.2 3.64 manual
DenseMRGCN-14 99.43 53.42 manual
ResMRGCN-28 99.41 14.76 manual

Random Search 99.36±0.04 23.70 random
SGAS (Cri.2 avg.) 99.40±0.09 25.93 0.003
SGAS (Cri.2 best) 99.46 29.73 0.003

PINAT(avg.) 99.47±0.01 23.70 0.083
PINAT(best.) 99.48 21.87 0.083

Table 4: Comparison with other methods on PPI.

with 1 cell and 32 channels, and 10 candidate operations for
each edge. We randomly sample one path to train the super-
net as SPOS (Guo et al. 2020) for 1000 epochs and use the
same search procedure as depicted above to search for re-
markable architectures. The discovered cells will be stacked
5 times with an initial channel size of 512 to build the fi-
nal architecture. We retrain this architecture for 2000 epochs
with the Adam optimizer and report the average micro-F1
score of 10 searched cells on the test dataset.

Results Searched results are shown in Tab. 4. When com-
pared with manually designed networks, PINAT yields the
highest micro-F1 than GraphSAGE (Hamilton et al. 2017),
GeniePath (Liu et al. 2019b), GAT (Veličković et al. 2018),
DenseMRGCN-14 (Li et al. 2021), and ResMRGCN-28 (Li
et al. 2021). When compared with previous SOTA NAS
methods, PINAT outperforms SGAS (Cri.2 best) by 0.02%
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Method OA(%) #P(M) Cost(G·D)

3DmFV-Net 91.6 45.77 manual
SpecGCN 91.5 2.05 manual
PointNet++ 90.7 1.48 manual
PCNN 92.3 8.2 manual
PointCNN 92.2 0.6 manual
DGCNN 92.2 1.84 manual
KPConv 92.9 14.3 manual

Random Search 92.65±0.33 8.77 0.19
SGAS (Cri.2 avg.) 92.93±0.19 8.87 0.19
SGAS† (Cri.2 best) 92.71(93.07) 3.86 0.19

PINAT(avg.) 92.87±0.12 3.94 0.17
PINAT(best.) 93.07 3.95 0.17

Table 5: Comparison with other state-of-the-arts on Model-
Net40. †: As we can not reproduce the experiments with the
big network in SGAS (Li et al. 2020a), we compare with
their best small network. By re-run their open source code,
we only got the overall accuracy 92.87% while it appeared
93.07% in the paper. OA: overall accuracy.

with 7.86 M fewer parameters, with only 0.08 more GPU
days. We also report the average performance of 10 searched
cells as SGAS (Li et al. 2020a). Our searched cells are gener-
ally lightweight with fewer parameters but still can achieve
better results in terms of both mean and standard deviation.

Search for GCN Architectures on ModelNet
We also conduct experiments on the ModelNet (Wu et al.
2015) to search for GCN architectures. The ModelNet
dataset mainly contains synthetic object point clouds and
has two variants, ModelNet10 and ModelNet40. The for-
mer has 10 classes and 40 classes are included in the lat-
ter, which contains 9,843 CAD-generated meshes for train-
ing and 2,468 meshes for testing. We follow the pre-defined
search space in SGAS (Li et al. 2020a) to conduct architec-
ture search on ModelNet10 and retrain the searched archi-
tectures on ModelNet40. As we can not reproduce their ex-
periments for the big network, we retrain our searched archi-
tecture with their small network configuration, specifically
stacking 3 cells and setting k nearest neighbor to 9.

Results As shown in Tab. 5, PINAT gets the highest over-
all accuracy than manually designed networks, i.e. 3DmFV-
Net (Ben-Shabat et al. 2018), SpecGCN (Wang et al. 2018),
PointNet++ (Qi et al. 2017), PCNN (Atzmon et al. 2018),
PointCNN (Li et al. 2018), DGCNN (Wang et al. 2019)
and KPConv (Thomas et al. 2019). Even compared with
the big network reported by SGAS (Li et al. 2020a) (Cri2
avg.), PINAT still obtains comparable performance with less
search cost and fewer than half of the parameters.

Discussion
Comparison with the original PINE module The origi-
nal PINE structure (Gui et al. 2021) is a four-layer network
with two linear transformation matrices and two activation
functions. We use a variant design to enhance permutation
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Figure 3: Ablation for the PIM designs, and PITE and PISA.

invariant features: Adding the residual connection in parallel
with the only first layer of the original structure to be a Res-
block-like module, and repeatedly stacking it for 3 times. We
compare these two modules in our predictor on NAS-Bench-
101 and the results are summarized in Fig.3 (a). We can ob-
serve that the original PINE module can improve the predic-
tor’s performance as it introduces the features with partial
permutation invariance, which is consistent with our previ-
ous analysis. And more improvements emerge when using
our designed PIM variant, showing that our choice is effec-
tive for NAS predictors and superior to the original design.

The effect of PITE and PISA To analyze the effect of our
proposed PITE and PISA, we conduct an ablation study for
these two modules. As shown in Fig.3 (b), when both PITE
and PISA modules are disabled, the predictor degenerates to
a totally Transformer-based structure. As long as any one of
the two modules is enabled, the ranking performance of the
NAS predictor can be improved. Moreover, when combin-
ing both modules, we get the most powerful NAS predictor
PINAT, surpassing others in all data splits.

Better performance of PINAT Many recent Transformer
related works (Chen et al. 2021a; Raghu et al. 2021) have
demonstrated that CNN extracts local features while the
self-attention module focuses more on the global features.
Combining both modules together results in better perfor-
mance in various tasks. When it comes to our situation, local
features of node neighbors with partial permutation invari-
ance from PIM modules are exactly complementary to the
global features of self-attention modules. Combining these
features can better represent the topology information from
both local and global views, which explains the great perfor-
mance of our method. We explore the performance of differ-
ent combinations of SA and PISA modules in our Supp.

Conclusion
In this paper, we present a Transformer-like NAS predic-
tor PINAT with PITE and PISA modules, which aggre-
gates the features with global and partial permutation invari-
ance to produce more meaningful features to represent dis-
crete architectures. Extensive experiments on six benchmark
datasets show that our method constantly surpasses previous
state of the arts, clearly demonstrating our effectiveness. In
the future, we will explore the balance between the global
and local aggregation information of node features to fur-
ther improve our predictor.
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