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Abstract

Although K-Means clustering has been widely studied due
to its simplicity, these methods still have the following fa-
tal drawbacks. Firstly, they need to initialize the cluster cen-
ters, which causes unstable clustering performance. Secondly,
they have poor performance on non-Gaussian datasets. In-
spired by the affinity matrix, we propose a novel multi-view
K-Means based on the adjacency matrix. It maps the affinity
matrix to the distance matrix according to the principle that
every sample has a small distance from the points in its neigh-
borhood and a large distance from the points outside of the
neighborhood. Moreover, this method well exploits the com-
plementary information embedded in different views by min-
imizing the tensor Schatten p-norm regularize on the third-
order tensor which consists of cluster assignment matrices of
different views. Additionally, this method avoids initializing
cluster centroids to obtain stable performance. And there is no
need to compute the means of clusters so that our model is not
sensitive to outliers. Experiment on a toy dataset shows the
excellent performance on non-Gaussian datasets. And other
experiments on several benchmark datasets demonstrate the
superiority of our proposed method.

Introduction
Clustering is one of the most representative unsupervised
techniques for analyzing data in data mining and artificial
intelligence, which has attracted more and more attention in
recent years due to a large amount of unlabeled data. Cluster-
ing aims to divide the data into C groups, i.e., clusters such
that the similarity between data points in the same cluster
is high, while the similarity between data points in differ-
ent clusters is low. With the development of sensor tech-
nology, multi-view data are ubiquitous in real applications
and help provide some complementary information which is
important for clustering. Inspired by this, many multi-view
clustering methods have been proposed, and one of the most
representative techniques is multi-view K-Means clustering.

The purpose of the traditional K-Means (Hartigan and
Wong 1979) is graphing a dataset into some certain clus-
ters by assigning each data sample to the cluster with the
nearest centroid. This algorithm suffers from two serious
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limitations. One is that the initialized cluster centroids af-
fect the results, and the other is that it can only distinguish
Gaussian-distributed data. For the first limitation, The gen-
eral workaround is doing multiple experiments with the ran-
domly initial cluster centroids to obtain a near-local optimal
solution, which takes more time. Although some methods
can speed up computation such as (Elkan 2003; Arthur and
Vassilvitskii 2007), this just alleviates the instability of the
results rather than resolves. For the second limitation, kernel
K-Means (Kim et al. 2005; Wang et al. 2022; Ren, Sun, and
Wei 2021; Liu et al. 2020) are proposed. It is an extension
of the standard K-Means algorithm that maps data from the
input space to a higher dimensional feature space through
a nonlinear transformation and minimizes the clustering er-
ror in feature space. Thus non-linearly separated clusters are
obtained in the input space. However, the computational and
storage costs of the kernel matrix are high due to the in-
creased dimension.

To solve these problems, we propose centerless multi-
view K-Means clustering method based on the adjacency
matrix. It is well known that K-Means cannot separate non-
linear datasets well. For this, we use the distances calculated
by affinity matrices instead of Euclidean distances. Mean-
while, our method avoids to initialize the centers of clusters.

Tensor Schatten p-norm (Gao et al. 2021) exploit the com-
plementary information embedded in different views well.
So our method leverages the tensor Schatten p-norm regu-
larizer on the third-order tensor, which consists of discrete
clustering assignment matrices of different views, to mini-
mize the divergence between assignment matrices of differ-
ent views. Finally, we introduce an adaptive weighted strat-
egy to further improve the clustering performance. Code and
data are available1. The main contributions are as follows:

• Compared with K-Means, our method constructs the dis-
tance matrices with the adjacency matrices, so it is suit-
able for both linearly and non-linearly separate cluster in
the input space.

• Our method avoids initializing cluster centroids so the
clustering performance is robust. What’s more, avoiding
compute the means of clusters makes our method insen-
sitive to outliers.

1https://github.com/luhan0/CMKOA
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• We leverage the minimization of tensor Schatten p-
norm to fully exploit structural and complementary in-
formation among different views. Our proposed adaptive
weighted strategy take into account the different contri-
butions of different views.

Notations
For convenience, we introduce the notations used through-
out the paper. We use bold calligraphy letters for third-
order tensors, M ∈ Rn1×n2×n3 , bold upper case letters
for matrices, M, bold lower case letters for vectors, m, and
lower case letters such as mijk for the entries of M, mij

is the (i, j)-th entry of M and tr(•) is the trace of a ma-
trix. Ind is the set of all cluster assignment matrices. More-
over, the i-th frontal slice of M is M(i). M is the discrete
Fourier transform (DFT) of M along the third dimension,
M = fft(M, [ ], 3). Thus, M = ifft(M, [ ], 3). The trace
of matrix M is expressed as tr(M). The Frobenius norm of

M is defined as ∥M∥F =
√∑

i,j,k |mijk|2.

Another Representation of K-Means
Let X = [x1, . . . , xN ]T ∈ RN×d denote the data ma-
trix, where N and d are the number of samples and fea-
ture dimensions, respectively. The label matrix is denoted by
Y = [y1, . . . , yN ]T ∈ {0, 1}N×C , where yi is indicator
vector of the i-th sample; C is the cluster number; yij = 1
if xi belongs to the j-th cluster; yij = 0, otherwise.

Given a weighted undirected graph G(X,W), where W
is an adjacency matrix which characterizes the relationship
between data points x1, · · · ,xN .

K-Means aims to partition data points x1,x2, · · · ,xN

into C clusters X1, . . . , XC according to the Euclidean
distance between the data points and the C centroid points
u1,u2, · · · ,uC such that the data points in the same clusters
are as close as possible and the distances between different
clusters are as large as possible. Thus, the objective function
of K-Means can be formulated as

min
X1,...,XC

C∑
l=1

∑
xi∈Xl

∥xi − ul∥22 (1)

where ul =
∑

xi∈Xl

xi

|Xl| is the centroid of cluster Xl; |Xl|
is the number of samples in Xl.

By using simple linear algebra, (1) becomes (Pei et al.
2020)

min
Y∈Ind

tr((YTY)-1YTDY) (2)

where D denotes distance matrix of X, the i-th row j-th
column element of D is ∥xi − xj∥22.

Methodology
The Proposed Model
In real applications, different views contain different char-
acteristics of data, thus, they should have different similar-
ity matrices, resulting to different label matrices of different
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Figure 1: Construction of tensor Y ∈ RN×C×V . ∆(c) de-
notes the c-th frontal slice of Y (c ∈ {1, 2, · · · , C}).

views. Combining the aforementioned insight analysis, we
get a new model for discrete multi-view clustering as

min
Y(v), αv

V∑
v=1

αr
vtr((Y

(v)T
Y(v))-1Y(v)T

H(v)Y(v))+λR(Y)

s.t. Y(v) ∈ Ind,
V∑

v=1

αv = 1, αv ≥ 0

(3)

where Y(v) is the label matrix of v-th view; R( • ) represents
the regularizer on Y(v); αr

v is the adaptive weight for v-th
view, which characterizes the importance of the v-th view,
V is the number of views, λ is a trade-off parameter. H(v) is
produced by the mapping of Euclidean distances D(v).

Let H(v) denotes the distance matrix D(v) of the v-th view.
It is apparent from the above analysis that (3) becomes
multi-view K-Means.

Multi-View Discrete Clustering
In (3), the second term aims to minimize the divergence be-
tween Y(v). To solve this problem, a naive method is to
leverage squared F-norm to learn the discrete label matrix.
As we all know, F -norm is a one-dimensional and pixel-
wise measurement method. Thus, it cannot well exploit the
complementary information embedded in Y(v). It is evident
that the low rank approximation using tensor Schatten p-
norm performs very well in exploiting the complementary
information embedded in views (Gao et al. 2021; Xia et al.
2022c), thus, we minimize the divergence between Y(v) by
using the tensor Schatten p-norm minimization on the third-
order tensor Y which consists of Y(v). Thus, we have

min
Y(v), αv

V∑
v=1

αr
vtr((Y(v)T

Y(v))-1Y(v)T
H(v)Y(v))+λ∥Y∥pSp⃝

s.t. Y(v) ∈ Ind,
V∑

v=1

αv = 1, αv ≥ 0

(4)

where the v-th lateral slice of Y ∈ RN×V×C is Y(v) (See
Fig. 1); ∥•∥Sp⃝ is the tensor Schatten p-norm (see Defini-
tion 1).

Definition 1 (Tensor Schatten p-norm (Gao et al. 2021))
Given M ∈ Rn1×n2×n3 , h = min(n1, n2), the tensor
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Schatten p-norm of tensor M is defined as

∥M∥Sp⃝=
(

n3∑
i=1

∥∥∥M(i)
∥∥∥p

Sp⃝

) 1
p

=

(
n3∑
i=1

h∑
j=1

σj

(
M(i)

)p) 1
p

(5)
where σj(M

(i)
) denotes the j-th singular value of M(i)

.

Remark 1 when p = 1, tensor Schatten p-norm of M ∈
Rn1×n2×n3 becomes tensor nuclear norm (Semerci et al.
2014; Gao et al. 2021; Xia et al. 2022b,a), i.e., ∥M∥∗ =
n3∑
i=1

h∑
j=1

σj

(
M(i)

)
. Take matrix Schatten p-norm as an ex-

ample, that is for M ∈ Rn1×n2 and the singular values
of M denoted by σ1, . . . , σh, we have ∥M∥pSp⃝ = σp

1 +

· · · + σp
h, p > 0. Nie et al. (Nie et al. 2012) has shown

that limp→0 ∥M∥pSp⃝ = #{i : σi ̸= 0} = rank(M). And for
0 ≤ p ≤ 1, i.e. when p is appropriately chosen, the Schat-
ten p-norm can give us quite effective improvements for a
tighter approximation of the rank function.

Remark 2 The regularizer in the proposed objective (4)
is used to explore the complementary information embed-
ded in inter-views cluster assignment matrices Y(v) (v =
1, 2, · · · , V ). Fig. 1 shows the construction of tensor Y , it
can be seen that the c-th frontal slice ∆(c) describes the sim-
ilarity between N sample points and the c-th cluster in dif-
ferent views. The idea cluster assignment matrix Y(v) should
satisfy that the relationship between N data points and the
c-th cluster is consistent in different views. Since different
views usually show different cluster structures, we impose
tensor Schatten p-norm minimization (Gao et al. 2021; Xia
et al. 2022b,a) constraint on Y , which can make sure each
∆(c) has spatial low-rank structure. Thus ∆(c) can well
characterize the complementary information embedded in
inter-views.

Optimization
In (4), it difficult to solve the discrete cluster assignment due
to the its non-convex property. To this end, we suppose the
number of samples in each cluster are equal. In this case,
Y(v)T

Y(v) = nI, where n = N/C is the cluster cardinality.
Thus, (4) becomes

min
Y(v), αv

V∑
v=1

αr
vtr(Y

(v)T
H(v)Y(v))+λ∥Y∥pSp⃝

s.t. Y(v) ∈ Ind,
V∑

v=1

αv = 1, αv ≥ 0

(6)

Using augmented Lagrange multiplier (ALM) (Lin, Liu,
and Su 2011), we introduce an auxiliary variable J and
rewrite (6) as

L(Y ,J ) =
V∑

v=1

αr
vtr(Y

(v)T
H(v)Y(v))+λ∥J ∥pSp⃝

+ ⟨Q,Y −J ⟩+ µ

2
∥Y −J ∥2F

(7)

where Q is Lagrange multipliers; µ is a penalty parameter.
The optimization process could be separated into the follow-
ing three steps.

• Solving Y with fixed αv and J . When αv and J are
fixed, the optimization w.r.t. Y in (7) becomes

min
Y(v)∈Ind

V∑
v=1

αr
vtr(Y

(v)T
H(v)Y(v))+

µ

2
∥Y-J +

Q
µ
∥2F (8)

Since all Y(v) (v = 1, · · · , V ) are independent, then (8)
can be decomposed into V independent sub-optimization
problems. So we can obtain Y(v) (v = 1, · · · , V ) of each
view by solving

min
Y(v)∈Ind

αr
vtr(Y

(v)T
H(v)Y(v))+

µ

2
∥Y(v)-S(v)∥2F (9)

where S(v)=J(v)- 1µQ
(v).

In (9), it is hard to directly get the optimal solution due to
the discrete values. Since all rows of Y(v) are independent,
we sequentially solve Y(v) row by row with fixed the other
rows. To update the k-th row, we assume the other rows of
Y(v) are known. Then, the optimization with respect to the
k-th row in (9) becomes

min
y(v)
k ∈Ind

αr
v

N∑
i,j=1

h(v)
ij tr(y

(v)
i y(v)

j

T
) +

µ

2
∥y(v)

k -s(v)
k ∥2F

⇔ min
y(v)
k ∈Ind

αr
vy

(v)
k

T
(2

N∑
i=1,i ̸=k

h(v)
kiy

(v)
i )− µy(v)

k

T
s(v)
k

(10)

Since h(v)
kk=0, thus, the problem (10) can be rewritten as

min
y(v)
k ∈Ind

2αr
vy

(v)
k

T
(

N∑
i=1

h(v)
kiy

(v)
i )− µy(v)

k

T
s(v)
k

⇔ min
y(v)
k ∈Ind

y(v)
k

T
(2αr

vY(v)
∗

T
h(v)
k − µs(v)

k )

(11)

where h(v)
k =[h(v)

k1, h
(v)
k2, · · · , h

(v)
kn]

T, h(v)
ii =0; Y(v)

∗ is the cluster
assignment matrix before y(v)

k is updated. Then, the optimal
solution of (8) can be reformulated as

y(v)
ip =

1, p = arg min
j

(2αr
vY(v)

∗
T
h(v)
i − µs(v)

i )j

0, otherwise.
(12)

• Solving αv with fixed Y and J . When Y and J are
fixed, the optimization w.r.t. αv in (7) is equivalent to

min
αv

V∑
v=1

αr
vtr(Y

(v)T
H(v)Y(v)) s.t.

V∑
v=1

αv = 1, αv ≥ 0

(13)
According to the Lagrange multiplier method, we have

the following Lagrangian function:

L(α1, . . . , αV , γ) =
V∑

v=1

αr
vMv + γ(1−

V∑
v=1

αv)

+
V∑

v=1

µv(−αv)

(14)
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where γ and µv is parameters; Mv = tr(Y(v)T
H(v)Y(v)). Ac-

cording to the KKT conditions, the optimal solution to (14)
satisfies

∂L
∂αv

= rαr−1
v Mv−γ−µv = 0, v = 1, . . . , V

µvαv = 0, v = 1, . . . , V

µv ≥ 0, v = 1, . . . , V

1−
V∑

v=1
αv = 0

(15)

then, it is simple to show that

αv =
(Mv)

1
1−r

V∑
v=1

(Mv)
1

1−r

(16)

• Solving J with fixed Y and αv . In this case, J can
be obtained by solving

J ∗ = argmin
J

λ

µ
∥J ∥pSp⃝ +

1

2
∥Y −J +

Q
µ
∥2F (17)

To solve (17), we first introduce Theorem 1 (Gao et al.
2021).

Theorem 1 Given third-order tensor A ∈ Rn1×n2×n3

whose t-SVD denotes by A=U ∗ S∗VT. For the problem

arg min
X

µ ∥X∥pSp⃝ +
1

2
∥X −A∥2F , (18)

the optimal solution is

X ∗ = Γµ [A] = U ∗ ifft(Pµ

(
A
)
) ∗ VT, (19)

where Pµ(Ā)∈ Rn1×n2×n3 is a f-diagonal tensor whose di-
agonal elements can be obtained by the GST algorithm in-
troduced in Lemma 1 of (Gao et al. 2021).

According to Theorem 1, let Y + Q
µ = U ∗Σ ∗VT, then

the solution of (17) is

J ∗ = Γλ
µ

[
Y +

Q
µ

]
= U ∗ ifft(Pλ

µ

(
Y +

Q
µ

)
) ∗ VT

(20)
Finally, Algorithm 1 lists the pseudo code of solving (6).

H(v) Construction
It is well known that K-Means cannot separate clusters well
which are non-linearly separable in the input space due to
the Euclidean distance between data. To address this prob-
lem, inspired by the advantage of the adjacency matrix,
which can well characterize intrinsic structure of data with
arbitrary shape, and good property of anchor graph, we use
the small adjacency matrix B(v) ∈ RN×θ (v = 1, . . . , V )
to construct H(v) (v = 1, . . . , V ) which is called the adja-
cency matrix, where θ ≪ N is the number of anchors. To be
specific:

First, for a given multi-view dataset {X(v)}Vv=1 with N

samples, where X(v) ∈ RN×dv , we pick out θ samples as

Algorithm 1: Solving the Model (7)

Input: Data matrices {X(v)}Vv=1 ∈ RN×dv ; anchors
number θ; cluster number C.

Output: Cluster assignment matrix K
1 Initialize: λ, Ω, r, p, J , H(v), Y(v), αv = 1

V ,
(v = 1 . . . V ), ρ = 1.1, µ = 10−4, µmax = 1010 .

2 Construct H(v) by (27), (v = 1 . . . V );
3 while not converge do
4 Update Y by solving (12);
5 Update J by solving (17);
6 Update Q by Q=Q+µ(Y−J );
7 Update αv by (16), (v = 1 . . . V );
8 Update µ by µ = min (ρµ, µmax);
9 end

10 Calculate the cluster assignment matrix K by

kil =

1, l = argmax
j

(
V∑

v=1
αr
vY(v)

)
ij

0, otherwise.
11 return: The cluster assignment matrix K

anchors. An efficient method named directly alternate sam-
pling (DAS) (Li et al. 2020) are adopted to choose the an-
chors covering the entire point cloud of data. Let {A(v)}Vv=1

denotes the anchors, where A(v) ∈ Rθ×dv .
Second, a parameter-free but effective bipartite graph con-

struct strategy (Li et al. 2020) is applied to construct an-
chor graphs B(v) with the gained anchors. The normalized
and nonnegative anchor graph B(v) for v-th view can be ob-
tained by solving

min
bi(v)1=1,bi(v)≥0

θ∑
j=1

b
(v)
ij ∥x(v)

i − a
(v)
j ∥22 + γ∥bi(v)∥22 (21)

where bi(v) represents the i-th row of B(v), γ is the regular-
ization parameter. Let p(v)ij = ∥x(v)

i − a
(v)
j ∥22, the following

derivation is provided to obtain the closed form solution to
(21)

min
bi(v)1=1,bi(v)≥0

1

2
∥bi(v) +

pi(v)

2γ
∥22 (22)

To solve (22), the Lagrangian function is introduced as fol-
low

L(bi(v), η,µ) =
1

2
∥bi(v) +

pi(v)

2γ
∥22

+ η(bi(v)1− 1) + bi(v)µ

(23)

where η ∈ R and µ ∈ Rθ×1 are the Lagrangian multipliers.
By using the KKT conditions, we have:

∂L
∂bi(v) = 0 ⇒ b

(v)
ij +

p
(v)
ij

2γ − η − µj = 0, j = 1, . . . , θ

b
(v)
ij ≥ 0, j = 1, . . . , θ

µj ≥ 0, j = 1, . . . , θ

b
(v)
ij µj = 0

(24)
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Let the obtained bi(v) has exact k nonzero elements which
means that i-th sample connects to its k-nearest anchors to
satisfy the sparsity. By solving (24), we have η = 1

k +
1

2γk

∑k
j=1 p

(v)
ij . Meanwhile, following (Li et al. 2020) γ is

set as γ = k
2p

(v)
i,k+1 −

1
2

∑k
j=1 p

(v)
i,j and then the solution of

b
(v)
ij in (21) is

b
(v)
ij =


∥x(v)

i −a
(v)
k+1∥

2
2−∥x(v)

i −a
(v)
j ∥2

2

k∥x(v)
i −a

(v)
k+1∥

2
2−

∑k
l=1 ∥x(v)

i −a
(v)
l ∥2

2

j ≤ k

0 j > k
(25)

Third, we calculate the symmetric and doubly-stochastic
adjacency matrix W(v) following (Liu, He, and Chang
2010), i.e.,

W(v) = B(v)∆(v)-1
B(v)T (26)

where ∆(v) ∈ Rθ×θ is a diagonal matrix and ∆
(v)
jj =∑N

i=1 b
v
ij .

Finally, the i-th row j-th column element hv
ij of H(v) can

be obtained by

h
(v)
ij =

√√√√ 1

1 + (
w

(v)
ij

Ω )4
(27)

which is a novel conversion function inspired by the Butter-
worth filters, and Ω is a hyperparameter.

Complexity Analysis
Our method consists of two stages: 1) Construction of
{H(v)}Vv=1, 2) Iterative updating (7). The first stage takes
O(V Nθd + V Nθ log(θ)) for the anchor graph construc-
tion, where d =

∑V
v=1 dv; V , θ and N are the number of

views, anchors and samples, respectively. The second stage
mainly focuses on solving two variables (Y(v) and J ), the
complexity in updating these two variables are O(NC) and
O(V NC log(V N) + V 2NC), where C is the number of
clusters. For θ, C ≪ N , the main complexity in this stage
is O(V NC log(V N)). Thus, the main computational com-
plexity of our method is O(V Nθd), which is linear to N .

Experiments
We evaluate our model on a toy dataset and six benchmark
datasets through some experiments implemented on a Win-
dows 10 desktop computer with a 2.40GHz Intel Xeon Gold
6240R CPU, 64 GB RAM, and MATLAB R2021a (64-bit).

Experiments on Toy Example
To verify the efficiency of our method for non-linearly sep-
arate clusters, we construct the three-ring dataset that has 2
views and 3 clusters, each cluster with 200 samples, and the
second view is the FFT of the first. Fig. 2 shows the cluster-
ing results of our method with different distance matrices.
One is from the Euclidean distance matrix (See Fig. 2 (a)),
and the other is from the distance transformed by our func-
tion (27) (See Fig. 2 (b)). The visual result is in Fig. 2, and
it can be seen that, compared with the Euclidean distance

-2 0 2

-2

-1

0

1

2

3

(a) Euclidean distance
-2 0 2

-2

-1

0

1

2

3

(b) Our method

Figure 2: Clustering performance of our proposed method
with different distance matrices.

matrix, the performance of our method is significantly im-
proved when using (27) to calculate the distance matrix. It
indicates that our method can separate clusters well which
are non-linearly separable in the input space.

Experimental Settings
Datasets We do experiments on the following six widely
used multi-view datasets to investigate the performance of
our method.

• MSRC (Winn and Jojic 2005) includes 7 kinds of objects
with 210 images. We choose the 24-dimension CM fea-
ture, 576-D HOG feature, 512-D GIST feature, 256-D
LBP feature, 254- D CENT feature as 5 views.

• ORL2 includes 400 pictures of 40 people. Just as (Luo
et al. 2018), we extract three types of features from the-
dataset: 4096 dimensions intensity feature, 3304 dimen-
sions LBP feature, and 6750 dimensions Gabor feature.

• HW (Dua and Graff 2019) includes 10 digits with 2,000
images generated from UCI machine learning repository.
76-D FOU feature, 216-D FAC feature, 47-D ZER fea-
ture and 6-D MOR feature are employed as 4 views.

• Mnist4 (Deng 2012) includes 4 categories of handwritten
digits, i.e., from digit 0 to 3, with 4,000 images. We adopt
the 30-D ISO feature, 9-D LDA feature, and 30-D NPE
feature as 3 views.

• Reuters (Apté, Damerau, and Weiss 1994) includes 6 cat-
egories with 18758 documents. The 21513-D English,
24892-D France, 34251-D German, 15506-D Italian and
11547-D Spanish are adopted as 5 views.

• NUS-WIDE (Chua et al. 2009) includes 31 categories
with 30000 object images, and the 5 selected views are
64-D CH feature, 225-D CM feature, 144-D CORR fea-
ture, 73-D EDH feature and 128-D WT feature.

Methods for Comparison we select the following repre-
sentative methods: (1) Classical single view spectral clus-
tering (SC) (Ng, Jordan, and Weiss 2001) (2) Multi-view
K-Means clustering on big data (RMKMC) (Cai, Nie,
and Huang 2013); (3) Co-regularized multi-view SC (Co-
Reg) (Kumar, Rai, and III 2011); (4) Consistent and specific

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html
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Datasets MSRC HW

Methods ACC NMI Purity ACC NMI Purity

SC (best) 0.663 0.534 0.675 0.639 0.616 0.653
RMKMC 0.700 0.604 0.700 0.804 0.785 0.839
CSMSC 0.758 0.735 0.793 0.806 0.793 0.867
Co-Reg 0.635 0.578 0.659 0.784 0.758 0.795
MVGL 0.690 0.663 0.733 0.811 0.809 0.831
LTCPS 0.981 0.957 0.981 0.920 0.869 0.920
ETLMSC 0.962 0.937 0.962 0.938 0.893 0.938
Ours 1.000 1.000 1.000 0.998 0.995 0.998

Table 1: The results on MSRC and HW datasets.

multi-view subspace clustering (CSMSC) (Luo et al. 2018);
(5) Graph learning for multi-view clustering (MVGL) (Zhan
et al. 2018); (6) Low-rank tensor constrained co-regularized
multi-view spectral clustering (LTCPSC) (Xu et al. 2020);
(7) Essential tensor learning for multi-view spectral cluster-
ing (ETLMSC) (Wu, Lin, and Zha 2019).

Metrics The widely used 3 metrics are applied to evaluate
the performance of our method, (1) Accuracy (ACC) (Cai,
He, and Han 2005); (2) Normalized Mutual Information
(NMI) (Estévez et al. 2009); (3) Purity (Varshavsky, Linial,
and Horn 2005). For all metrics, the higher value means the
better clustering performance.

Experimental Results
We do experiments on six datasets and present the metrics
comparison of the above methods in Tables. 1, 2, and 3, and
specially for SC (best), only the best results among each
view are recorded that individually applying single view
spectral clustering on. We set the anchor rate θ = 0.5 on
MSRC, ORL, Mnist4 and HW, θ = 0.1 on Reuters and
θ = 0.02 on NUS-WIDE. The following can observed:

It is observed that multi-view clustering methods achieve
better results than single-view methods because they exploit
complementary information embedded in different views.
Furthermore, our method outperforms not only single-
view clustering methods such as SC but also state-of-the-
art multi-view clustering algorithms. This is because our
method is suitable for both linear and non-linear data. We
also consider complementary information among views as
well as the difference of each views.

For two large scale datasets Reuters and NUS-WIDE,
the out of memory issue occurs in some methods such as
ETLMSC. Our method can obtain great results with set-
ting low anchor rate, as shown in Table. 3, especially in
NUS-WIDE, our method significantly and consistently out-
performs all competitors, which proves the effectiveness on
large scale datasets.

T-SNE Visualization T-distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten and Hinton 2008) is
used to embed the data into a 2-D or 3-D space while re-
specting relative distances between data samples to visual-
ize high-dimensional data. To further illustrate the cluster-
ing performance of our method visually, we apply t-SNE

Datasets ORL Mnist4

Methods ACC NMI Purity ACC NMI Purity

SC (best) 0.727 0.868 0.762 0.713 0.558 0.713
RMKMC 0.543 0.749 0.620 0.895 0.739 0.895
CSMSC 0.857 0.935 0.882 0.643 0.645 0.832
Co-Reg 0.668 0.824 0.713 0.785 0.602 0.786
MVGL 0.765 0.871 0.815 0.912 0.785 0.910
LTCPS 0.981 0.994 0.983 0.929 0.813 0.929
ETLMSC 0.958 0.991 0.970 0.934 0.847 0.934
Ours 1.000 1.000 1.000 0.988 0.955 0.988

Table 2: The results on ORL and Mnist4 datasets.

Datasets Reuters NUS-WIDE

Methods ACC NMI Purity ACC NMI Purity

SC (best) 0.269 0.002 0.272 0.131 0.019 0.140
RMKMC 0.422 0.259 0.531 0.125 0.123 0.221
CSMSC OM OM OM OM OM OM
Co-Reg 0.563 0.326 0.552 0.119 0.114 0.214
MVGL 0.271 0.021 0.281 OM OM OM
LTCPS OM OM OM OM OM OM
ETLMSC OM OM OM OM OM OM
Ours 0.682 0.638 0.824 0.510 0.708 0.673

Table 3: The results on Reuters and NUS-WIDE datasets.

to map the HW and Mnist4 datasets to a 2D plane and la-
bel samples of different clusters with different colors (See
Fig. 3). On HW, our method divides samples into 10 clusters
clearly, and the 4-th, 8-th, and 9-th clusters from RMKMC
are dispersed obviously. On Mnist4, although t-SNE does
not separate the original data well (shown in Fig. 3 (b) ),
our results are closer to the original data distribution, and
the 4-th cluster from RMKMC is terrible. The reason may
be that RMKMC cannot be applied to non-linear data and
needs initializing cluster centroids, so the obtained results
are unrobust.

Effect of Parameter r In (16), if r → ∞, the weight as-
signed to each view will be equal, and if r → 1, the weight
of the view with the minimum value of Mv will be 1, and
others will be 0. The strategy of using r not only avoids
the trivial solution to the weight distribution of the differ-
ent views but also controls the whole weights by exploiting
one parameter.

Fig. 4 reveals the performances of our method on MSRC
and ORL datasets by showing three metrics (ACC, NMI, Pu-
rity) at different r, and we set r from 3 to 10 with the interval
of 1. It can be observed that when r is in the range of 3 to 9,
the clustering performance changes less than 0.123, but the
results on MSRC datasets decrease 0.272 when r is equal to
10. This confirms that choosing an appropriate r parameter
helps to improve the clustering performance and r is insen-
sitive within the range of 3 to 9.

Effect of Parameter p Taking MSRC and ORL datasets
as examples, we analyze the effect of p on clustering perfor-
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(f) RMKMC on Mnist4 dataset

Figure 3: t-SNE visualization on HW and Mnist4 datasets
compared with RMKMC.
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Figure 4: Clustering performance vs. r on MSRC and ORL
datasets.

mance. Specifically, we change p from 0.1 to 1.0 with the
interval of 0.1, then we report the ACC, NMI, and Purity as
shown in Fig. 5. It is observed that the results under different
p are close, and when p = 0.4, the results on MSRC datasets
decrease less than 0.022. This demonstrates that p has some
influence on clustering results and it is not sensitive to the
results.

Convergence For MSRC and ORL datasets, we calculate
the values of the function

∑V
i=1 ∥J(v) −Y(v)∥2F at each it-

eration step and record the results in Fig.6. It is observed that
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Figure 5: Clustering performance vs. p on MSRC and ORL
datasets.
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Figure 6: The values of function with iterations on MSRC
and ORL datasets.

the value of the objective function decreases as the number
of iterations increases and converges within less than 150
steps eventually. This further indicates that our proposed al-
gorithm can converge in real applications.

Conclusion
In summary, we present a novel centerless multi-view K-
Means clustering method, which uses the affinity matrices of
different views to construct the corresponding distance ma-
trices. This makes our method suitable for both linearly and
non-linearly clusters and eliminates the impact of the initial-
izing cluster centroids. Meanwhile, our method is insensi-
tive to noise points because it does not calculate clustering
means. In addition, our method exploits the complementary
information embedded in label matrices of different views.
Extensive experiments on real-world datasets indicate the ef-
ficiency of our method.
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