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Abstract

Subsampling algorithms are a natural approach to reduce data
size before fitting models on massive datasets. In recent years,
several works have proposed methods for subsampling rows
from a data matrix while maintaining relevant information for
classification. While these works are supported by theory and
limited experiments, to date there has not been a comprehen-
sive evaluation of these methods. In our work, we directly
compare multiple methods for logistic regression drawn from
the coreset and optimal subsampling literature and discover
inconsistencies in their effectiveness. In many cases, methods
do not outperform simple uniform subsampling.

Introduction
It has become common, even routine, for researchers to have
massive datasets in reach for modeling and prediction. Us-
ing standard machine learning tools for datasets with over
millions of observations n or thousands of features d is chal-
lenging when many algorithms have superlinear scaling with
the data dimensions. In terms of time and resources, even
training a simple linear model becomes an expensive en-
deavor.

A natural workaround for excessively large data is to sub-
sample a set of rows m without losing significant informa-
tion. The specific form of information to be preserved, and
hence the best strategy to accomplish this, depends on the
task. In the logistic regression setting, we have a data ma-
trix X ∈ Rn×d, labels y ∈ {−1, 1}n, and a loss function
f(x) = log(1 + e−x), and the goal is to find the weights
β⋆ which minimizes the objective function L(β;X, y) =∑n

i=1 f(yix
⊤
i β). There are three natural quantities which a

subsampling method may choose to approximate:

1. The model fit, measured as the sum of validation losses

2. The maximum likelihood estimate (MLE) β̂MLE

3. The model’s performance on unseen data

By subsampling, a practitioner will fit a logistic regression
over only m points instead of n. Each of the m points is
permitted an instance weight wi for the fitting procedure,
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which indicates the level of representation of that point in
the linear model.

Recently a number of works proposed coresets for logistic
regression which target quantity (1). A coreset consists of a
set of m≪ n weighted points whose objective function ap-
proximates that of the full dataset for any β. More precisely,
if there is a subset C of the data consisting of xc1 , . . . , xcm
and weights w1, . . . , wm, such that for all β ∈ Rd,∣∣∣∣ m∑

i=1

wif(ycix
⊤
ciβ)− L(β;X, y)

∣∣∣∣ ≤ ϵ · L(β;X, y)

then the points form an (1 + ϵ)-coreset of X .

The coreset literature suggests sampling strategies, known as
sensitivity sampling, over the rows in X so that with proba-
bility 1− δ the resulting subsample is a (1+ ϵ)-coreset. The
sensitivity can be viewed intuitively as the worst-case influ-
ence of a given data point on the objective over all values of
β. Points which are highly influential should be more likely
to be sampled into the coreset. While the sensitivity is in-
tractable because it involves optimizing over all values of β,
various strategies are used to approximate (and more specif-
ically, upper-bound) the sensitivity in order to sample data.
These include k-means clustering (Huggins, Campbell, and
Broderick 2016), leverage scores (Munteanu et al. 2018),
and row norms (Tolochinsky and Feldman 2018). Using the-
oretical frameworks based on (Feldman and Langberg 2011;
Braverman et al. 2016), probabilistic bounds are derived to
relate a given subsample size m to ϵ and δ (for example, the
minimum m needed to achieve some ϵ).

Because the primary quantity of interest has been approxi-
mating the objective function, attention has not been given
to how the minimizer β̂C of the coreset objective relates to
β̂MLE . In particular, the standard (1 + ϵ)-coreset needs to
hold for all β, whereas we may only be interested in the ap-
proximation performance of the coreset in a neighborhood
of β̂MLE . Recently the statistics literature on optimal sub-
sampling has investigated this area by focusing on target (2).
Wang, Zhu, and Ma (2018) proposes a subsampling proce-
dure with conditions where β̂C converges to β̂MLE . While
the asymptotic performance of such procedures has been
studied (Wang, Zhu, and Ma 2018; Ting and Brochu 2018),
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finite sample bounds like those in the coreset literature have
not yet been developed.

Finally, while some of the above works have empirically ex-
amined coreset performance on (3), this has not been a main
focus. Since large-scale logistic regression models are often
trained in order to get predictive power over unseen data, it
is crucial that prediction quality does not greatly deteriorate
when subsampling is applied.

Based on these frameworks, numerous sampling strategies
have been presented in the literature with theoretical sup-
port. While each respective method was supported by exper-
imental results, a comprehensive evaluation has been miss-
ing. Some limitations of previous studies are:

• Each method is benchmarked with at most one or two
competitors on a small selection of real-world datasets.
The datasets vary greatly in size depending on the study,
from thousands of rows to millions.

• The evaluation metric has not consistent across these
works, with some assessing objective function error,
some measuring the error of estimating β̂ itself, etc.

• Subsample size ranges: Some works examine coresets
with only hundreds of samples even on large datasets,
while others do not consider very small coreset sizes. In
our work we find that some methods are more effective
in certain size regimes.

In our experiment design we account for these limitations
by benchmarking most known subsampling methods for lo-
gistic regression over a large variety of realistic datasets. We
are the first to present a thorough empirical comparison of
these approaches, over a range of important metrics. In the
process we discover that most existing algorithms show in-
consistencies in performance across datasets, with many of
them not outperforming the uniform sampling baseline. Fur-
thermore, we find that one of the earliest coreset methods
still performs among the best, despite being ignored in all
recent evaluations. We additionally show that our results are
robust across regularization settings.

In Related Work, we give context on the importance of re-
producibility research. We then detail the coreset and opti-
mal subsampling algorithms in Subsampling Methods and
our evaluation procedure in Evaluation Procedure. Our re-
sults are shown and discussed in Results. Finally we con-
clude in Conclusion.

Related Work
The primary focus of our study is on the matter of repro-
ducible research. Considerable work has been done in repli-
cating research as described by the original manuscripts
(Raff 2019) and in developing repeatable infrastructure so
that a manuscript’s code can be easily re-run (Claerbout
and Karrenbach 1992; Forde et al. 2018a; Zaharia et al.
2018; Forde et al. 2018b). While such research is valuable
for understanding the nature of replication and its incen-
tives (Raff 2021, 2022; Raff and Farris 2022), it also repeats

any methodological errors from the original manuscript
where conclusions could change under different evaluation
(Bouthillier, Laurent, and Vincent 2019).

This methodological concern has grown in recent years, with
many sub-fields in machine learning discovering different
results when a more thorough evaluation is performed. Mus-
grave, Belongie, and Lim (2020) showed that metric learn-
ing was not improving with new triplet mining and losses,
but rather more general neural architectures, data augmen-
tation, and optimization strategies. Blalock et al. (2020)
found inconsistencies in neural architecture search and built
a new benchmarking framework to standardize. Dacrema,
Cremonesi, and Jannach (2019) and Sun et al. (2020) also
found that in recommender systems many results could be
replicated as described in the original works, but when a
simple baseline was properly tuned the advantage of pro-
posed techniques disappeared. This is similar to our own
work, except our baseline is naive uniform random sam-
pling. Eggensperger et al. (2021) similarly showed hyper-
parameter optimization conclusions could change in a thor-
ough benchmark, though most methods did improve upon
naive baselines. Our work follows in performing a through
evaluation of coreset methods, where we find that most prior
seminal methods often fail to improve upon the naive base-
line of uniform random sampling.

A sub-concern of methodological evaluation is the method
by which conclusions about one method being “better” than
another are drawn. Early work in the machine learning field
proposed a number of alternative schemes on how to bal-
ance valid statistical testing with the computational limits of
performing the necessary experiments (Kubat and Matwin
1997; Bradley 1997; Dietterich 1998; Alpaydin 1999), but
multiple later results (Demšar 2006; Benavoli, Corani, and
Mangili 2016) showed that using a non-parametric test was
a highly effective means of drawing a valid conclusion, with
computational limits mostly unnecessary given advance-
ments in computing speed. This is not true in all cases. In
particular deep learning can be highly compute intensive
and needs alternative strategies (Bouthillier et al. 2021), but
our work is focused on logistic regression coresets and so
we can use the non-parametric test for robust conclusions.
While other approaches to robust conclusions have been pro-
posed recently we consider them beyond our intended scope
(Soboroff 2018; Berrar 2016).

Subsampling Methods
We identified and implemented several subsampling meth-
ods for logistic regression from the literature. All methods
follow the same general procedure, as described in Algo-
rithm 1. The final weights are designed so that the sum of
losses over the subsample is on the scale of the loss over
all n points, which enables the coreset objective to approx-
imate the full data objective. The subsample is then used
to fit a weighted logistic regression model, i.e. β̂C mini-
mizing

∑m
j=1 wif(ycjx

⊤
cjβ). This subsampled estimate is

finally compared with the full data MLE. We next briefly
describe the methods being evaluated along with implemen-
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Coreset Weights Coreset size Details

k-means si =
n

1+
∑k

j=1 |G(−i)
j |e−R∥Ḡ(−i)

j
−Zi∥

O
(

s̄
ϵ2 (d+ 1) log s̄+ log 1

δ

)
Gj are Zi assigned to cluster j, Zi = Xiyi

Leverage si = ∥Qi∥2 + 1
n , where Z = QR Õ

(µy(X)
√
nd3/2

ϵ2

)
Zi = −Xiyi, X is µ-complex

Monotonic si =
132

√
k∥pi∥+2
i O

(
t
ϵ2 (d log t+ log 1

δ )
)

pi = sorted(xi), k = 1
2λ , t =

∑
si

Lewis si = Lewis(X) Õ
(µy(X)2d

ϵ2

)
µ-complex, Lewis in (Cohen and Peng 2015)

OSMAC (vc) si = |yi − pi(β̂)| · ∥xi∥ – pi estimated probs. using pilot β̂
OSMAC (mse) si = |yi − pi(β̂)| · ∥M−1

X xi∥ – MX = 1
n

∑
pi(β̂)(1− pi(β̂))xix

⊤
i

uniform si = 1 Õ
(
n1−κd

ϵ2

)
∥xi∥2 ≤ 1, regularization λ ∝ nκ

Table 1: Computational expressions (corresponding to line 1 of Algorithm 1) and theoretical size of a (1 + ϵ)-coreset for each
coreset method evaluated. The notation Õ suppresses logarithmic factors. This is used in some methods like Leverage where
the log 1/δ is re-expressed as a multiplicative logarithmic constant, or the expression is otherwise very lengthy. Throughout
X ∈ Rn×d, y ∈ Rn, λ is the regularization parameter, and δ is the failure probability.

Algorithm 1 Coreset sampling procedure

Require: Datasets X ∈ Rn×d, y ∈ Rn, desired sub-
sample size m, method to compute importance weights
CoresetMethod

1: Compute {si}ni=1 ← CoresetMethod(X, y)
2: for i in 1 : n do
3: pi ← si/

∑n
i=1 si

4: Sample m rows from X, y using probabilities {pi} to
get Xc, yc

5: for j in 1 : m do
6: wj ← 1/(pcj · n)
7: return coreset (Xc, yc, w) = {xcj , ycj , wj}mj=1

tation details that we found were necessary in order to repro-
duce the original results. We refer the reader to the original
publications for the nuanced details of each method. This
six prior methods, plus our naive baseline are detailed be-
low. Furthermore, mathematical expressions for the coreset
weights and theoretical sizes are shown in Table 1.

k-means coreset (Huggins, Campbell, and Broderick 2016).
This was one of the first coresets proposed for logistic re-
gression. The theoretical analysis is based on the framework
developed in (Braverman et al. 2016; Feldman and Langberg
2011), where the key step is to upper bound the sensitivity
score of each data point. If the upper bound is too loose, then
a larger m is needed to achieve the same ϵ coreset. This work
used k-means clustering on a uniform subsample of the data
to compute the upper bound importance weights based on
distance from cluster centers. The method has two hyperpa-
rameters, the number of clusters k and the radius R of the
ball containing β. We found that the results were robust to k
and chose k = 6. While the theory requires β to be bounded
for the results to hold, in practice we found R = 1 usually
performed the best even if maxd |β̂MLE | exceeded 1.

The only other work to evaluate the k-means coreset is
(Munteanu et al. 2018), where R was set to be unbounded.
However, as R → ∞ the importance weights converge to

the uniform distribution, so their results are not representa-
tive of the effectiveness of the k-means method. No other
works have benchmarked this method, so we felt it was im-
portant to give it a fair chance.

Leverage coreset (Munteanu et al. 2018). The ℓ2-leverage
scores have been used to approximate ∥Xθ∥2 with ∥X ′θ∥2
for a row-wise reduced matrix X ′ up to (1+ ϵ) relative error
(Cohen and Peng 2015). In (Munteanu et al. 2018), the root
leverage scores are shown to be an effective upper bound
on the sensitivities. The scores are computed by taking the
row-wise L2-norm of an orthonormal basis of X . Such a
basis was obtained with the QR-decomposition. A further
step bins the sampling probabilities into multiples of 2 to
reduce the complexity of the procedure.

While an approximate QR-decomposition algorithm was
used in the paper, it was faster for us to use the optimized
numpy.linalg.qr routine for an exact solution. Another
important detail for the method to give good results was to
make sure any columns of 1s used to include the intercept
were removed prior to computing Q.

Monotonic coreset (Tolochinsky and Feldman 2018). Un-
like the previous coreset works, this work develops bounds
on the sensitivity of logistic regression when regularization
is used. The sampling weights are computed to be propor-
tional to the lengths of the data points, scaled by the relative
index of each point in sorted order. The weights are further
scaled by

√
k where k is the regularization parameter (which

in our version is equivalent to 1
2λ ). Thus their framework re-

quires the use of regularization.

Lewis coreset (Mai, Musco, and Rao 2021). An ℓ1 analog
of the leverage scores, the Lewis scores approximate the
quantity ∥Xθ∥1 up to (1+ϵ) relative error. Using their simi-
larity to hinge-like loss functions including the logistic loss,
this work derives coreset results for such functions. While
intuitively similar to the root leverage coreset, they are the
first to show a linear rather than polynomial dependence on
the feature dimension d via their proof technique. In prac-
tice, computing the Lewisweights requires iteratively com-
puting the leverage scores t times using the algorithm of
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(Cohen and Peng 2015), thus giving an approximate run-
time of t times that of the Leverage coreset. As reported
in their paper, we found that the method fully converged for
t = 20 while being acceptable for t = 5, so we used t = 5
to avoid excessive run times.

OSMAC (Wang, Zhu, and Ma 2018). This work shows that
under relatively mild conditions, the MLE β̂ under a sub-
sampling distribution converges to the full data MLE as
the coreset size increases. The OSMAC MSE is proposed
as such a subsampling method. Furthermore the distribu-
tion of θ̂ − θ̂MLE is shown to be asymptotically normal,
with the resulting covariance matrix being minimized by the
OSMAC MSE weights. The scores are computed by taking
into account the residual (y−ŷ), normalized by a covariance
matrix weighted by the expected binomial variance at each
point. This has a similar form to the leverage while using
label and model fit information, and can also be interpreted
as the influence function as in (Ting and Brochu 2018). The
authors additionally propose a second method OSMAC VC
which replaces the covariance matrix with the identity for
computational efficiency.

Both methods require the actual MLE θ to estimate the resid-
uals and weighted Hessian (in the first case) accurately, so an
initial pilot estimate using a uniform subsample is required.
In our experiments we used a subsample of m/2 for the pi-
lot estimate. We found that results were unreliable at small
sizes. Checking with the source code, we identified that the
authors weighted the pilot sample to have evenly balanced
classes. Implementing this ourselves led to more stable pilot
estimates.

Influence subsampling (Ting and Brochu 2018). The influ-
ence function uses a second-order approximation of the loss
to estimate the effect of infinitessimally upweighting each
point in the dataset, as motivated in (Hampel 1974; Koh and
Liang 2017). For the logistic regression case, the form of
the influence is equivalent to the score used in OSMAC MSE.
Thus we do not show this method separately. Like the pre-
vious, this work also proves the asymptotic optimality of in-
fluence sampling, albeit with a different framework.

Uniform coreset. It was shown in (Munteanu et al. 2018)
that in unconstrained logistic regression there exist general
datasets for which no sublinear coreset exists (Munteanu
et al. 2018). In order to bound the sensitivity, they rely on the
notion of µ-complexity, which measures for a dataset, over
all β, the worst-case ratio of sum-log-odds between incor-
rectly and correctly classified points. The smaller this quan-
tity is, the more effective the Leverage coreset is. (Curtin
et al. 2019) pointed out that when sufficient regularization is
used, the sensitivity of logistic regression is controlled over
all datasets. Therefore, uniform subsampling is an effective
coreset for all datasets and is in fact nearly optimal under
sufficient regularization.

In our experiments we use very weak regularization and will
show that even in nearly unconstrained settings that the uni-
form coreset is competitive with other methods.

Dataset n d d (num.) % pos

chemreact 24059 100 100 3.00
census 30932 100 6 24.1
bank 39128 51 8 11.3
webspam 126185 127 127 60.7
kddcup 469319 41 35 80.3
covtype 551961 54 10 51.2
bitcoin 2770862 24 6 1.42
SUSY 4500000 18 18 45.7

Table 2: Characteristics of datasets used in the study, with
rows n, features d, numeric features (i.e. not categorical
columns which are one-hot encoded), and percent posi-
tive class. Additional details on dataset preprocessing and
sources are in the Appendix.

Combining coresets. Coreset methods can be composed,
e.g. by recursively applying the subsampling procedure. For
example, (Munteanu et al. 2018) give additional theoretical
bounds for a recursive coreset. Due to the added complexity
when stacking results, we consider these methods to be out-
side the scope of our evaluation. Thus in all methods we
limit the coreset generation to a single round of subsam-
pling.

Evaluation Procedure
Our aim is to unify previous experimental methods into a
single comprehensive procedure. In this procedure we aim
to resolve the limitations from previous evaluations:

Datasets. While previous work used at most 3 datasets, we
evaluate on 8 datasets which include previously used ones
as well as new ones. The sizes range from 24000 to nearly 5
million (Table 2).

Evaluation metric. In accordance with the three aims of
subsampling as described in the Introduction, we assess the
following metrics:

• Relative negative log-likelihood (NLL) error to assess the
model fit:

|L(β̂C ;X, y)− L(β̂MLE ;X, y)|/L(β̂MLE ;X, y)

• The mean squared error (MSE) of the MLE:

∥β̂C − β̂MLE∥22

• Relative ROC of the subsampled model on validation
data: ROC(β̂C , X, y)/ROC(β̂MLE , X, y)

Subsample sizes. We consider 25 subsample sizes on a log-
arithmically spaced grid from 200 to 100000. (For datasets
with fewer rows we limit the upper end of the evaluation
range.) We replicate each procedure 50 times and report the
medians and inter-quartile intervals. This is a much broader
range of evaluation than in previous work.

Regularization. Most coreset methods directly handle reg-
ularization by adding the penalty to the loss function, giving
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for example f(x;β) = log(1 + e−x) + λ∥β∥22. Some pre-
vious works, including (Munteanu et al. 2018; Wang, Zhu,
and Ma 2018) only evaluate their methods on unconstrained
logistic regression, while certain methods require the use
of regularization (Tolochinsky and Feldman 2018). Further-
more, recent theoretical work has shown that the uniform
subsampling method produces an effective coreset in the
presence of regularization (Curtin et al. 2019). In our main
experiments, we use weak L2 regularization at λ = 10−5

as some of the datasets produce unstable results without any
regularization. Coefficient estimates generally did not fur-
ther change when further weakening λ. We conduct addi-
tional analysis at varying λ values and our main conclusions
did not change.

Our λ is defined with respect to the objective
1
2n

∑
f(yix

⊤
i β) + λ∥β∥22. Because of the normalizing

n, when we fit a subsampled logistic regression, we nor-
malize the modeling weights wi to maintain the same level
of regularization with respect to the data loss term. For loss
parameterizations without the normalizing n, the original
wi should be used.

Results
Our primary comparison is shown in Fig. 1, with remain-
ing datasets in Appendix Fig. 4. The relative performance
of subsampling algorithms vary by dataset but are generally
consistent across metrics. This shows that accurately esti-
mating β̂MLE with β̂C leads to effective logistic regression
subsampling regardless of the metric of interest.

Methods such as Leverage, Lewis, and OSMAC MSE are
very effective on KDD cup relative to the uniform baseline,
but not so much on others. In fact, the uniform baseline fre-
quently outperforms other coreset methods across datasets.
In addition, while previous works which had stopped show-
ing the k-means coreset due to perceived lack of per-
formance, our results find that despite being the earliest
method, it turned out to be one of the most competitive when
properly tuned. The Monotonic method was formulated
to work with regularization, so we may expect it to perform
weaker. However, increasing the L2 penalty still does not
improve it over the uniform baseline (Fig. 3). The OSMAC
methods show large variability, with OSMAC MSE giving
strong performances on Webb spam and bitcoin but worse
performances on other datasets, especially at small subsam-
pled sizes. This may be due to challenges in obtaining a reli-
able inverse Hessian matrix with small sample sizes.

We follow recommendations by (Demšar 2006; Benavoli,
Corani, and Mangili 2016) and use a non-parametric test
to determine if there is a significant difference between all
coreset methods. We compute the non-parametric Dunn test
using the JASP software. This software performs a multiple
test correction per metric, but not across metrics. Since we
have three metrics, this means the proper threshold for sig-
nificance is α ≤ 0.05/3 ≈ 0.0167. We first look at the re-
sults in Table 3, where each method is compared against the
uniform sampling baseline. This result shows that when ac-
counting for the number of tests performed, only the OSMAC

Comparison NLL β MSE ROC

k-means - uniform 0.123 0.08 0.318
Leverage - uniform 1.000 0.527 1.000
Lewis - uniform 1.000 0.249 1.000
Monotonic - uniform 0.055 0.29 0.23
OSMAC MSE - uniform 0.758 0.004 1.000
OSMAC VC - uniform 0.057 0.006 0.075

Table 3: Comparisons with uniform baseline, with multiple
test corrected p-value in the three right most columns. We
can see that none of the coreset methods are significantly
different than a uniform random sampling baseline by the
NLL or ROC metrics. Only OSMAC outperforms uniform
sampling for the MSE metric.

methods beat the uniform baseline and only when measur-
ing by MSE of β. We remind the reader this is a somewhat
Pyrrhic victory, as Fig. 1 and Appendix Fig. 4 show that
both OSMAC variants perform worse than uniform sampling
in different regimes of the coreset size.

Given the apparent failure of these methods to beat the naive
baseline, it is natural to wonder how such a situation came
to be. First, we remind the reader that in Fig. 1 the behav-
ior of the coreset algorithms varies from dataset to dataset,
and our work is testing more datasets than prior works have
done. By chance and happenstance, testing on fewer datasets
may lead one to make conclusions of superior results, a com-
mon issue in most sciences today (Ioannidis 2005) and in
machine learning competitions (Elkan 2001). For example,
Webb spam and KDD cup were two of the most widely used
datasets in the coreset literature, and coreset methods hap-
pen to perform well on those.

Furthermore, most studies only included one or two base-
lines. It only takes one paper to draw conclusions of im-
provement against a baseline for later works to follow suit
and exclude the “beaten” baseline in favor of newer meth-
ods. We highlighted an example of this where the k-means
method turned out as one of the best performers but was
never evaluated in later works. Through this lens it becomes
clear how subsequent papers can, following reasonable prac-
tices of replicating prior methods as their baseline, result
in an erroneous conclusion of improvement. This erroneous
conclusion can still occur when even when testing on more
datasets once a less ideal baseline model enters evaluation.
Our experiment is in fact the first comprehensive compar-
ison among several prior methods. As shown in Table 4,
there may be a statistically significant difference between
two methods while each has no statistical difference with
the uniform random baseline.

Finally one may ask if the overall performance does not dif-
fer, does the distribution of the performances differ? We
show that they do in Fig. 2, but that the uniform base-
line is still competitive in all cases. Instead we see that
the Monotonic and OSMAC methods have poorly be-
haved outliers in their distribution of scores, depending on
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Figure 1: All subsampling methods are compared over a range of 25 subsample sizes. Each row represents one dataset and
each column represents a different evaluation metric. Each point represents a median of 50 replications, with shaded areas
representing interquartile range. The five largest datasets are shown here, with the remaining deferred to Appendix Fig. 4.
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Figure 2: Comparing the distribution of scores between each
method for all three metrics. In all cases the uniform base-
line is as competitive as any other approach. We note the
Monotonic method has worse outliers when measured by
NLL or MSE, and that the OSMAC methods have a worse tail
when measured by ROC.

the method of evaluation being used. From visual inspec-
tion, we note that k-means, Leverage, and Lewis ap-
pear the most effective of the coreset methods. Noting also
that the hypothesis tests from Table 3 are two-sided, inspec-
tion of the distributions shows that lower p-values can occur
from a coreset performance being worse than uniform (e.g.

Comparison NLL β MSE ROC

k-means - Leverage 1 1 1
k-means - Lewis 1 1 1
k-means - Monotonic <1e-4 <1e-4 <1e-4
k-means - OSMAC MSE 1 1 1
k-means - OSMAC vc 1 1 1
Leverage - Lewis 1 1 1
Leverage - Monotonic <1e-4 <1e-4 0.009
Leverage - OSMAC MSE 1 1 1
Leverage - OSMAC vc 1 1 1
Lewis - Monotonic <1e-4 <1e-4 0.02
Lewis - OSMAC MSE 1 1 1
Lewis - OSMAC vc 1 1 0.645
Monotonic - OSMAC MSE <1e-4 <1e-4 <1e-4
Monotonic - OSMAC vc <1e-4 <1e-4 <1e-4
OSMAC MSE - OSMAC vc 1 1 1

Table 4: Comparison of coreset methods with each other. In
many cases one coreset method is significantly better than
another, but not better than uniform random sampling as
shown in Table 3. This helps explain why many works have
drawn conclusions of significance by comparing against
other methods, but failing to include the competitive but
naive baseline.

Monotonic).

Effect of Regularization
As discussed in Subsampling Methods, regularization im-
pacts the effectiveness of coreset methods in logistic regres-
sion. In particular, although results from (Munteanu et al.
2018) indicate that the availability of coresets depends on
the complexity of the data, the uniform baseline is known
to be effective on all datasets when the model is regularized
(Curtin et al. 2019). We run a followup experiment where
we vary the L2 penalty of the classifiers beyond that of
our main experiment. Our findings in Fig. 3 confirm exper-
imentally that increasing regularization makes the gap be-
tween uniform sampling and the best-performing methods
vanish.

One may ask whether further decreasing regularization
strength in our main experiment would impact our findings
by weakening the uniform subsample. We replicate our ex-
periment with λ = 10−7 with results in Table 5 and Ap-
pendix Table 6. We find that the situation becomes worse,
and no method outperforms uniform random sampling. Fur-
ther lowering λ hardly changed the regression coefficients,
so we expect similar results for any λ < 10−7. Similarly,
as we showed earlier in accordance with recent theoretical
work that uniform sampling only improves with stronger
regularization, we conclude that our results are likely to hold
true over all λ.

Conclusions
In this work we have performed a thorough evaluation
against many seminal methods used in the coreset and sub-
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Figure 3: On the KDD Cup 99 dataset, increasing L2 regularization noticeably improves the efficiency of uniform subsampling
relative to other methods. At high regularization, no advantage is observed from any other method. This shows concordance
with the theoretical results in (Curtin et al. 2019). Similar effects can be seen on other datasets in Fig. 5.

Comparison NLL β MSE ROC

k-means - uniform 0.140 0.482 0.288
Leverage - uniform 1.000 0.733 1.000
Lewis - uniform 1.000 0.18 1.000
Monotonic - uniform 0.215 1.000 0.548
OSMAC MSE - uniform 1.000 0.433 1.000
OSMAC vc - uniform 1.000 0.152 1.000

Table 5: Comparisons with uniform baseline for logistic re-
gression coresets, with multiple test corrected p-value in the
three right most columns. Regularization is further weak-
ened to λ = 10−7 compared to the main experiment.
Note the final column shows that OSMAC VC is significantly
worse than uniform, so none of the methods are statistically
improving over the naive baseline.

sampling literature, used with respect to logistic regression.
When compared against a naive baseline of uniform random
selection of a subset, and measured by three possible met-
rics of improvement, we find that almost none of these clas-
sic approaches improves upon the naive baseline. Our results
call into question the need for larger diversity of evaluation
sets and benchmarks to be used in coreset research.
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