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Abstract

Semi-supervised learning (SSL) has been actively studied due
to its ability to alleviate the reliance of deep learning mod-
els on labeled data. Although existing SSL methods based
on pseudo-labeling strategies have made great progress, they
rarely consider time-series data’s intrinsic properties (e.g.,
temporal dependence). Learning representations by mining
the inherent properties of time series has recently gained
much attention. Nonetheless, how to utilize feature repre-
sentations to design SSL paradigms for time series has not
been explored. To this end, we propose a Time Series SSL
framework via Temporal-Frequency Co-training (TS-TFC),
leveraging the complementary information from two distinct
views for unlabeled data learning. In particular, TS-TFC
employs time-domain and frequency-domain views to train
two deep neural networks simultaneously, and each view’s
pseudo-labels generated by label propagation in the represen-
tation space are adopted to guide the training of the other
view’s classifier. To enhance the discriminative of represen-
tations between categories, we propose a temporal-frequency
supervised contrastive learning module, which integrates the
learning difficulty of categories to improve the quality of
pseudo-labels. Through co-training the pseudo-labels ob-
tained from temporal-frequency representations, the comple-
mentary information in the two distinct views is exploited to
enable the model to better learn the distribution of categories.
Extensive experiments on 106 UCR datasets show that TS-
TFC outperforms state-of-the-art methods, demonstrating the
effectiveness and robustness of our proposed model.

Introduction
Time series data is widely available in real-world scenarios,
such as human activity recognition (Yang et al. 2015), fault
diagnosis (Liu et al. 2016), and clinical analysis (Song et al.
2018). In recent years, time series classification algorithms
have received much attention due to the powerful feature ex-
traction capability of deep neural networks (Ismail Fawaz
et al. 2019). However, time series data have complex dy-
namic properties that lead to over-reliance on human expert
knowledge for annotation. As massive labeled time series
data are difficult to obtain, the performance of deep learn-
ing models is easily limited. Semi-supervised learning (SSL)
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can make use of abundant unlabeled data, which can effec-
tively alleviate the reliance of deep learning models on la-
beled data. Therefore, it is of great significance to explore
SSL paradigms for time series.

Consistent regularization (Sajjadi, Javanmardi, and Tas-
dizen 2016; Laine and Aila 2017) and pseudo-labeling (Lee
et al. 2013; Iscen et al. 2019) are two main strategies for
SSL. Consistent regularization generally adds an unsuper-
vised loss term to the learning objective, enabling the model
to learn from unlabeled data. In the field of computer vision,
consistent regularization of samples with strong and weak
augmentations is a widely proven effective strategy (Berth-
elot et al. 2019). Nevertheless, related studies (Wen et al.
2021; Iwana and Uchida 2021) show that the selection and
combination of data augmentation techniques that facili-
tate time series classification remains a challenge. Recently,
MTL (Jawed, Grabocka, and Schmidt-Thieme 2020) and
SemiTime (Fan et al. 2021) construct time-series forecast-
ing loss and temporal relation prediction loss as regulariza-
tion terms utilizing the relationship between sampled sub-
series, respectively. However, the sampling bias of the sub-
series limits the performance of the above methods.

Pseudo-labeling enables SSL by assigning labels to unla-
beled data. Generating pseudo-labels by utilizing the clas-
sifier prediction results is a common approach (Lee et al.
2013), whereas the quality of pseudo-labels overly depends
on the learning ability of the classifier. Meanwhile, based
on the assumption of label consistency of nearest neighbor
samples, some studies (Kamnitsas et al. 2018; Iscen et al.
2019) employ label propagation to create the nearest neigh-
bor graph for labeled and unlabeled image data. Then, the
node information of the labeled data is utilized to propa-
gate pseudo-labels to the unlabeled data (Wang and Zhang
2007). However, the quality of pseudo-labels obtained by
label propagation is susceptible to the influence of the dis-
tance of the sample distribution between categories. In ad-
dition, how to obtain high-quality pseudo-labels via feature
representations by exploiting the intrinsic properties of time
series has not been fully explored.

In recent years, time series representation learning has
attracted much attention. For example, TS-TCC (Eldele
et al. 2021) and TS2Vec (Yue et al. 2022) design univer-
sal representation learning frameworks based on contrastive
learning for capturing temporal dependence of time series.
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CoST (Woo et al. 2022), FEDformer (Zhou et al. 2022), and
BTSF (Yang and Hong 2022) show that the representation
learning capability of deep learning models can be effec-
tively improved by combining time-domain with frequency-
domain information from the same time series data source.
Meanwhile, the aforementioned studies indicate that repre-
sentation learning can obtain more discriminative features
than the original time series by mining the inherent proper-
ties of the time series, thus facilitating downstream tasks.

Therefore, this paper proposes a Time-Series SSL frame-
work via Temporal-Frequency Co-training (TS-TFC).
Specifically, we treat the time domain and frequency do-
main of the same time series data source as two distinct
views, and train two deep neural networks separately. At
the same time, label propagation is employed to create the
nearest neighbor graph in the representation space to dy-
namically obtain pseudo-labels for each view’s unlabeled
data. Then, we allow the pseudo-labels obtained from time-
domain and frequency-domain views to guide the training
of each other’s classifier, using the complementary informa-
tion from two distinct views to improve the robustness of
representations. To enhance the discriminative of representa-
tions between categories, we propose a temporal-frequency
supervised contrastive learning module to mitigate the neg-
ative effect of feature distribution distance on propagating
pseudo-labels. In addition, we integrate the learning diffi-
culty of categories and dynamically select high-quality prop-
agating pseudo-labels for co-training, thereby enabling TS-
TFC to better learn the distribution of categories.

In summary, the contributions of this paper are as follows:

• We propose a temporal-frequency co-training model for
time-series SSL, utilizing the complementary informa-
tion from two distinct views for unlabeled data learning.
Specifically, we employ each view’s pseudo-labels gen-
erated by label propagation in the representation space to
guide the training of the other view’s classifier.

• We propose a temporal-frequency supervised contrastive
learning module for acquiring discriminative representa-
tions, thus mitigating the negative effect of feature distri-
bution distance on generated pseudo-labels through label
propagation. Also, we dynamically select high-quality
pseudo-labels for co-training by integrating the learning
difficulty of the categories.

• Extensive experiments on 106 UCR datasets show that
TS-TFC outperforms state-of-the-art methods, which
demonstrates the effectiveness and robustness of our pro-
posed model. In addition, visualization analysis indicates
that feature representations can capture the discrimina-
tive region of time series, thereby boosting accuracy.

Related Work
Semi-Supervised Learning in Time Series
Traditional time series SSL methods (Wei and Keogh 2006;
Chen et al. 2013; Xu and Funaya 2015) are mainly based
on the Dynamic Time Warping (DTW) (Müller 2007) dis-
tance, utilizing labeled data in the original time series space
to estimate the pseudo-labels of unlabeled data. Although

DTW distance can make good use of temporal depen-
dence, traditional methods still have disappointing perfor-
mance compared to deep learning-based time-series clas-
sification algorithms (Ismail Fawaz et al. 2019). With the
advantage of the deep learning models, shapelet (Wang
et al. 2019) is introduced to time series SSL. Meanwhile,
MTL (Jawed, Grabocka, and Schmidt-Thieme 2020) de-
signs an SSL strategy by combining time-series forecasting
and classification tasks. TapNet (Zhang et al. 2020) con-
structs an attentional prototype network that can classify
multivariate time series (MTS) data with limited labeled
data. SMATE (Zuo, Zeitouni, and Taher 2021) proposes
a semi-supervised spatio-temporal representation learning
method on MTS. SemiTime (Fan et al. 2021) constructs an
unsupervised temporal relation prediction loss for unlabeled
time series data learning. Although the above studies allevi-
ate the reliance of deep learning models on time-series la-
beled data, how to design a time-series SSL model using
feature representations is still in the exploration stage.

Representation Learning in Time Series
Due to the powerful feature extraction capability of deep
neural networks, time series representation learning has re-
ceived much attention in recent years. For example, T-
loss (Franceschi, Dieuleveut, and Jaggi 2019) employs an
unsupervised triplet loss based on the assumption of sub-
series consistency to learn universal representations. TS-
TCC (Eldele et al. 2021) constructs an unsupervised con-
trastive learning (Chen et al. 2020) framework based on
temporal and contextual consistency assumptions. In addi-
tion, CoST (Woo et al. 2022) comprises both time and fre-
quency domains contrastive learning loss to learn disentan-
gled seasonal-trend representations for time series forecast-
ing. BTSF (Yang and Hong 2022) designs an unsupervised
contrastive learning module via iterative bilinear temporal-
spectral fusion from both time and frequency domains. The
above studies indicate that contrastive learning is effective
in mining the inherent properties of time series for rep-
resentation learning. However, the sampling bias between
subseries may introduce false positive pairs for contrastive
learning (Yue et al. 2022). Moreover, unsupervised con-
trastive learning strategies rely on effective data augmenta-
tion strategies (Chen et al. 2020). Unlike the above work,
we propose a supervised contrastive learning module based
on temporal and frequency representations. Without the aid
of data augmentation, the entire time series samples are uti-
lized for contrastive learning based on category information
to learn discriminative representations.

Label Propagation
Label propagation (LP) is a graph-based transduction learn-
ing method that can create a graph via features to establish
relationships between labeled and unlabeled samples (Xiao-
jin and Zoubin 2002; Zhou et al. 2003). Based on the as-
sumption that neighboring samples have consistent labels,
LP employs the information of labeled nodes in the graph
to make inductive inferences about the labels of unlabeled
nodes (Rohrbach, Ebert, and Schiele 2013; Liu et al. 2019).
With this advantage, LPDeepSSL (Iscen et al. 2019) utilizes
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Figure 1: The general architecture of the TS-TFC framework. The oval shading indicates pseudo-labels are selected based on
the category learning difficulty, while samples not in the oval shading are not used for classification training.

feature representations of image data as nodes and adopts
LP to obtain pseudo-labels of unlabeled data. Although the
above work achieved good performance in SSL, they do not
consider the inherent properties of time series in represen-
tation learning. In addition, owing to the different learning
difficulties of the categories in deep neural networks (Ben-
gio et al. 2009; Zhang et al. 2021), samples of different cat-
egories may be adjacent to each other in the representation
space, resulting in poor quality of the pseudo-labels gener-
ated by LP. Therefore, it remains a challenge to obtain robust
time series representations to improve the quality of pseudo-
labels on unlabeled data.

Method
Problem Definition
Given a set of time series X = {x1, x2, . . . , xN}Nn=1,
each time series xn ∈ RT×K , where T denotes the se-
quence length and K is the feature dimension. For the
time series semi-supervised classification problem, we as-
sume that there are L labeled time series, denoted as
DL = {(x1, y1) , (x2, y2) , . . . , (xL, yL)}Ll=1, where yL de-
notes the label of the sample xL. Also, there are U unla-
beled time series, denoted as DU = {x1, x2, . . . , xU}Uu=1,
where L + U = N . The goal of this paper is to generate
pseudo-labels of samples in DU to assist the model to better
learn the distribution of different categories of samples in X .
For samples containing labels and pseudo-labels, we employ
cross-entropy for training, which is defined as:

Lcls(X ,Y) = − 1
N

∑N
n=1

∑C
c=1 I (yn = c) log (P (ŷn = c | xn)), (1)

where Y denotes the set of lables, C indicates the number of
category, I (b) = 1 if b is true otherwise 0.

Model Architecture
The overall architecture of TS-TFC is shown in Figure 1.
Time domain view represents the original time series X .

Frequency domain view consists of the amplitude and phase
of the original time series X after converting it to the fre-
quency domain using the Fast Fourier Transform (Nuss-
baumer 1981). Temporal encoder and frequency encoder
have the same network architecture and are utilized to learn
temporal and frequency representations of the time series X ,
respectively.

The temporal (frequency) encoder is composed of a three-
layer Fully Convolutional Network (FCN) (Wang, Yan, and
Oates 2017), which can achieve excellent performance in the
field of time series classification (Ismail Fawaz et al. 2019).
In addition, we employ an MLP layer to perform a nonlin-
ear transformation of the feature representations acquired by
the encoder for contrastive learning, which has been proven
to be effective in improving the learning ability of the en-
coder (Chen et al. 2020; Khosla et al. 2020). Further, the
nearest neighbor graph is created utilizing the representa-
tions output from the MLP layer after performing temporal-
frequency contrasting, and the pseudo-label of unlabeled
data is generated by label propagation. Meanwhile, we uti-
lize curriculum pseudo-labeling to select high-quality propa-
gating pseudo-labels for co-training to mitigate the negative
impact of incorrect pseudo-labels. Also, the MLP consists of
two-layer linear neural networks combined with a nonlinear
ReLU function and a dropout operation, while the classifier
consists of a single-layer linear neural network.

Temporal-Frequency Contrasting
Label propagation is based on the assumption of label con-
sistency of neighboring samples to generate pseudo-labels.
However, samples between different categories may be ad-
jacent in the representation space, leading to the generation
of low-quality propagating pseudo-labels. To address this is-
sue, we propose a temporal-frequency contrastive learning
module, which makes the samples of different categories in
the representation space more dispersed and the samples of
the same category closer. Specifically, we utilize samples
from the same category as positive samples and samples
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from different categories as negative samples.

Temporal Contrasting We employ rl to denote the tem-
poral representation obtained by the time-domain data xl

via an encoder. Also, the MLP layer’s output is defined as
r̂l = MLP (rl), where xl is the labeled sample in DL.
Hence, a temporal supervised contrastive loss can be for-
mulated as:

Lsup
tem

(
XL

tem,YL
)
=

∑L
l=1

−1
|P (l)|

∑
p∈P (l) log

exp(r̂l·r̂p/τ)∑
a∈A(l)

exp(r̂l·r̂a/τ)
, (2)

where XL
tem is the representation of time-domain labeled

data through MLP nonlinear transformation, and YL de-
notes the set of labels for the labeled data. A(l) =
{1, 2, . . . , L}Ll=1 is the set of labeled sample subscripts in
DL, P (l) = {p ∈ A(l) : yp = yl} represents the set of pos-
itive sample subscripts belonging to the same category, and
τ ∈ R+ is a temperature coefficient.

Frequency Contrasting We utilize the Fast Fourier
Transform to convert the original time series data X to the
frequency domain view and represent it as S. However, S
is a set of complex numbers, which can not be directly in-
put into the encoder for training. Therefore, we adopt S to
calculate the amplitude |S| and the phase ∅(S). Compared
with only utilizing amplitude or phase as frequency domain
data for classification, employing data S = [|S|, ∅(S)] com-
posed of amplitude and phase can effectively improve classi-
fication accuracy. For detailed reasons, we provide ablation
studies in the experiments. Further, we adopt ql to denote
the representation obtained by the frequency domain data Sl

via the encoder, and set q̂l = MLP (ql). Thus, the frequency
supervised contrastive loss is defined as:

Lsup
feq

(
SL
feq,YL

)
=

∑L
l=1

−1
|P (l)|

∑
p∈P (l) log

exp(q̂l·q̂p/τ)∑
a∈A(l)

exp(q̂l·q̂a/τ)
, (3)

where SL
feq denotes the representation of the frequency-

domain labeled data by MLP nonlinear transformation.

Temporal-Frequency Co-Training
Co-training is first applied to SSL by (Blum and Mitchell
1998), and indicates that complementary information be-
tween different views of the same instance can have a pos-
itive impact on model training. Specifically, the authors uti-
lize the prediction results of classifiers on the unlabeled
data from different views to generate pseudo-labels. Moti-
vated by the aforementioned work, we leverage label prop-
agation to generate pseudo-labels in the temporal-frequency
representation space to fully exploit the inherent properties
of time-series data. At the same time, we dynamically se-
lect high-quality pseudo-labels considering the learning dif-
ficulty of different categories, thus employing complemen-
tary information from temporal-frequency representations
for time series SSL. Next, we describe the specific process
of label propagation and curriculum pseudo-labeling.

Label Propagation Suppose V = {r1, r2, . . . , rM}Mm=1
denotes the set of representations containing M time-
domain view data, and W ∈ RM×M represents a symmetric
adjacency matrix, where the element Wij is the euclidean
distance between samples ri and rj . Then, we utilize the

normalized graph Laplacians (Chung and Graham 1997) on
W , that is, W = Q−1/2WQ−1/2, where Q = diag(W1n)
is a diagonal matrix. Also, we define a one-hot encoded la-
bel matrix Y ∈ RM×C and set Ymc = 1 if sample rm be-
longs to category c, otherwise set ymc = 0. We employ the
top k values of each row in W to create the nearest neigh-
bor graph, which is denoted as Wtopk. Based on Y , label
propagation estimates the pseudo-label of each node in the
nearest neighbor graph by iteratively solving the following
equation:

Ft+1 = αWtopkFt + (1− α)Y, (4)

where Ft ∈ RM×C represents the predicted pseudo-labels
of the t-th iteration, and α ∈ (0, 1) denotes the parameter
that controls the propagation information. Naturally, the se-
quence {Ft} has a closed-form solution (Zhou et al. 2003),
which can be formulated as:

F = (I − αWtopk)
−1

Y, (5)

where F ∈ RM×C is the final predicted soft pseudo-
labels and I denotes the identity matrix. The time complex-
ity of solving F by flipping the matrix (I − αWtopk)

−1 is
O
(
k ×M2

)
, which is inefficient for larger M . To address

this issue, we perform label propagation within every mini-
batch of the model training. Further, to improve the quality
of pseudo-labels acquired within the same mini-batch, we
utilize a queue to dynamically store data from up to three
consecutive mini-batches for label propagation.

Curriculum Pseudo Labeling Due to the different learn-
ing difficulties of categories (Bengio et al. 2009), samples
from the same category may remain more scattered in the
feature representation space. In other words, it may be dif-
ficult for TS-TFC to learn the correct data distribution by
directly co-training with all pseudo-labels of unlabeled data
, which inevitably include incorrect labels. To this end, we
employ a dynamic threshold T to select high-quality propa-
gation pseudo-labels in F based on the learning difficulty of
categories (Zhang et al. 2021), thus reducing the error rate
of the selected pseudo-labels. The updated process of the
threshold Te(c) is defined as:

Te(c) = M
(

δe(c)

max (δe)

)
γ, (6)

where e denotes the number of iterations of the model train-
ing, c ∈ [0, C) is the category, γ denotes a fixed threshold
for select pseudo-labels, δe(c) represents the number of se-
lected samples larger than the threshold γ. Also, M(x) =
x/(2−x) is a nonlinear mapping function that improves the
stability of the model training (Zhang et al. 2021). Finally,
the set of pseudo-labeled samples selected for co-training
only if max (Fm) > Te(c), otherwise the pseudo-labeled
sample rm is not used for classification training (please re-
fer to the oval shading in Figure 1).

Overall Loss Function Ultimately, the training losses
Ltem and Lfeq for the temporal encoder and frequency en-
coder are defined as follows:

Ltem

(
X , Zfeq

)
= Lcls

(
X , Zfeq

)
+ λLsup

tem

(
XL

tem,YL
)
, (7)
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Labeling Ratio 10% 20% 40%
Method Avg Acc Avg Rank P-value Avg Acc Avg Rank P-value Avg Acc Avg Rank P-value

Supervised 0.738 5.06 1.16E-04 0.798 4.86 4.68E-06 0.839 4.97 1.12E-08
Pseudo-Label 0.745 4.56 1.71E-04 0.800 4.36 6.28E-05 0.840 4.68 7.48E-09

TE 0.749 4.27 4.94E-04 0.803 4.50 1.76E-04 0.842 4.61 7.73E-08
LPDeepSSL 0.729 5.43 6.55E-09 0.769 6.37 1.54E-09 0.823 5.84 8.57E-10

TS-TCC 0.513 9.64 2.05E-27 0.569 9.51 1.58E-24 0.610 9.55 1.57E-26
MTL 0.650 7.81 5.78E-18 0.681 7.98 8.94E-18 0.716 8.19 2.55E-19

SemiTime 0.751 4.30 8.53E-03 0.807 3.84 3.48E-03 0.852 3.82 4.09E-04
TS-T 0.754 3.74 9.01E-03 0.808 3.49 1.12E-04 0.847 3.23 2.17E-05
TS-F 0.694 6.85 1.47E-17 0.756 6.67 1.04E-11 0.818 6.21 2.71E-13

TS-TFC 0.769 2.44 - 0.822 2.19 - 0.867 2.00 -

Table 1: Test classification results compared with baselines on 106 UCR time series datasets. P-value < 0.05 (Demšar 2006)
represents that TS-TFC is significantly superior to the baseline.

Lfeq (S, Ztem) = Lcls (S, Ztem) + µLsup
feq

(
SL
feq,YL

)
, (8)

where Zfeq (Ztem) denotes the labels acquired by
frequency-domain (time-domain) view, and λ and µ are hy-
perparameters to adjust loss’s weight. For details of TS-TFC
training, please refer to Algorithm 1 in the Appendix.

Experiments
We conduct experiments utilizing the UCR time series
archive (Dau et al. 2019), which is widely employed for time
series classification studies (Ismail Fawaz et al. 2019). The
number of test samples in many datasets in the UCR archive
is much higher than the training samples. As suggested
by (Dau et al. 2019; Wang et al. 2019), we merge the original
training and test sets, and then divide the train-validation-
test set using a five-fold cross-validation method in the ra-
tio of 60%-20%-20% for evaluation. Following the previous
work (Wang et al. 2019; Fan et al. 2021), we randomly se-
lect 10%, 20% and 40% of the samples in the training set as
labeled data. To obtain stable evaluation results, we limit the
average number of samples included in each category to at
least 30. Therefore, we utilize 106 datasets from the original
128 UCR datasets for experimental analysis, and Appendix
A.1 demonstrate the details of datasets. Adam is used as
the optimizer, and the learning rate is 0.001. The maximum
batch size is 1024, and the maximum epoch is 1000. The
temperature coefficients τ in Eq. 2 and Eq. 3 are set to 50,
the hyperparameters α is set to 0.99 and 5. And top k in Eq. 4
for temporal and frequency encoder are set to 40 and 30, re-
spectively. The fixed threshold γ is set to 0.95. The hyperpa-
rameters λ and µ are set to 0.05. Further, we employ labeled
data for the warm-up training in the first 300 epochs, miti-
gating the learning bias of the model for unlabeled data. All
experiments are repeated five times with five random seeds,
and are conducted on Pytoch 1.10 platform with 2 NVIDIA
GeForce RTX 3090 GPUs. Our implementation of TS-TFC
is available at https://github.com/qianlima-lab/TS-TFC.

Comparison with State-of-the-art Methods
We compare TS-TFC with seven approaches (Super-
vised, Pseudo-Label (Lee et al. 2013), Temporal Ensem-
bling (TE) (Laine and Aila 2017), LPDeepSSL (Iscen

et al. 2019), TS-TCC (Eldele et al. 2021), MTL (Jawed,
Grabocka, and Schmidt-Thieme 2020), and SemiTime (Fan
et al. 2021)). Among them, Supervised indicates that only
labeled samples are employed for SSL. In addition, we con-
struct TS-T (w/o co-training in TS-TFC, only time domain
view) and TS-F (w/o co-training in TS-TFC, only frequency
domain view) models as comparison methods. For details
about baselines, please refer to Appendix A.2. TS-TFC has
two classifiers in the time domain and frequency domain
views, and we choose the classifier with the best classifica-
tion performance on the validation set to obtain the test re-
sults. The test classification results on 106 UCR time series
datasets are shown in Table 1, and please refer to Appendix
B.1 for detailed results. The data marked in bold represent
the best results. Avg Acc denotes the average accuracy on
106 UCR time series datasets, and the value in parentheses
is the standard deviation. Avg Rank is the average ranking.

As shown in Table 1, TS-TFC achieves the best perfor-
mance. Meanwhile, TS-T obtains suboptimal classification
performance in Avg Rank metric, demonstrating the superi-
ority of using feature representations for SSL and the effec-
tiveness of the temporal-frequency co-training mechanism.
In addition, we find that the Avg Rank of TS-TFC, TS-T,
and TS-F increased gradually with increasing labeling ratio,
which may be due to the increase in labeling ratio improving
the performance of the temporal-frequency contrasting mod-
ule. Further, we find that LPDeepSSL, TS-TCC, and MTL
perform worse than Supervised, which may be attributable
to the large bias introduced by their designed strategies on
the learning of unlabeled time series data. Among them, TS-
TCC delivers strong and weak augmentation on the origi-
nal time series data. However, the above data augmentation
strategy may introduce learning bias to UCR time series
datasets (Wen et al. 2021; Iwana and Uchida 2021). Also,
we find that TS-TFC can obtain the best accuracy/training
time tradeoff on 106 UCR time series datasets (please refer
to Appendix B.1).

Ablation Studies
To verify the validity of each component in TS-TFC, we
conduct ablation studies using 106 UCR time series datasets
with 10% labeling ratio, and the ablation statistical results
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Method Avg Acc Avg Rank P-value
Time Domain View

TS-TFC 0.769 2.17 -
TS-T 0.754 (-1.5%) 2.79 9.01E-03

w/o warmup 0.696 (-7.3%) 4.32 2.66E-10
w/o queue 0.744 (-2.5%) 3.56 3.77E-02

w/o contrasting 0.745 (-2.4%) 3.85 4.10E-02
w/o curriculum 0.747 (-2.3%) 3.78 8.57E-04

Frequency Domain View
TS-TFC 0.769 1.35 -

TS-F 0.694 (-7.5%) 2.88 1.47E-17
w/o contrasting 0.685 (-8.4%) 3.98 2.57E-17
w/o curriculum 0.687 (-8.2%) 3.41 1.33E-18
only amplitude 0.682 (-8.7%) 3.69 9.78E-14

only phase 0.581 (-18.8%) 5.52 2.51E-27

Table 2: Ablation results on 106 UCR datasets with 10%
labeling ratio.

are shown in Table 2 (containing two different sub-tables).
Please refer to Tables 5 and 6 in Appendix B.2 for the de-
tailed results. Among them, 1) w/o warmup removes the
warm-up training strategy; 2) w/o queue indicates that only
the current mini-batch samples are employed to perform la-
bel propagation; 3) w/o contrasting removes the temporal or
frequency contrastive learning loss; 4) w/o curriculum re-
moves the curriculum pseudo-labeling strategy and utilizes
all pseudo-labels generated by label propagation.

As shown in Table 2, the warmup and queue mechanisms
can effectively improve the classification performance of
the model. Additionally, we find that the warmup mech-
anism can also improve the classification performance of
Pseudo-Label, Temporal Ensembling, LPDeepSSL, MTL,
and SemiTime. Therefore, we utilize a consistent warmup
strategy for the above baselines in Table 1. The ablation of
the contrasting module shows that expanding the differences
in the distribution of samples between categories in the rep-
resentation space can effectively improve the classification
performance of TS-TFC. The ablation of co-training, con-
trasting, and curriculum results indicate the robustness of
TS-TFC to resist the false propagated pseudo-labels. In ad-
dition, we find that using a combination of amplitude and
phase as frequency domain data improves the performance
of TS-F compared with merely using amplitude or phase.

Hyperparameter Analysis
We mainly analyze the contrastive loss weights λ and µ,
the temperature coefficient τ , and the hyperparameter top k
used for label propagation. Since the training time to adjust
the parameters using 106 UCR time series datasets is very
long, we select 18 UCR time series datasets for hyperpa-
rameter analysis based on the number of samples, sequence
length, number of categories, and application domains of the
datasets. The influence of hyperparameters analysis is shown
in Figure 2. When performing a hyperparameter analysis, we
fix other hyperparameter values. For the selected dataset in-
formation, fixed hyperparameter values setting, and detailed
classification results, please refer to Appendix B.3.

(a) Contrastive loss weight

(c) Temperature coefficient(b) Top k

A
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Figure 2: The influence of hyperparameters analysis.

As shown in Figure 2, we find that Avg Rank is the low-
est when the contrastive learning loss weights λ, µ are taken
as 0.05. About hyperparameter top k, the temporal and fre-
quency encoders reach their lowest Avg Rank when top k is
set to 40 and 30, respectively. In terms of temperature coef-
ficients τ , the lowest Avg Rank values are reached at values
of 50 for both temporal and frequency encoders.

Visualization Analysis
TS-TFC utilizes label propagation in the representation
space to create nearest-neighbor graphs for labeled and un-
labeled data. Yet, the distribution of representations has a
significant impact on the quality of the propagated pseudo-
labels on unlabeled data. To explore the distribution of
representations, we employ t-SNE (Van der Maaten and
Hinton 2008) for dimensionality reduction visualization.
We select the GunPointOldVersusYong and SemgHandGen-
derCh2 datasets for visualization, which perform well in
semi-supervised classification. Specifically, we train the en-
coder using the first fold training set in the five-fold cross-
validation. Then, we employ this encoder to obtain repre-
sentations on the corresponding test set for visualization, as
shown in Figure 3. Concretely, Figure 3 (a) (ii,iii) denotes
the results of the representation visualization obtained from
the time domain view, while Figure 3 (b) (ii,iii) indicates
the results of the representation visualization obtained from
the frequency domain view, where the values in parentheses
indicate the test classification accuracy. As shown in Fig-
ure 3, the temporal-frequency contrasting module improves
the discriminative of the representations between categories.
Meanwhile, the representations obtained by TS-TFC are
more discriminative than TS-T and TS-F. This further indi-
cates that co-training can facilitate TS-TFC to capture com-
plementary information from two distinct views, making the
learned representations more discriminative.

Class activation map (CAM) (Zhou et al. 2016) is a way
to visualize CNNs and analyze which regions of the in-
put data the CNN-based model focuses on. Hence, we uti-
lize CAM to visualize the region of interest of the original
sequence by temporal and frequency encoders in TS-TFC.
We choose Gunpoint, ToeSegmentation1, and MidddlePha-
lanxOutlineCorrect datasets for the visualization of tempo-
ral, amplitude, and phase sequences, respectively. Specif-
ically, we employ the sample with the smallest variance
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(i) Supervised (68.9%) (ii) TS-F w/o contrasting (70.0%) (iii) TS-F (74.5%) (iv) TS-TFC (80.6%)

(b) SemgHandGenderCh2 Dataset

(i) Supervised (91.2%) (ii) TS-T w/o contrasting (94.4%) (iii) TS-T (95.6%) (iv) TS-TFC (98.9%)
(a) GunPointOldVersusYoung Dataset

Figure 3: The t-SNE visualization of the learned representations.

within each category for visualization, as shown in Fig-
ure 4. The left side of Figure 4 represents the original
two types of sequences from three datasets, and the right
means the CAM visualization results. For the temporal se-
quence (Gunpoint dataset), we follow (Lines et al. 2012)
to choose the discriminative region. For the amplitude and
phase sequences (ToeSegmentation1 and MidddlePhalanx-
OutlineCorrect datasets), we obtain the discriminative re-
gion based on people’s observations. Compared with the
original temporal, amplitude, and phase sequences, the en-
coder of TS-TFC can give higher attention to the discrimi-
native subsequence. The above results demonstrate that the
encoder can exploit the discriminative region between cat-
egories of temporal and frequency information. Compared
with SSL’s usage of the original time series directly, TS-
TFC can obtain high-quality pseudo-labels for SSL using
discriminative representations.

Conclusion
This paper proposes a time-series SSL framework via
temporal-frequency co-training, leveraging label propa-
gation to generate pseudo-labels from time-domain and
frequency-domain views to guide the training of each view’s
classifiers. Furthermore, we propose a temporal-frequency
contrastive learning module for enhancing the discriminabil-
ity of representations between categories, while combining
the learning difficulty of categories to select high-quality
pseudo-labels for co-training. Extensive experiments on 106
UCR datasets indicate that TS-TFC achieves state-of-the-art
performance. In addition, the ablation study and visualiza-
tion analysis demonstrate the effectiveness and robustness of
each module in the TS-TFC. In the future, we will explore
consistent regularization strategies for time series SSL.

MiddlePhalanxOutlineCorrect
Amplitude

Raw time series

Gunpoint

TS-TFC (Temporal Encoder)
ToeSegmentation1

TS-TFC (Frequency Encoder)

ToeSegmentation1

Gunpoint

Phase TS-TFC (Frequency Encoder)

MiddlePhalanxOutlineCorrect

Discriminative Region

Discriminative Region

Discriminative Region
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Figure 4: The CAM visualization of the contribution of each
time-domain and frequency-domain series region using the
FCN encoder. Red represents high contribution and blue in-
dicates almost no contribution in the representation learning.
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