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Abstract

Active learning is a critical technique for reducing labelling
load by selecting the most informative data. Most previous
works applied active learning on Named Entity Recognition
(token-level task) similar to the text classification (sentence-
level task). They failed to consider the heterogeneity of uncer-
tainty within each sentence and required access to the entire
sentence for the annotator when labelling. To overcome the
mentioned limitations, in this paper, we allow the active learn-
ing algorithm to query subsequences within sentences and pro-
pose an Entity-Aware Subsequences-based Active Learning
(EASAL) that utilizes an effective Head-Tail pointer to query
one entity-aware subsequence for each sentence based on
BERT. For other tokens outside this subsequence, we randomly
select 30% of these tokens to be pseudo-labelled for training
together where the model directly predicts their pseudo-labels.
Experimental results on both news and biomedical datasets
demonstrate the effectiveness of our proposed method. The
code is released at https://github.com/lylylylylyly/EASAL.

Introduction
Named Entity Recognition (NER) is a fundamental task for
text analysis, which aims to identify named entities (NEs),
such as person, location, organization, etc., in general text
or diseases, chemicals, genes, etc., in biomedical text and is
essential in many downstream natural language processing
(NLP) tasks. In recent years, there has been a maintained
enthusiasm in the NER task (Yoon et al. 2019; Cho and Lee
2019; Hakala and Pyysalo 2019; Lee et al. 2020; Kocaman
and Talby 2021; Wang et al. 2021; Hu et al. 2022a,b). Most
of these models require a large amount of annotated data to
achieve high performance, while constructing such datasets
is usually high-costing and time-consuming, which motivates
the idea of how to achieve higher model performance with
the least amount of data.

As a straightforward solution to the mentioned problem,
Active Learning (AL) is a critical technique to effectively se-
lect the most informative data for training the model by some
specific query functions, e.g., Least Confidence (Felder and
Brent 2009) (LC), or Maximum Normalized Log-Probability
(Siddhant and Lipton 2018) (MNLP). AL methods have been
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Figure 1: Three percentage values, including the percentage
of tokens in each probability segment to the total token num-
ber (Blue), the percentage of tokens with entity labels in each
probability segment to the total token number (Orange), the
percentage of tokens with entity labels in each probability
segment to the segment token number (Red).

demonstrated to be effective in classification problems in
Computer Vision (CV) and Natural Language Processing
(NLP) fields such as image classification or text classification.
Thanks to these successes, follow-up work applies AL to the
task of sequence labelling paradigm, e.g., NER, by treating
one sentence as one query object (Shen et al. 2017; Zhang,
Yu, and Zhang 2020; Radmard, Fathullah, and Lipani 2021;
Hazra et al. 2021; Naseem et al. 2021).

However, one big difference between the NER task and the
image classification or text classification task is that NER is
a token-level task, not a sentence-level task since the model
has to give each token a label in sentences. Budget wasting
may arise from the heterogeneity of uncertainty across each
sentence; a sentence can contain multiple subsequences (of
tokens), where the model is certain on some and uncertain
on others. In this case, if the model still queries the entire
sentence, it will not maximize the amount of information
that can be queried each time, which is also described in
Radmard, Fathullah, and Lipani (2021). In order to prove
that budget wasting does exist in full-sentence-based query
method, we take an intuitive analysis on Conll2003 (Sang and
De Meulder 2003) dataset. Specially, we first randomly select
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1% full sentences from Conll2003 and train a model with
this 1% data. Then, prediction probabilities (i.e., maximum
entity class probability) of each token in remaining sentences
(i.e., 99% in Conll2003) are obtained on the trained model.
We count three distinct percentage values shown in Fig. 1.
Denote the total token number of remaining sentences as N ;
the number of tokens in each probability segment as Ni, i ∈
{> 0.95, 0.75 ∼ 0.95, 0.55 ∼ 0.75, < 0.55}; the number
of tokens with entity labels in each probability segment as
N label

i , i ∈ {> 0.95, 0.75 ∼ 0.95, 0.55 ∼ 0.75, < 0.55}. In
the form of a formula, Blue, Orange, and Red in Fig. 1 rep-
resent Ni/N(%), N label

i /N(%), and N label
i /Ni(%), respec-

tively. Nearly 90% of tokens get a high prediction probability
(>0.95) with the model, and most of these tokens have the
true label ”O”. Conversely, only about 10% of tokens get
a lower prediction probability, and these tokens are always
entities. Therefore, it is reasonable to focus on those subse-
quences containing tokens with low prediction probabilities.
We call them ”entity-aware subsequences”. Moreover, thanks
to the characteristics of the token-level task, annotators often
do not need to read the entire sentence when annotating enti-
ties. In contrast, they only need a subsequence to complete
the annotation, which provides the feasibility for selecting
subsequences with AL.

To maximize the annotation information under a lim-
ited number of tokens, we proposed an Entity-Aware
Subsequences-based AL, named EASAL, based on BERT.
EASAL utilizes an effective Head-Tail pointer algorithm to
find one entity-aware subsequence for each sentence. The
query is performed by sorting these subsequences in a de-
scending order given the subsequence-wise uncertainty score.
We select the top ones and train these selected subsequences
with their actual labels after each query execution. For the
other tokens in each sentence, we randomly select 30% to la-
bel them with pseudo-labels, and the model directly predicts
the pseudo-labels after the previous training. The remaining
tokens are ignored, and no loss calculation and backpropa-
gation are performed. For three biomedical datasets and one
news dataset, we conduct comprehensive experiments and
analyses on the effect of EASAL.

Contributions of this paper are:
(1)A general AL framework is proposed based on BERT

for NER, which is easy to migrate to other domains by re-
placing the language model in the domain.

(2) A Entity-Aware Subsequences-based AL method
(EASAL) is proposed, which utilizes Head-Tail pointer to
find one entity-aware subsequence for each sentence to maxi-
mize the annotation information under a limited number of
tokens.

(3) Taking a comprehensive analysis based on BERT,
which provides a reasonable explanation of the effectiveness
of the subsequences-based AL method on NER.

Background
Active Learning
Define D as the data pool, D0 as the initial randomly se-
lected data to be annotated, Ds as the selected data in each
round of AL to be annotated,M as the model, QF as the

query function, EP as the expert. The standard active learn-
ing process can be formulated as: (i) Randomly select initial
data D0 and delete them from the data pool D = D − D0,
then the expert will annotate the data D0 for initial training
M =M(EP(D0)); (ii) The AL process begins at this step
by Ds = QF(M(D)), where Ds denotes the selected data
at the AL process. Next, annotate Ds and delete the newly
selected data Ds from the data pool D; (iii) Fuse the labeled
Ds with the previous training data to obtain a new training
set, and perform training with modelM; (iv) Repeat Step (ii)
and Step (iii).

Following the previous active learning researches, we con-
duct experiments on labeled datasets, where the labels are
equivalent to the results of the expert annotations. We utilize
the following three different AL query strategies for NER:
Let X = x1, x2, x3, ..., xn be the input sequence, where n
represents the length of the input and Y = y1, y2, y3, .., yn be
the labels. Then, pi,c = Pθ(yi = c|X; y0, y1, ..., yi−1) can
be the token-wise probability assigned by a modelMwith pa-
rameters θ to label y for a given input x, where i = 0, 1, ..., n,
c ∈ C and C is the label set.

Query Functions
Instances in the unlabelled pool are queried using a query
function. This function aims to quantify the uncertainty of the
model when generating prediction probabilities over possible
labels for each instance. Instances with the highest predictive
uncertainty are deemed as the most informative for model
training. Previously used query functions such as Least Con-
fidence (LC) and Maximum Normalized Log-Probability
(MNLP) are generalised for variable length sequences. To
better elicit the query function we use, we first give the defi-
nition of the token-wise LC score:

LCi = −max
c∈C

log pi,c (1)

The LC query function for sequences is then defined as:

LC(x1, x2, ..., xn) =
n∑

i=1

LCi, (2)

and for MNLP as:

MNLP (x1, x2, ..., xn) =
1

n

n∑
i=1

LCi. (3)

Intuitively, MNLP is an extension version of LC, which
points out that LC is more inclined to query long sentences.
In order to correct this defect, MNLP proposed to utilize
the normalized method with respect to the sentence length.
Since this work focuses on the querying of subsequences,
we generalize the previously defined LC and MNLP to a
family of query functions applicable for both full sentences
and subsequences(Radmard, Fathullah, and Lipani 2021):

LCα(xi+1, ..., xi+l) =
1

lα

i+l∑
j=i+1

LCj , (4)

where α is a balance factor considering sequence length. Spe-
cial cases are when α = 0 and α = 1 which return the
original definitions of LC and MNLP. Sort unlabelled in-
stances in a descending order and select the specified number
of instances in the front for the expert annotation.
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Figure 2: Illustration of the Head-Tail pointer in EASAL, where the LC score represents the uncertainty score.

Proposed Method
In this section, we present the details of our proposed method.
To maximize the annotation information under a limited num-
ber of tokens, we proposed an Entity-Aware Subsequences-
based Active Learning named EASAL. EASAL utilizes an
effective Head-Tail pointer structure to query one entity-
aware subsequence for each sentence. In training, after each
execution of the query strategy, tokens in the selected entity-
aware subsequence in each sentence are annotated and trained
with true labels. For the other tokens in each sentence, we
randomly select 30% to label them with pseudo-labels, and
the model directly predicts the pseudo-labels after the last
training. The remaining tokens are ignored, and no loss cal-
culation and backpropagation are performed on them during
current training.

Head-Tail Pointer Algorithm
In this part, we describe the details of how the model selects
one entity-aware subsequence for each sentence with the
Head-Tail pointer. Fig. 2 shows the implementation of Head-
Tail pointer. Specifically, in each query round, the model,
trained with the initial instances, first obtains the LC score
(i.e., uncertainty score) for the entire sentence with α = 1
in Eq. 4. Note that for the calculation process of the Head-
Tail pointer, we always set α = 1 in Eq. 4 to obtain the LC
score, written as LC-score in the following text, for desired
sequences or subsequences. Denote the obtained initial LC-
score as {Si

0, i = 1, ...,K}, where K is the total number
of sentences in the data pool. For each sentence, a Head
pointer PT h is initialized to point to the beginning of the
sentence, and a Tail pointer PT t is initialized to point to the
end of the sentence, which is shown in the first row in Fig.
2. Then, the Head loop begins by moving the Head pointer
one unit to the right as shown in the second row in Fig. 2. We
get a subsequence that does not contain the first token and
calculate the LC-score of this subsequence denoting as Si

h.
Then, the Head loop is executed as follows:

• (i) If Si
h ≤ Si

0, it means that the token-wise LC-score of

the first token is large that represents the uncertainty of
the first token is high, and the model can not predict its
label well, so withdraw the Head pointer one unit to the
left and end the Head loop.

• (ii) If Si
h > Si

0, it means that the token-wise LC-score of
the first token is small that represents the uncertainty of
the first token is low, and the model can predict its label
well, so update Si

0 = Si
h and continue to move the Head

pointer to the right. Repeat this step until Si
h ≤ Si

0.
The Tail loop is executed in the same way as the Head loop,
except that the Tail loop begins by moving the Tail pointer
to the left shown in the third row in Fig. 2. Finally, when the
Head loop and the Tail loop are all over, the subsequence
between the Head pointer and the Tail pointer is the final
selected subsequence in the sentence as shown in the fourth
row in Fig. 2.

Note that we complete loop processes first. If Head and
Tail pointers stop at the same position, there is no subse-
quence to query. Otherwise, if the subsequence is less than
lmin, we move Head and Tail pointers outward to lengthen
the subsequence.

Querying, Deduplication and Sampling
In each query round, we sort these subsequences obtained
by Head-Tail Pointer based on their LC scores and select a
limited number of subsequences with larger LC scores. We
construct a subsequence dictionary to prevent information
redundancy caused by querying the same subsequence. When
a subsequence is found, we first determine whether the subse-
quence segment is in the dictionary. If not, add the sequence
segment to the dictionary; otherwise, this subsequence will
not be queried.

Since a subsequence-based query algorithm can result in
partially labelled sentences, it raises the question of how un-
labelled tokens should be handled. We first ensure that loss
computation and backpropagation occur from tokens with
true labels in selected subsequences during the model train-
ing. For the remaining tokens, we randomly select a certain
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Algorithm 1: Entity-Aware Subsequence-Based AL
Data: D: task dataset;
Input: D0 ← 1% of dataset D

D,Dcopy ← D −D0

Output: Labeled data
Initialization: Dlabel

0 ← EP(D0), Dtrain ← Dlabel
0

M← Train(Dtrain), Nstop ← 0
1: while Nstop < 30 do

Head-Tail Pointer process:
2: for Xk in D do

// Head Loop
3: PT k

h = 0; Sk
0 = QF (M, Xk)

4: while 1 do
5: PT k

h ← PT
k
h + 1

6: Sk
h = QF (M, Xk[PT k

h : len(Xk)])
7: if Sk

h > Sk
0 do Sk

0 ← Sk
h

8: if Sk
h ≤ Sk

0 do PT k
h ← PT

k
h − 1 break

9: end while
// Tail Loop

10: PT k
t = len(Xk)− 1; Sk

0 = QF (M, Xk)
11: The similar way with Head Loop
12: end for

Querying, Deduplication and Sampling:
13: Sk

final = QF(M, Xk[PT k
h : PT k

t ])

14: Sort Sk
final in descending order and query Ds.

15: Dlabel
s ← EP(Ds)

16: for Xk in D0 do
17: EP ′[Sample(Xk[0 : PT k

h,PT
k
t : len(Xk)])]

18: Dtrain ← Dlabel
s ;M← Train(Dtrain)

19: D ← D −Dtrain

20: Nstop ← Nstop + 1
21: end while

number of these tokens to label them with pseudo-labels
and train them with subsequences with true labels together,
thus forming a semi-supervised learning framework. Pseudo-
labels are obtained by the direct prediction of the model that
has been trained in previous query rounds, which suggests
that pseudo-labels may be inaccurate, especially at initial
query rounds. Thus, except for the entity-aware subsequence,
we randomly sample 30% tokens with a pseudo-label ”O”
in each sentence due to the model’s high confidence in the
label ”O”. When AL reaches the termination condition, i.e.,
no data in the data pool or the query round reaches the maxi-
mum query number, there will still be a considerable number
of tokens neither queried nor pseudo-labelled. Subsequent
experiments show that the above fact does not degrade model
performance, suggesting that it is reasonable to query the
most informative subsequences even ignoring other tokens.

Entity-Aware Subsequence Based AL
We have summarized the proposed EASAL in Algorithm
1. Symbols not mentioned before are explained here. Let
{Xk, k = 1, ..,K} represents sentences in data pool D.
Then, the initial Sk

0 denotes the LC score for each sentence,
which will be updated in loops. Sk

h and Sk
t correspond to

the current LC score in the Head loop and the Tail loop,

while PT k
h and PT k

t correspond to the position of the head
pointer and tail pointer. Moreover, Nstop is the number of
times that there is no improvement on the model result.
EP , EP ′,M,QS represent the expert, the pseudo labels, the
model, the query strategy, respectively.

Experiments
Datasets
We experiment on three biomedical NER datasets and one
news NER dataset that are widely used in previous studies,
including NCBI-disease (Doğan, Leaman, and Lu 2014),
BC5CDR-disease (Li et al. 2016), BC5CDR-chemical (Li
et al. 2016), and Conll2003 (Sang and De Meulder 2003).

Biomedical Datasets Biomedical datasets focus on two dif-
ferent biomedical entity types: NCBI-disease and BC5CDR-
disease for disease NER and BC5CDR-chemical for chemical
NER. To be noted, we merge the training set and validation
set together for the data pool generation and training follow-
ing previous studies (Lee et al. 2020).

News Datasets Conll2003 (Sang and De Meulder 2003) is
a dataset, also in BIO format, with only 4 entity types (LOC,
MISC, PER, ORG) resulting in K = 9 labels. This dataset is
made from a collection of news wire articles from the Reuters
Corpus (Lewis et al. 2004). The average sentence length is
12.6 tokens in its train set.

Training and Evaluation
The initial data splits used for training the model M are
set at 1% of randomly sampled data, which are following
the splitting techniques used in the existing literature on AL
(Shen et al. 2017; Hazra et al. 2021)At each query round, the
model selects 1500 tokens, 2250 tokens, and 2000 tokens
respectively for NCBI-disease, BC5CDR (disease and chem-
istry), and Conll2003 that are about 1% of the total number
of tokens of NCBI-disease, BC5CDR, and Conll2003.

All results in experiments are evaluated by the same F-1
score (F1) used in previous works, where the F-1 score refers
specifically to the entity level rather than the token level. In
order to save training time and improve model performance,
we adopt incremental training, i.e., model parameters are
resumed from the previous query round’s parameters for each
round. We set the initial training epoch as 10, which uses
randomly 1% of the data, and the subsequent training epochs
are all 3. The query rounds that stop training are uniformly
set to 30 because when the AL method is adopted, the results
within 30 query rounds can generally reach 98%∼99% of the
one with training based on all data. Note that we do not set a
validation set. We use the training loss at each query round
to select the best model for testing.

Baselines
We have verified the effectiveness of our method through
the following baselines, which highlight the importance of
various components.

Random: No active learning is used and random examples
are selected at each time.
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Figure 3: Main Results. The figure shows F-1 scores concerning the percentage of tokens manually labelled on Conll03, NCBI,
BC5CDR-D, and BC5CDR-C from left to right and top to bottom, where blue, orange, green, and red represent baselines, namely
Random, Full-sentence-based (Full). Other colours represent the EASAL (Ours). Finally, the solid grey line represents the result
of using the whole training set directly.

DATASET
F-1 FINAL FRAC.

SCORE OF DATASET

100% EASAL Full EASAL

Conll03 91.08 91.22 24% 10%
NCBI 88.34 89.80 16% 8%
BC5CDR-D 86.22 86.23 22% 12%
BC5CDR-C 93.67 93.60 17% 7%

Table 1: Numerical Results on four datasets, where FRAC
represents the simpleness of fractions.

MNLP and its variants: No subsequence-based AL is
used. In this baseline, we query the entire sentence each time
with query functions described in Section Background, Eq.
3 (MNLP), and Eq. 4 (variants). We call this baseline a full-
sequence-based AL and set different α for comparison. Since
this baseline is performed on full sentences, we abbreviate it
as ”Full” in the main results.

No AL: This baseline represents that instead of using any
data query function, we train the BERT or BioBERT as the
general fine-tuning way. The whole dataset is used for train-
ing with an epoch of 30 and a learning rate of 5e-5. We
can intuitively see that comparable results can be achieved
without using the whole data in this baseline.

One thing to be clear is that in EASAL, like the variant

of MNLP, we utilize Eq. 4 to compute subsequence-wise
LC-score while the difference is that α is fixed at 1. In the
main experimental results, the variable in the EASAL method
is lmin representing the minimum subsequence length. The
setting of lmin is to make EASAL have practical application
value because it is not reasonable to give the annotator only
one token to do the annotation. lmin is set as 2, 4, and 6 in
the main results.

Results
Main Results
The results of the baselines and the proposed EASAL are
presented in Fig. 3. From left to right, from top to bottom are
Conll2003, NCBI, BC5CDR-disease, and BC5CDR-chem.
In Fig. 3, the solid line with grey colour is the result of
using the whole train set for training, which is a powerful
reference value to judge the effectiveness of AL. In order
to compare different methods intuitively, Fig. 3 shows the
results from the first use of Active Learning to select data
for annotation. Besides, to justify that EASAL is statistically
effective compared to baselines, we also experiment with
various random seeds.

Several observations can be drawn from Fig. 3. First, the
results of applying the AL query strategy (Full or EASAL)
are better than ”Random”. In Fig. 3, the blue dashed line
represents the ”Random”. It can be seen that even after many
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Figure 4: F-1 score Comparison with Radmard, Fathullah,
and Lipani (2021).

query rounds, ”Random” is still much worse than using the
whole training set directly (i.e., the grey horizontal line, ”No
AL”). Second, the results of EASAL exceed all baselines
regardless of the setting of the parameter lmin. EASAL re-
duces the roughly 20% of tokens required for full-sentence
based methods to roughly 10% on all datasets. Third, for the
full-sentence-based method, different α in Eq. 4 has a slight
impact on AL results in most cases except for the top query
rounds of Conll2003 and the last query rounds of BC5CDR-
chem. Fourth, for EASAL, we fix α to 1 and change the value
of lmin. In the initial round of the query, a smaller lmin value
always leads to a higher F1 score because a smaller lmin

value leads to a shorter subsequence length, which allows us
to query more informative tokens. With the increase of query
rounds, the F1 scores obtained by different lmin gradually
tend to be similar. Furthermore, we also compared with the
current subsequence-based method (Radmard, Fathullah, and
Lipani 2021), which is shown in Fig. 4. In Fig. 4, yellow
represents our proposed EASAL method with lmin = 4, and
blue represents the contrasted method. It can be seen that
our EASAL can faster reach the results obtained by training
with all the data. Because Radmard, Fathullah, and Lipani
(2021) is based on CNN-CNN-BiLSTM, and our EASAL is
based on BERT, there is a big gap between the two in the
early rounds of active learning.

Numerical Results
We also show numerical results in Table 1 for a more intuitive
comparison of the subsequence-based (EASAL) and full-
sentence-based methods on four datasets, i.e., Conll03, NCBI,
BC5CDR-D, and BC5CDR-C. In Table 1, F-1 scores of using
the whole train set without the AL method and the proposed
EASAL are reported in the first two columns. The last two
columns report the percentage of data used when the AL
method reaches about 98% of the results of using the whole
train set without AL. Note that ”Full” means the conventional
full-sentence-based method in view of query function Eq. 3
or query function Eq. 4 with α=1 while ”EASAL” means
the entity-aware subsequence-based AL in view of the same
query function Eq. 4 with α=1 and lmin=4. It can be seen
that ”EASAL” can approximate the results trained with the

Figure 5: Ablation Study on Sampling.

Figure 6: Entity Recall on Full-sentence-based method (Full),
and EASAL.

whole train set much faster than ”Full”.

Analysis on Sampling
Each query round in EASAL has an extra sampling opera-
tion, which randomly samples 30% of the tokens except the
selected entity-aware subsequences to be pseudo-labelled to
participate in the training together. In this section, we explore
the benefits of performing sampling over no sampling op-
eration with EASAL, lmin = 4 on Conll2003. Results are
shown in Fig. 6. In each query round, sampling is always
better than no sampling. Although the improvement is not
large, it is still cost-effective to apply the sampling operation
because it does not consume any natural resources.

Analysis on Entity Recall
This section aims to understand some of the underlying
mechanisms that allow the subsequence querying methods to
achieve results substantially better than a full-sentence base-
line. Namely, the ability of the different methods to extract
the tokens for which the model is the most uncertain. Given
that most tokens in both datasets have the same label - “O”,
signifying no entity - it is likely that tokens belonging to
entities, particularly rarer classes, trigger higher model uncer-
tainty. Querying full sentences at a time, the AL algorithm
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Figure 7: LC score analysis on Full-sentence-based method
(Full), and EASAL.

will spend much of its token budget for that round labelling
non-entity tokens while attempting to locate the more infor-
mative entities. Subsequence querying methods, not faced
with this wasteful behaviour, allow the AL algorithm to query
entity tokens quicker, locating and labelling the majority of
entity tokens faster throughout training.

To verify the above statement, we perform the entity recall
experiment on Conll2003, which is shown in Fig. 5 with the
query round as the horizontal axis and the proportion of entity
tokens labelled as the vertical axis. Blue and Orange curves
specify full-sentence-based AL (Full) and subsequence-based
AL (EASAL). In each query round, the percentage of tokens
with entity labelled queried by ”EASAL” is always higher
than that of ”Full”, which shows that EASAL can contain
more informative tokens and focus on possible entities.

Analysis on Uncertainty Score
This section compares tokens’ uncertainty scores (LC scores)
in the queried set for each querying method. Fig. 7 shows how
the mean of token-wise scores evolve for different querying
methods for the Conll2003 dataset until convergence. As seen
from the figure, our subsequences-based approach (EASAL)
’s average token-wise LC score is high in the initial rounds at
the beginning of active learning. However, after several ac-
tive learning query rounds, the average token-wise LC score
of EASAL quickly drops below that of the full-sentence-
based query method. In conclusion, Fig. 7 clearly shows that
subsequence querying methods converge faster over the full
course of the algorithm compared to full sentence querying.
This is consistent with Fig. 3 in terms of initial rate and final
time of model performance convergence, namely that model
performance plateaus alongside the uncertainty score.

Case Study
Fig. 8 shows the selected subsequences of three sentences
in Conll2003 in the first query round. Four colours are used
to represent different entity classes, while braces ({}) and
italics are used to represent the subsequence selected in the
sentence. We can see that the selected subsequences in the
three instances all contain entities, for example, the MISC
entity ”Cup Winners’ Cup”, the ORG entity ”Rapid Vienna”

Figure 8: Case Study on Conll2003. Four colours are used
to represent different entity classes, while braces ({}) and
italics are used to represent the subsequence selected in the
sentence.

and the ORG entity ”Fenerbahce” in the last row sample,
which intuitively shows that EASAL can preferentially query
the subsequences containing entities, maximizing informa-
tion utilization.

Related Work
Active Learning (AL) is an important technology to reduce
the cost of annotations. Shen et al. (2017) demonstrated that
the amount of labeled training data could be drastically re-
duced when deep learning is combined with active learning
based on CNN-CNN-LSTM for NER. Most deep active learn-
ing studies for NER focus on three aspects. The first one is
exploring the effect of BERT (Kenton and Toutanova 2019) or
variations of BERT (e.g., BioBERT, BERT-CRF) combined
with active learning (Zhang and Zhang 2019; Shelmanov et al.
2019; Liu et al. 2022; Dor et al. 2020). The second one is ex-
ploring the data augmentation method combined with active
learning (Zhang, Yu, and Zhang 2020; Quteineh, Samoth-
rakis, and Sutcliffe 2020), where most of these studies make
the data augmentation at each query round. The third one
aims to solve the data redundancy problem in the AL query.
Hazra et al. (2021) proposed Active2 Learning (A2L) ac-
tively adapts to the deep learning model being trained to elim-
inate such redundant examples chosen by the query strategy.
These methods treat the sentence as a query object, without
considering subsequences. Radmard, Fathullah, and Lipani
(2021) first proposed subsequences-based deep AL method
based on CNN-CNN-BiLSTM. However, Radmard, Fathul-
lah, and Lipani (2021) uses an exhaustive search approach to
generate subsequences. Therefore, we propose Entity-Aware
Subsequence-based AL with an effective Head-Tail pointer
on BERT to fill the gap.

Conclusion
In this paper, we proposed an Entity-Aware Subsequence-
based Active Learning named EASAL. EASAL utilizes
Head-Tail pointer to query one entity-aware subsequence for
each sentence. For other tokens, we randomly sample 30%
to label them with pseudo-labels for training together. Ex-
periments on one news dataset and three biomedical datasets
demonstrate the effectiveness of EASAL.
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