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Abstract
A plethora of previous studies indicates that making ful-
l use of multifarious intrinsic properties of primordial data
is a valid pathway to recover original images from their de-
graded observations. Typically, both low-rankness and local-
smoothness broadly exist in real-world tensor data such as
hyperspectral images and videos. Modeling based on both
properties has received a great deal of attention, whereas most
studies concentrate on experimental performance, and the-
oretical investigations are still lacking. In this paper, we s-
tudy the tensor compressive sensing problem based on the
tensor correlated total variation, which is a new regularizer
used to simultaneously capture both properties existing in the
same dataset. The new regularizer has the outstanding ad-
vantage of not using a trade-off parameter to balance the t-
wo properties. The obtained theories provide a robust recov-
ery guarantee, where the error bound shows that our model
certainly benefits from both properties in ground-truth da-
ta adaptively. Moreover, based on the ADMM update pro-
cedure, we design an algorithm with a global convergence
guarantee to solve this model. At last, we carry out experi-
ments to apply our model to hyperspectral image and video
restoration problems. The experimental results show that our
method is prominently better than many other competing
ones. Our code and Supplementary Material are available at
https://github.com/fsliuxl/cs-tctv.

Introduction
Ever since the pioneering work of Compressed Sensing (CS)
(Candès, Romberg, and Tao 2006a; Donoho 2006), Tensor
Compressive Sensing (TCS) has been continuing to attract
attention (Friedland, Li, and Schonfeld 2014; Ding, Chen,
and Wassell 2017). The reason behind is that TCS can make
more use of the essential structure of the original tensor da-
ta, whereas both CS and its matrix version (Recht, Fazel,
and Parrilo 2010; Wang, Zhang, and Wang 2021) inevitably
destroy their intrinsic structure. TCS is not only a simple
mathematical extension of CS to high-order data, but also
had been deployed to a lot of data reconstruction applica-
tions including Background Subtraction from Compressive
Measurements (BSCM) (Cao et al. 2016; Li et al. 2022),
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image and video compression (Wang et al. 2017; Baraniuk
et al. 2017), computed tomography (Semerci et al. 2014) and
so on. TCS aims to recover a clean tensor X ∈ Rn1×n2×n3

from its few linear observations coded via the degraded pro-
cedure y = A(X )+e, whereA : Rn1×n2×n3 → Rm (m�
n1n2n3) denotes a linear degradation operator and e ∈ Rm
denotes noise. It is apparently an ill-posed problem because
of the underdetermined measure system. To deal with this
issue, a reasonable approach is utilizing some prior prop-
erties of the underlying needed-to-be recovered tensor data
to constrain the solution space. Particularly, two represen-
tative ones are low-rankness and local-smoothness, which
had been proven widely existing in real-world datasets such
as Hyperspectral Image (HSI) and video (Peng et al. 2020;
Chengbo Li 2011). In this paper, we are interested in the TC-
S problem simultaneously fused low-rank and local-smooth
properties.

We first briefly introduce the TCS problem modeling
on purely low-rank or local-smooth property, respectively.
When the original tensor is low-rank, one often tends to the
rank minimization model

min
X∈Rn1×n2×n3

rank(X ), s. t. ‖y −A(X )‖2 ≤ ε, (1)

where ε ≥ 0 denotes the noise level. Tensor ranks are
determined by the tensor decomposition which is not u-
nique in general unlike the matrix rank. Typical examples
include CANDECOMP/PARAFAC (CP) rank (Kiers 2000)
and Tucker rank (Tucker 1966). However, the CP rank is
NP-hard to compute (Hillar and Lim 2013) and the convex
surrogate of Tucker rank, the Sum of Nuclear Norms (SNN),
is not the tightest convex relaxation (Bernardino Romera-
Paredes 2013). To circumvent these issues, the tensor tubal
rank was proposed under the framework of transform-based
Tensor-Singular Value Decomposition (T-SVD) (Canyi Lu
2019). Regarding model (1) under CP and Tucker decom-
position, several theoretical recovery guarantees have been
developed by utilizing the decomposition-based Tensor Re-
stricted Isometry Properties (TRIP) not long ago (Grotheer
et al. 2021; Rauhut, Schneider, and Stojan 2017). Under the
T-SVD framework, for ease of implementation, the most of-
ten considered model refers to

min
X∈Rn1×n2×n3

‖X‖?L , s. t. ‖y −A(X )‖2 ≤ ε, (2)
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where ‖X‖?L denotes the relevant tensor nuclear norm of
X (see Def. 8). In theory, on the condition of subgaus-
sian measurement ensembles, model (2) had been metic-
ulously studied under the TRIP condition defined by Dis-
crete Fourier Transform (DFT) based T-SVD (Zhang et al.
2020; Canyi Lu 2018). Their theoretical findings indicate
that model (2) enjoys a robust recovery guarantee, which in-
deed reveals the positive effect of low-rank property to solve
the inverse problem, just similar to results of traditional C-
S (Candès, Romberg, and Tao 2006b). Moreover, modeling
under the T-SVD framework had been successfully applied
in many areas (Canyi Lu 2019; Zhang et al. 2021; Hou et al.
2022).

Except for the low-rank based TCS, when the original ten-
sor is local-smooth, the most often considered model is the
Total Variation (TV) (see Def. 1) minimization

min
X
‖X‖TV, s. t. ‖y −A(X )‖2 ≤ ε. (3)

Recur to the close relationship between Haar transform and
TV, model (3) was also proven to enjoy a robust recovery
guarantee under the conventional Sparse RIP (SRIP) condi-
tion (Needell and Ward 2013). A wide range of applications
indicates that TV is vitally important to improve the recov-
ery performance as well (Xutao Li 2017; Wang et al. 2022).

In wake of the continuously proceeding research process,
it is expected to seek available mechanisms which can simul-
taneously take both of the aforementioned properties into
consideration in modeling. A natural way is combining the
regularizers from model (2) and mode (3) with a trade-off
parameter. However, as far as we know, the theoretical guar-
antee of this approach is still unclear, and it will certainly
increase more hyper-parameters to be tuned in the solution
procedure. Inspired by a recent study about the Robust Prin-
ciple Component Analysis (RPCA) problem which models
on the gradient maps of images (Peng et al. 2022), in this pa-
per, we use T-SVD on gradient maps of the original tensor
and introduce the relevant Tensor Correlated Total Variation
(TCTV). Mathematically speaking, the TCTV of X is based
on the T-SVD on its gradient maps

‖X‖TCTV =

3∑
i=1

‖∇iX‖?L , (4)

where ∇i denotes the differential operator along the i-th di-
mension (see Eq. (6)). Compared with the approach of com-
bining regularizers, the TCTV is a parameter-free way, i.e.
without a trade-off coefficient. Under this setup, we are con-
cerned with the following TCS model

min
X∈Rn1×n2×n3

‖X‖TCTV, s. t. ‖y −A(X )‖2 ≤ ε. (5)

About model (5), what we are interested in is answering the
following three questions:
• Does model (5) have a robust recovery guarantee just like

model (2) and model (3) do?
• Whether model (5) benefits from the low-rank and local-

smooth properties simultaneously?
• Does model (5) behave eminently in real-world applica-

tions?

The main contributions of this paper concentrate on the
above three key questions. In theory, we show that model
(5) indeed enjoys a robust recovery guarantee. Moreover,
we theoretically prove that the error bound derived by the
TCTV can be upper bounded by the smaller one of the error
bounds derived by tensor nuclear norm and TV seminorm,
which indicates that model (5) can benefit from both proper-
ties adaptively. Based on the Alternating Direction Method
of Multipliers (ADMM) (Boyd et al. 2011), we implement
an optimization algorithm with a global convergence guar-
antee. We also apply model (5) to HSI and video restora-
tion problems, and our model is superior to many competing
methods both numerically and visually all along. In summa-
ry, both theoretical and experimental results illustrate that
the two properties may reinforce each other under the frame-
work of model (5).

Related work. There are some other practices that also
simultaneously take both properties into account in many
image restoration problems. The most representative two
methods are the weighted summation of both regularizer-
s and factorization-based methods. For example, (Madathil
and N.George 2018) used the weighted summation of both
regularizers for image and video completion problems and
(Chen, Wang, and Zhou 2018) applied it to image denois-
ing problem in a similar way; (Wang et al. 2017) took the
Tucker factorization into modeling for TCS problem and (Li
et al. 2022) used an analogical strategy to BSCM problem.
These studies experimentally reveal the prominent advan-
tage of both approaches in efficaciously improving recov-
ery performance. However, the disadvantages are also ob-
vious: (1) both are not theoretically guaranteed so far; (2)
the weighted summation one introduces more hard-to-select
hyper-parameters and the factorization one needs to preset
the tensor rank, which lacks a general approach. Compared
with these studies, our approach is not only experimentally
verified to behave well but does not have the shortcomings
mentioned above.

Notations and Preliminaries
Notations
We denote scalars by lowercase letters, e.g., x, vectors by
boldface lowercase letters, e.g., x, matrices by boldface cap-
ital letters, e.g., X , and tensors by boldface Euler script let-
ters, e.g., X . For a three-order tensor X ∈ Rn1×n2×n3 , we
denote its (i, j, k)-th entry as xijk or X ijk and use X (i, :, :),
X (:, i, :) and X (:, :, i) to represent the i-th horizontal, later-
al, and frontal slice, respectively. Generally, we also denote
X(i) or X (i) as the i-th frontal slice X (:, :, i) and X (i, j, :)
as the (i, j)-th tube.

The inner product between two matrices X and Y of the
same size is defined as 〈X,Y 〉 = tr(XTY ). The inner
product between two tensors X and Y of the same size is de-
fined as 〈X ,Y〉 =

∑
i,j,k xijkyijk. For a matrix X , its nu-

clear norm ‖X‖∗ is defined as sum of singular values of X
and its Frobenius norm is defined as ‖X‖F =

√
〈X,X〉.

For a three-order tensor X , we denote its Frobenius nor-
m as ‖X‖F =

√
〈X ,X 〉 and the `1 norm as ‖X‖1 =∑

i,j,k |xijk|. For X ∈ Rn1×n2×n3 , Y ∈ Rn2×n4×n3 , we
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denote X4Y ∈ Rn1×n4×n3 by (X4Y)(i) = X (i)Y(i) for
all i ∈ [n3], where [n3] = {1, 2, · · · , n3}.

Total Variation and Haar Wavelet Transform
It is well known that total variation can be used to express
the local-smooth property of images. At the same time, the
total variation of a tensor X ∈ Rn1×n2×n3 is closely related
to its discrete gradients. Mathematically, the gradients along
the i-th dimension denoted as the gradient tensor ∇i(X ) is
defined as

∇i(X ) = X ×i Di, (6)
where ×i denotes the mode-i product (Kolda and Bader
2009) and Di = circ([−1, 1, · · · , 0]) ∈ R(ni−1)×ni is a
differential matrix.
Definition 1. The total variation seminorm ‖X‖TV

1 is de-
fined as

‖X‖TV ,
3∑
i=1

‖∇i(X )‖1. (7)

In order to transform a tensor to its gradient domain,
we further introduce two augmented tensors X 01 ,X 01 ∈
Rn1×n2×n3 for X ∈ R(n1−1)×n2×n3 defined by

x01ijk =

{
0, i = 1,

xi−1,jk,2 ≤ i ≤ n1,
(x01)ijk =

{
0, i = n1,

xijk, i ∈ [n1 − 1],
.

Meanwhile, we can define X 02 ,X 02 for X ∈
Rn1×(n2−1)×n3 and X 03 ,X 03 for X ∈ Rn1×n2×(n3−1)

in a similar way. It has been shown in (Needell and Ward
2013) that the inner product between the gradient tensor
∇1(Y) and X ∈ R(n1−1)×n2×n3 obeys the following rule

〈X ,∇1(Y)〉 = 〈X 01 ,Y〉 − 〈X 01 ,Y〉. (8)
Similar equations of (8) hold true for ∇2(Y) and ∇3(Y).
Moreover, this rule can be extended to a linear operator
A : R(n1−1)×n2×n3 → Rm with [A(X )]j = 〈Aj ,X 〉. To
this end, we denote A01 : Rn1×n2×n3 → Rm with com-
ponents [A01(X )]j = 〈A01

j ,X 〉, and the definition of A01

is similarly. Thus, we conclude from (8) that A(∇1X ) =
A01(X )−A01(X ). In the same way, we can derive homol-
ogous results for A(∇iX ) (i = 2, 3). Lastly, for two op-
erators A : Rn1×n2×n3 → Rm1 and B : Rn1×n2×n3 →
Rm2 , we denote their concatenate operator as [A,B] :
Rn1×n2×n3 → Rm1+m2 .

The total variation seminorm is closely related to the Haar
wavelet transform. In general, the discrete three-dimensional
Haar wavelet transform H : Rn×n×n → Rn×n×n (n =
2p, p ∈ N+) is introduced by

H(X ) = X ×1 H ×2 H ×3 H, (9)

where H ∈ Rn×n is the Haar matrix satisfying HHT =
HTH = I (Morton and Petersen 1997). It is easy to check
that ‖H(X )‖F = ‖H−1(X )‖F = ‖X‖F .

1Here we mean the anisotropic total variation, and the definition
of the isotropic total variation is omitted. The dimension of gradient
maps considered here is smaller than the original tensor, we can pad
zeros along the i-th dimension such that both ∇iX and X are of
the same size. We use the same notations without confusion.

Transform Based T-product Induced Tensor
Nuclear Norm
Let L ∈ Cn3×n3 be an arbitrary invertible matrix. We use
the notation X̄ to denote the tensor in the transformed do-
main specified by L

X̄ = L(X ) = X ×3 L. (10)
In this paper, we are interested in the following case

LTL = LLT = `In3
. (11)

Transform-based T-product and related concepts come
from (Kernfeld, Kilmer, and Aeron 2015).
Definition 2 (T-product). Let L be any invertible linear
transform, and X ∈ Rn1×n2×n3 , Y ∈ Rn2×n4×n3 . Then
the transform L based T-product denoted as Z = X ?L Y ,
is defined such that L(Z) = L(X )4L(Y).
Definition 3 (Tensor transpose). Let L be any invertible lin-
ear transform, and X ∈ Rn1×n2×n3 . Then the tensor trans-
pose X T satisfies L(X T )(i) = (L(X (i)))T (i ∈ [n3]).
Definition 4 (Identity tensor). Let L be any invertible linear
transform, I ∈ Rn×n×n3 be such that each frontal slice of
L(I) = Ī is a n×n sized identity matrix. Then the identity
tensor is defined as I = L−1(Ī).
Definition 5 (Orthogonal tensor). Let L be an invertible lin-
ear transform. We say that a tensor Q ∈ Rn1×n2×n3 is or-
thogonal if it satisfies QT ?L Q = Q ?L QT = I .
Definition 6 (F-diagonal tensor). We call a tensor F-
diagonal if each of its frontal slices is a diagonal matrix.

With the above definitions, we introduce the transform-
based T-SVD in the following lemma.
Lemma 1 (T-SVD). Let L be an invertible linear transform,
and X ∈ Rn1×n2×n3 . Then it can be factorized as

X = U ?L S ?L VT , (12)
where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is an F-diagonal tensor.

Based on the T-SVD, (Canyi Lu 2019) gave the related
definitions of tensor tubal rank and tensor nuclear norm.
Definition 7 (Tensor tubal rank and tensor average rank).
Let L be any invertible linear transform. For a tensor X ∈
Rn1×n2×n3 with T-SVD X = U ?L S ?L VT , the tensor
tubal rank, denoted as rankt(X ), is defined as the number
of nonzero singular tubes of S. That is to say, rankt(X ) =
#{i,S(i, i, :) 6= 0} = maxi∈[n3](rank(X̄ )(i)). The tensor
average rank is defined as ranka(X ) = 1

` rank(X̄).
Definition 8 (Tensor Nuclear Norm (TNN)). Let L be an in-
vertible linear transform satisfying (11). The tensor nuclear
norm of X ∈ Rn1×n2×n3 is defined as ‖X‖?L = 1

` ‖X̄‖∗ =
1
`

∑n3

i=1 ‖(X̄ )(i)‖∗, where X̄ ∈ Rn1n3×n2n3 is denoted as
a block diagonal matrix whose i-th block on the diagonal is
the i-th frontal slice X̄

(i) of X̄ , i.e.

X̄ = bdiag(X̄ ) =


X̄

(1)

X̄
(2)

. . .

X̄
(n3)

 . (13)

8881



Main Theoretical Guarantees
In order to recover X from its linear observations y, it
is necessary to ensure that these measurements contain e-
nough information from X . Nowadays, the widely recog-
nized property of A for this requirement is the TRIP. In this
section, we first derive the T-SVD based TRIP 2 condition
and further obtain a robust recovery guarantee for model (5).
Proofs of these theoretical results are delayed to the Supple-
mentary Material.

Guaranteed RIP Conditions
Our interested tensors are equipped with low-tubal-rank
property. We first derive the TRIP condition for tensors ap-
pertain to the set Sr = {X ∈ Rn1×n2×n3 : rankt(X ) ≤
r, ‖X‖F = 1}.
Definition 9 (TRIP). We call the linear map A :
Rn1×n2×n3 → Rm satisfies the TRIP, if

(1− δr)‖X‖2F ≤ ‖A(X )‖22 ≤ (1 + δr)‖X‖2F , (14)

holds for any X ∈ Sr, where the Restricted Isometry Con-
stant (RIC) δr is the smallest constant such that (14) holds.

Our first main theorem contributes to the question of
which kind of linear operators satisfies TRIP.
Theorem 1. Let A : Rn1×n2×n3 → Rm be a linear map,
0 < t < 1 be fixed. If for any X ∈ Rn1×n2×n3 , the follow-
ing concentration inequality holds

P
(∣∣‖A(X )‖22 − ‖X‖2F

∣∣ > t‖X‖2F
)
≤ c1 exp(−c2m),

(15)

further, if

m >
1

c2
r(n1 + n2 + 1)n3 ln

36
√
2

δr
,

then A satisfies the TRIP with probability greater than 1 −
c1 exp(−c3m), where c3 is a constant which may depend on
δr.

We do not give the TRIP guarantee with special sensing
tensors, but instead present it under the concentration in-
equality (15). Actually, it has the advantage of being broad-
ly suitable to many types of linear operators such as the
sensing tensors are composed of random tensors or struc-
turally random tensors (Krahmer and Ward 2011; Rudel-
son and Vershynin 2007; Do et al. 2012). Moreover, an-
other widely used SRIP defined for tensors from the set
Ss = {X ∈ Rn1×n2×n3 : ‖X‖0 ≤ s, ‖X‖F = 1} (Can-
dès 2008) is also satisfied under the concentration inequality
(15) if m & s log n1n2n3

s
3 (Baraniuk et al. 2008). What’s

worth mentioning, if (15) holds, direct computation shows

P
(∣∣‖AH−1(X )‖22 − ‖X‖2F

∣∣ > t‖X‖2F
)
≤ c1 exp(−c2m).

This indicates that if A satisfies some RIP on the condition
that (15) holds, then the same RIP holds for AH−1.

2In the rest of this paper, we use the notation TRIP to stand for
the T-SVD based TRIP without confusion.

3a & b means that there exists an absolute constant c such that
a ≥ cb; a . b means that there exists an absolute constant c such
that a ≤ cb.

Recovery Guarantee of TCTV Minimization
The tensors that we care about have simultaneously low-
tubal-rank and local-smooth properties. To deduce the robust
recovery guarantee of model (5), we shall adopt both TRIP
and SRIP to construct the recoverability conditions. Based
on the TRIP and SRIP above, we demonstrate the theoreti-
cal recovery guarantee of model (5) below.
Theorem 2. Suppose n = 2p, r ∈ [n], s ∈ [n3], and
X ∈ Rn×n×n is a simultaneously low-rank and gradi-
ent sparse tensor. Let A1 : R(n−1)×n×n → Rm1 , A2 :
Rn×(n−1)×n → Rm1 and A3 : Rn×n×(n−1) → Rm1 be
satisfied that Ai (i ∈ [3]) have the TRIP with RIC δ4r.
Let H : Rn×n×n → Rn×n×n be the three-dimensional
Haar transform and B : Rn×n×n → Rm2 be satisfying that
BH−1 has the SRIP with RIC δ2s. Let m = 6m1 +m2, and
consider the concatenate linear operator given byM(X ) =
[A01 ,A01 ,A02 ,A02 ,A03 ,A03 ,B](X ). If δ4r < 1

1+
√
2n

,
δ2s < 1 and the noisy measurements y = M(X ) + e are
observed with noise level ‖e‖2 ≤ ε, then the solution X̂ of
model (5) satisfies

‖X − X̂‖F
n3/2

≤ C
(‖X c

r,s‖TCTV√
rs

+
ε√
s

)
log n, (16)

where C is a constant dependent only on the RIC, X c
r,s =

X − X r,s and X r,s is a tensor satisfying simultaneously
tubal rank at most r and the number of nonzero gradients at
most s.

If X has tubal-rank at most r and nonzero gradients at
most s, Theorem 2 presents a robust recovery guarantee of
model (5), and it is exact if ε = 0. Furthermore, even though
our theoretical findings are given in terms of three-order ten-
sor, it can be easily extended to the high-order case by using
a recent work from (Qin et al. 2022). We omit it here. Be-
sides, the additive concatenate sampling operator is just used
to fulfill the need of proof process, which will not change the
sampling order. At last, we require the tensor side-length to
be a power of 2, i.e. n = 2p. This should not be a restric-
tion, as a tensor X of arbitrary side-length n1×n2×n3 can
be reflected across each dimension by producing an at most
n× n× n tensor without increasing the TCTV.
Corollary 1. Suppose the same conditions of Theorem 2
hold, then

‖X − X̂‖F
n3/2

. C
(min{‖X c

r,s‖TV, ‖X c
r,s‖?L}√

rs
+

ε√
s

)
log n.

(17)
The theoretical findings from Corollary 1 are intriguing.

From the ‘min’ formulation of the first term of the error
bound, we can make two conclusions: if X r,s is the best
tubal rank r approximation of X (Kilmer et al. 2021), the
error bound (17) degenerates into the theoretical guarantee
for model (2) (Canyi Lu 2018); if X r,s is the best gradient
s approximation of X , the error bound (17) degenerates in-
to the theoretical guarantee for model (3) (Needell and Ward
2013). In other words, we theoretically obtain that model (5)
will be better than model (2) and model (3). Our results pro-
foundly indicate that model (5) may make both low-tubal-
rank and local-smooth properties mutually reinforcing, and
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our model indeed benefits from both properties of X adap-
tively.

Algorithm Implementations
Rather than solving model (5) directly, we design an algo-
rithm based on the ADMM for the unconstrained model

min
X∈Rn1×n2×n3

1

2
‖y −A(X )‖22 + λ‖X‖TCTV, (18)

where λ is a properly chosen regularization parameter. Let
Zi = ∇iX (i ∈ [3]), problem (18) can be transformed to

min
X∈Rn1×n2×n3

1

2
‖y −A(X )‖22 + λ

3∑
i=1

‖Zi‖?L

s. t. ∇iX = Zi, i ∈ [3]. (19)
Hence, the Lagrangian function is

L(X , {Zi}3i=1, {Di}3i=1, µ) =
1

2
‖y −A(X )‖22 + C

+ λ
3∑
i=1

‖Zi‖?L +
µ

2

3∑
i=1

∥∥∥Zi −∇iX +
Di

µ

∥∥∥2
F
, (20)

where C is only multipliers dependent squared items. Ac-
cording to the update rule of ADMM, variables are updated
alternately.

For term X , we update it by solving the following linear
system obtained by taking derivative on both sides of the
Lagrangian function with respect to X

(ATA+

3∑
i=1

µk∇Ti ∇i)(X ) = AT (y) +
3∑
i=1

∇Ti (µkZ
k
i +Dk

i ).

(21)
Equations (21) can be solved by off-the-shelf techniques
such as the preconditioned conjugate gradient method (Ax-
elsson and Lindskog 1986).

For terms Zi (i ∈ [3]), we update it by

Zk+1
i =argmin

Zi

λ‖Zi‖?L +
µk

2

∥∥Zi −∇iX k+1 +
Dk
i

µ

∥∥2
F

=Dλ/µk

(
∇iX k+1 − Dk

i

µk
)
, (22)

where Dλ/µ(·) denotes the Tensor Singular Value Thresh-
olding (T-SVT) operator which can be found in (Canyi Lu
2019).

We summarize the whole update procedures in Algorithm
1. It is easy to check that the time complexity of Algorith-
m 1 is O((n1n2n3)

2). Besides, it seems that problem (19)
involves four variable blocks. However, the convergence of
the corresponding ADMM algorithm still remains unclear in
general (Lin, Ma, and Zhang 2016; Chen et al. 2019). For-
tunately, the proposed algorithm can be transformed into the
two-block ADMM whose convergence is provable. We for-
mally state the conclusion in the following theorem and give
detailed proof in the Supplementary Material.
Theorem 3. Let {X k, k ≥ 0} be a sequence generated
by Algorithm 1, then it converges to the global minimum of
problem (19).

Algorithm 1: ADMM for problem (19)

Input: Linear operator A, measurements y.
1: Initialization: X 0,Z0

i and D0
i (i ∈ [3]), regularization

parameter λ, µ > 0, tolerate error tol = 10−8, ρ = 1.1,
µmax = 106 and k = 0.
while not convergent do
2: Update X k+1 by (21);
3: Update Zk+1

i by (22);
4: Dk+1

i = Dk
i + µk

(
Zk+1
i −∇iX k+1

)
;

5: µk+1 = min{ρµk, µmax}.
6: Check the convergence condition
‖X k+1 −X k‖F /max{‖X k‖F , 1} < tol.

7: Update k ← k + 1.
8: end while

Output: X̂ = X k+1.
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Figure 1: PSNR, SSIM, and ERGAS comparisons of the pro-
posed approaches over four competing methods on all bands
of two HSI datasets under SR=1%. Up: HYDICE Washing-
ton DC Mall, Down: HYDICE Urbanpart.

Applications
CS had been successfully applied to many data types scat-
tered in multiple fields, typical examples include the HSI
data and gray video data, which can be seen as three-order
tensors in our experiments (Wang et al. 2017; Baraniuk et al.
2017). The Walsh-Hadamard sampling strategy is adopted:
A(X ) = A vec(X ) , where A = DFR and R is a ran-
dom permutation matrix, F is the Walsh-Hadamard trans-
form, D is a randomly downsampling operator. This strate-
gy has two typical practical advantages: it is of easy imple-
mentation on hardware, fast transformation, and satisfacto-
ry recoverability (Chengbo Li 2011); it satisfies the concen-
tration inequality (15) (Krahmer and Ward 2011; Rudelson
and Vershynin 2007), and thus both the TRIP and SRIP hold
according to Theorem 1. Three quantitative quality indices,
i.e. PSNR, SSIM (Wang et al. 2004) and ERGAS (Lucien
2002) are employed to display the recovery effect. PSNR
and SSIM are two conventional spatial-based metrics, and
ERGAS is a spectral-based evaluation measure for HSI. The
higher PSNR and SSIM values and the lower ERGAS val-
ue are, the better quality of the recovered images become.
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SR Quality
indices

HYDICE Washington DC Mall HYDICE Urbanpart
SparCS TVAL3 JTTV TNN TCTV-DCT TCTV-DFT SparCS TVAL3 JTTV TNN TCTV-DCT TCTV-DFT

0.3%

PSNR 17.278 19.099 18.364 17.619 22.195 21.906 18.241 19.850 20.167 18.663 23.005 22.623
SSIM 0.1887 0.2968 0.3284 0.2182 0.5217 0.5028 0.3126 0.2794 0.4680 0.3257 0.5440 0.5203

ERGAS 591.37 404.54 439.6 478.64 285.33 294.99 513.59 358.85 348.37 409.92 249.75 261.10
TIME(s) 2023 313 1181 781 2690 2500 2695 453 1887 1273 2545 4037

1%

PSNR 18.608 20.662 20.820 19.534 25.800 25.481 19.204 21.189 23.628 20.701 26.585 26.036
SSIM 0.3340 0.4253 0.5695 0.3691 0.7640 0.7493 0.3440 0.3683 0.6762 0.4258 0.7472 0.7188

ERGAS 516.01 337.13 334.43 386.8 190.99 197.83 460.34 308.92 236.05 323.97 166.44 177.11
TIME(s) 1856 390 1293 985 2921 2394 2296 506 1935 1395 4874 2207

5%

PSNR 24.418 23.895 26.222 29.353 35.250 35.232 25.973 24.947 34.364 31.846 36.449 36.338
SSIM 0.7195 0.6311 0.8375 0.9051 0.9701 0.9692 0.6933 0.6200 0.9486 0.9134 0.9578 0.9550

ERGAS 266.73 235.31 200.85 124.92 64.926 65.25 195.27 203.59 74.07 93.208 60.21 61.02
TIME(s) 1163 428 1261 865 2343 1310 1515 525 1932 1205 3890 2001

10%

PSNR 29.299 26.061 28.494 34.768 41.088 41.629 31.531 27.506 37.334 37.429 41.684 41.882
SSIM 0.8731 0.7468 0.8880 0.9723 0.9921 0.9928 0.8709 0.7474 0.9683 0.9686 0.9803 0.9798

ERGAS 153.41 184.19 167.23 66.48 33.07 31.23 104.25 153.73 57.27 54.28 41.22 41.10
TIME(s) 909 374 1228 783 2259 1266 1215 502 1937 1059 1993 1785

Table 1: Comparisons about quality indices of different models under different SRs on two HSI datasets.

SparCS TVAL3 JTTV TNN TCTV-DCT TCTV-DFT Original

Figure 2: Visual comparisons of the proposed approaches over four other competing methods on band 130 of both HSI datasets
under SR=1%. Up: HYDICE Washington DC Mall, Down: HYDICE Urbanpart.

We consider two cases of L: Discrete Cosine Transform (D-
CT) (Kernfeld, Kilmer, and Aeron 2015), Discrete Fourier
Transform (DFT) (Kernfeld, Kilmer, and Aeron 2011), and
name the corresponding models as TCTV-DCT and TCTV-
DFT, respectively. Before experiments, pixels of the HSIs
and videos are normalized to [0,1] via the max-min formula.
Regularization parameters λ for our models are chosen em-
pirically from the set {10−3, 10−2, 10−1, 1, 101, 102, 103}
by cross-validation. Due to space constraints, we deposit
some more experimental results in the Supplementary Ma-
terial. All experiments are run in MATLAB R2016a on a
64-bit PC with an E7-4820 2.00GHz CPU and 64GB mem-
ory.

Application to HSI Compressive Sensing
We choose two typical datasets, HYDICE Washington D-
C Mall and HYDICE Urbanpart in this experiment. Af-
ter removing the seriously polluted bands and cropping
images, the images used in this experiment are of size
200×200×160 and 256×256×185, respectively. We al-
so set ε = 0 and vary Sampling Ratio (SR) in the
set {0.3%, 1%, 5%, 10%}. Four other models are used for
comparisons: SparCS (Andrew Waters 2011), TVAL3 (Li

et al. 2013), JTTV (Vandergheynst 2012), TNN (Canyi Lu
2018). Here, SparCS, TVAL3, TNN, JTTV represent four
most common methods to regularize low-rankness, local-
smoothness, tensor low-rankness and simultaneously low-
rank and local-smooth properties of a tensor.

We collect numerical results of all methods in Table 1.
It can be seen that our two models always outperform the
others apparently and achieve satisfactory numerical val-
ues even though SR=0.3%, 1%. Particularly, under the ex-
tremely low SR=1%, we make further comparisons. Figure
1 shows the quality indices on each band, and our two mod-
els obviously behave better on all bands of both datasets.
Figure 2 shows the recovered images on band 130 of both
datasets, where the restored images by ours are also closer
to the original in visual.

These experimental results further demonstrate the advan-
tage of our proposed model. In addition, both TCTV-DCT
and TCTV-DFT behave similarly except that TCTV-DCT
seems slightly better in lower SRs while TCTV-DFT seem-
s slightly better in higher SRs. It seems that our algorithm
takes more time. The reason behind may be that Algorithm
1 needs three T-SVT computations in each iteration.
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TV-DCT MC-BCS-SPL 3DTV TNN TCTV-DCT TCTV-DFT Original

Figure 3: Visual comparisons of the proposed approaches to four other competing methods on frame 40 of both video cubes
under SR=10%. Up: Container, Down: News.
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Figure 4: PSNR and SSIM comparisons of the proposed ap-
proaches over four competing methods with varying SRs.
Up: Container, Down: News.

Application to Video Compressive Sensing
We choose two video datasets Container and News4 in this
experiment. For simplicity, we treat each video cube as a
whole just for the purpose of verifying the effectiveness of
our models. After cropped, both video cubes used here are of
size 144×176×64. We set ε = 0, and four other methods are
used for comparisons: TV-DCT (Chengbo Li 2011), MC-
BCS-SPL (Fowler 2012), 3DTV (Chengbo Li 2011), TNN
(Canyi Lu 2018).

Figure 4 gathers the PSNR and SSIM values of the two
video cubes on varying SRs. Clearly, our methods obtain
higher quality indices in both video cubes about almost all
SRs. Under SR=10%, we do further comparisons. In Figure
5, we compare the quality values on frames of both video
cubes for different methods. As before, our methods present
dramatically better performances in almost all frames. The
MC-BCS-SPL relies on key frames with higher SR (we use
its default setting 0.7), and its recovery results fluctuate up
and down among frames. Even so, our methods still behave

4https://media.xiph.org/video/derf/
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Figure 5: PSNR and SSIM comparisons of the proposed ap-
proaches over four competing methods on all frames of two
video cubes under SR=10%. Up: Container, Down: News.

better in almost all frames than MC-BCS-SPL even in the
key frames. Figure 3 further displays the 40-th recovered
frames of different methods on both video cubes in visual,
where the local area is enlarged by a ratio of 3. Obviously,
our methods exhibit better recovery details compared with
other methods. Additionally, TCTV-DFT behaves slightly
better than TCTV-DCT on both video cubes.

Conclusions and Future Work
In this paper, we have given positive answers to the three
questions from the first section about model (5). In theory,
we prove that this model indeed enjoys a robust recovery
guarantee and benefits from both low-tubal-rank and local-
smooth properties of the original data adaptively. In the ex-
periment, we apply our model to HSI and video CS problem-
s, and the experimental results further show its superiority to
many other competing ones. The findings of our work may
encourage more studies by modeling on gradient maps of
data to capture the local-smooth property.
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