
Safe Multi-View Deep Classification
Wei Liu1, Yufei Chen1 * , Xiaodong Yue2,3,5, Changqing Zhang4, Shaorong Xie2

1 College of Electronics and Information Engineering, Tongji University, Shanghai, China
2 School of Computer Engineering and Science, Shanghai University, Shanghai, China

3 Artificial Intelligence Institute of Shanghai University, Shanghai, China
4 College of Intelligence and Computing, Tianjin University, Tianjin, China

5 VLN Lab, NAVI MedTech Co., Ltd. Shanghai, China
ldachuan@outlook.com, yufeichen@tongji.edu.cn, yswantfly@shu.edu.cn, zhangchangqing@tju.edu.cn, srxie@shu.edu.cn

Abstract

Multi-view deep classification expects to obtain better classi-
fication performance than using a single view. However, due
to the uncertainty and inconsistency of data sources, adding
data views does not necessarily lead to the performance im-
provements in multi-view classification. How to avoid wors-
ening classification performance when adding views is cru-
cial for multi-view deep learning but rarely studied. To tackle
this limitation, in this paper, we reformulate the multi-view
classification problem from the perspective of safe learning
and thereby propose a Safe Multi-view Deep Classification
(SMDC) method, which can guarantee that the classifica-
tion performance does not deteriorate when fusing multiple
views. In the SMDC method, we dynamically integrate multi-
ple views and estimate the inherent uncertainties among mul-
tiple views with different root causes based on evidence the-
ory. Through minimizing the uncertainties, SMDC promotes
the evidences from data views for correct classification, and
in the meantime excludes the incorrect evidences to produce
the safe multi-view classification results. Furthermore, we
theoretically prove that in the safe multi-view classification,
adding data views will certainly not increase the empirical
risk of classification. The experiments on various kinds of
multi-view datasets validate that the proposed SMDC method
can achieve precise and safe classification results.

Introduction
In real-world scenarios, such as image analysis, computing
vision, data mining and multimedia, the same object can
be represented by multiple different modalities or multiple
types of features, known as multi-view data (Xu, Tao, and
Xu 2013), which promotes multi-view learning to design
advanced methods of combining multiple views to achieve
the performance improvement. Recently, joining the success
of deep learning, multi-view deep learning, which aims to
learn a shared representation of multiple information from
different types of views with deep neural networks (DNNs)
(Bachman, Hjelm, and Buchwalter 2019; Sun, Dong, and
Liu 2020), has become an important research direction.

While multi-view deep learning shows excellent power in
practice, theoretical safeness guarantee (performance with-
out degradation) of existing multi-view deep learning is lim-
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Figure 1: Empirical error for multi-view and single-view
classification results with deep learning.

ited. Existing multi-view learning algorithms generally treat
an equal value for different views or assign/learn a fixed
weight for each view. However, in real-world applications,
not all information from each view can contribute a good
representation due to the unknown and complex correla-
tion among different views. Many works show that some-
times the use of multiple views may degenerate the perfor-
mance (Bickel and Scheffer 2004; Yang et al. 2012). This
problem is more critical in multi-view deep learning due to
the overconfident incorrect predictions of DNNs (Lakshmi-
narayanan, Pritzel, and Blundell 2017), which makes the fu-
sion result of multiple views from uncertain and inconsistent
data sources unsafe. Taking the Figure 1 as example, which
shows the empirical error on real-world multi-view dataset
Food-101 (Wang et al. 2015b) with deep learning. We can
find the image empirical error increases with the coming
of the abnormal text view that contains unknown informa-
tion described by error code. Such phenomena undoubtedly
go against the expectation of multi-view deep learning and
limit its effectiveness in a large of practical tasks, particu-
larly safety-critical applications (e.g., medical diagnosis or
autonomous driving). Thus, it is vital to have a safe multi-
view learning algorithm, whose performance is never signif-
icantly worse when fusing multiple views.

Though there are already many studies on multi-view
learning, little work has been done explicitly about its safe-
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ness. Hou et al. (Hou, Zeng, and Hu 2018) designed a stable
feature selection method to guarantee performance does not
become worse with more views. Tang et al. (Tang and Liu
2022) proposed a safe deep clustering method to avoid de-
generating the multi-view clustering performance. However,
little work focuses on the safeness of multi-view deep classi-
fication, which motivates us to devise a safe multi-view deep
classification (SMDC) method from the perspective of safe
learning.

Safe learning that typically appears in black-box prob-
lems recently has received a lot of attention. In black-box
problems, no explicit mathematical model of the safety con-
straint is available and the value of the safety constraint func-
tion can only be known after a solution has been evaluated.
Safe learning deals with these problems that avoid, as much
as possible, the evaluation of non-safe input points, which
are solutions, policies, or strategies that cause an irrecover-
able loss (i.e., life threat) (Amodei et al. 2016; Kim, All-
mendinger, and López-Ibáñez 2020).

Considering the non-degradation multi-view performance
as the safety constraint, we can reformulate the multi-view
classification problem from the perspective of safe learning.
More concretely, our goal is to utilize multiple views based
on the DNNs to obtain a safe result which guarantees that the
performance does not deteriorate when fusing multiple data
views. Specifically, our model combines different views at
an evidence level instead of feature or output level as done
previously, which uses the evidence theory to model the dis-
tribution of the class probabilities, and then formulates the
inherent uncertainties among multiple views with different
root causes as learning results. Through minimizing the un-
certainties, we can increase the evidence from correct class
while avoid the evidence from incorrect class and thereby
increase the safeness of multi-view deep learning results. In
summary, the specific contributions of this paper are:

(1) We formulate the multi-view deep classification from the
perspective of safe learning aiming to provide a safe
decision in an effective way, which introduces a new
paradigm in multi-view deep classification.

(2) We devise a safe multi-view deep classification model
that integrates each view at the evidence level, which can
precisely estimates multiple kinds of uncertainties. With
minimization of the uncertainties, our method can reduce
the conflict among multiple views, increase the evidences
support for class probabilities and thereby improve clas-
sification performance and safeness.

(3) We theoretically prove that our model can decrease
the empirical risk of learning results with the increase
of views, and thereby prevent performance degradation
problem in multi-view deep learning. Moreover, it is
theoretically guaranteed that SMDC’s generalization ap-
proaches the optimal in the order O

(√
d ln (n)/n

)
.

Related Work
Multi-View Learning: In recent years, numbers of multi-
view learning methods have been proposed to extract the
correlation among multiple views. Canonical Correlation

Analysis (CCA) (Harold 1936) and its variants (Bach and
Jordan 2002; Wang 2007; Hardoon and Shawe-Taylor 2011)
are classical approaches for unsupervised cross-view rep-
resentation learning. CCA finds a common latent space by
maximizing the correlation among different views. Kernel
CCA (Bach and Jordan 2002) uses kernels to learn the com-
mon representation, which makes the CCA more robust.
Sparse CCA (Hardoon and Shawe-Taylor 2011) reduces the
effect of noisy data by learning a sparse representation. Dif-
ferent from CCA, some methods (Liu et al. 2015; Zhao,
Ding, and Fu 2017; Liu et al. 2017; Zhang et al. 2018)
learn hierarchical representation through matrix factoriza-
tion, and some works (Xie et al. 2018, 2020) introduce a
self-representation method to better incorporate multi-view
information.

Moreover, a number of multi-view deep learning works
(Andrew et al. 2013; Wang et al. 2015a; Tian, Krishnan, and
Isola 2020; Tao et al. 2019; Bachman, Hjelm, and Buch-
walter 2019; Zhang et al. 2020; Sun, Dong, and Liu 2020;
Gan et al. 2021; Wang et al. 2021; Wen et al. 2020; Liu
et al. 2022) combine deep learning with multi-view learn-
ing. Deep CCA (DCCA) (Andrew et al. 2013) focuses on
capturing nonlinear relationships. Deep Canonically Corre-
lated AutoEncoder (DCCAE) (Wang et al. 2015a) trains au-
toencoders to obtain common representations. Cross Par-
tial Multi-view Network (Zhang et al. 2020) focuses on
learning a complete representation under complex view-
missing cases. Recently, some uncertainty-based multi-view
classification methods (Geng et al. 2021; Han et al. 2022)
have been proposed. Dynamic Uncertainty-Aware Network
(Geng et al. 2021) employs Reversal networks to learn a
unified representation. Enhanced Trusted Multi-view Clas-
sification Network (Han et al. 2022) focuses on the un-
certainty estimation problem and produces a reliable clas-
sification result. However, while these methods achieve a
great performance on multi-view deep classification, they
rarely consider the safeness of the learning results, which
cannot guarantee the performance without degradation af-
ter fusion of different views. In contrast, our method re-
visits the multi-view deep learning from the perspective of
safe learning, with the minimization of the inherent uncer-
tainties, our method can reduce the conflict among multiple
views, increase the evidences support for class probabilities
and thereby produce safe multi-view learning results.
Safe Learning: Safe learning recently has received a
lot of attention in various machine learning domains
(Kim, Allmendinger, and López-Ibáñez 2020). Some works
(El Chamie, Yu, and Açıkmeşe 2016; Achiam et al. 2017;
Turchetta et al. 2020) contribute to the agent does not violate
safe constraints in safe reinforcement learning (RL). More-
over, there are also many works (Turchetta, Berkenkamp,
and Krause 2016; Lederer, Umlauft, and Hirche 2019;
Amani, Alizadeh, and Thrampoulidis 2020; Sun et al. 2021)
try to quantify the model error bounds based on the Gaus-
sian processes (GP), which allow safe control based on these
models. Some works (Schreiter et al. 2015; Zimmer, Meis-
ter, and Nguyen-Tuong 2018; Li, Rakitsch, and Zimmer
2022) combine the active learning with Gaussian processes
to devise a safe active learning method for unknown environ-
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ments and some works (Guo et al. 2020; Li, Guo, and Zhou
2019) focus on the safe weakly-supervised learning where
a large amount of data supervision is not accessible, which
never seriously hurts performance.
Evidence Theory: Evidence theory, also referred to as
Dempster–Shafer Theory (DST) (Shafer 1976; Denœux,
Younes, and Abdallah 2010), is a generalization of the
Bayesian theory to subjective probabilities (Dempster 1968)
for reasoning with partial, unreliable, incomplete, decep-
tive or conflicting evidence. In contrast to the Bayesian
neural networks which estimate uncertainty through multi-
ple stochastic samplings from weight parameters, DST di-
rectly models uncertainty and combines evidences from dif-
ferent sources with various fusion operators to produce a
new representation (Jøsang 2018). Typically, the uncertainty
measured by DST means vacuity (i.e., lack of evidence),
which has been used as an effective method to detect out-of-
distribution samples in deep learning (Şensoy, Kaplan, and
Kandemir 2018). Recently, other dimensions of uncertainty
have been proposed, such as dissonance (due to conflicting
evidence) and consonance (due to evidence about compos-
ite subsets of state values) (Josang, Cho, and Chen 2018). In
this work, considering the property of the multi-view deep
classification, the vacuity and dissonance are used to model
the uncertainties from multiple different views.

Safe Multi-view Deep Classification
In this section, we introduce the proposed safe multi-view
deep classification model in this paper. We first give a formal
definition of the safety in multi-view deep classification.

Definition 1 (Safety in Multi-view Deep Classification)
In the context of multi-view deep classification, we hope
we can obtain a multi-view optima α̂ that minimizes the
total objective loss function. To guarantee the safety in
multi-view classification, the loss should be bounded by the
safety constraint that avoids worsening the empirical risk
⌢

R (α̂) when fusing multiple data views.

As mentioned above, we can simply formalize our safe
multi-view deep classification (SMDC) model. Given a
set of n samples X = {x1, . . . ,xn} with labels y =
{y1, . . . ,yn} for m views, we can easily have the objective
function as

min ℓ (P (α̂) ,y) , (1)

bounded by the safety constraint
⌢

R (α̂)−
⌢

R (α′) ≤ 0, where
ℓ (·, ·) refers to a loss function, e.g., the square loss, the
hinge loss, etc. P (α̂) represents the probability of classes

obtained by DNNs after the fusion of multiple views,
⌢

R (α̂)

and
⌢

R (α′) indicates the empirical risk after/before the fu-
sion of new coming data views, respectively.

Now we should consider how to construct our objective
function to satisfy the safety constraint. To achieve this goal,
we devise our framework from the view of evidence theory.
Within this framework, we first propose a multi-view aggre-
gation strategy to integrate each view at an evidence level to
formalize the common multi-view representation based on

the evidence theory. Then we explicitly estimate the inher-
ent uncertainties among multiple views with different root
causes as learning results. Lastly, with minimization of un-
certainties, we train our model to promote the evidences
from views for correct classification, and in the meantime
exclude the incorrect evidences to produce the safe multi-
view classification results.

Multi-View Representation in Evidence Theory

Evidence theory associates the parameters α of the Dirichlet
distribution Dir (P |α) with the belief distribution, where
Dirichlet distribution can be considered as the conjugate
prior of the categorical distribution in multi-class classifi-
cation, and P is a simplex representing class assignment
probabilities (Jøsang 2018). In evidence theory, traditional
neural network can be naturally transformed into a evidence-
based neural network with minor changes that only replace
the softmax layer with an activation layer (i.e., ReLU) to
guarantee a non-negative output, called as evidence (Şensoy,
Kaplan, and Kandemir 2018).

Here we first give the single-view representation in the
context of multi-view deep classification based on evidence
theory. Given the ith sample with vth view, represented by
xv
i , let evi = {evi1, . . . , eviK} represent the evidence vector

captured by the vth neural network for the K-classification
problem. Then, the corresponding Dirichlet distribution has
parameter αv

i = evi + 1 = {αv
i1, . . . , α

v
iK}. Once the pa-

rameters of this distribution are calculated, its mean, i.e.,

αv
i /S

v
i , where Sv

i =
K∑

k=1

(eik + 1) is the Dirichlet strength,

can be taken as an estimate of the class probabilities.
The single-view case with evidence theory has been intro-

duced above, we now focus on the classification with mul-
tiple views. Given a set of m evidence e = {ev}mv=1 from
m views, we want to construct an efficient common repre-
sentation to take full advantage of information from each
view. Therefore, we devise a simple and efficient aggre-
gation strategy for multi-view deep classification with evi-
dence theory, which is shown as follows:

Definition 2 (Aggregation strategy with evidence theory)
The aggregation strategy for multi-view deep classification
based on the evidence theory simply consists of evidence
parameter addition. Given a data with m multiple views
for K-classification problem, we can obtain a set of
evidences {ev}mv=1, collected from m neural networks.
For k = 1, . . . ,K , ev = {ev1, . . . , evk}. Then we have
ek =

∑m
v=1 e

v
k represents the process of multi-view aggre-

gation and S =
K∑

k=1

(ek + 1) is the aggregated Dirichlet

strength.

Following the Definition 2, we combine the evidence from
m data views into a common aggregated representation α =
(α1, ..., αk), where αk = ek + 1. Then we have P (α) =
(p1, . . . , pk) to produce the final probability of each class,
where pk = αk

S .
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Uncertainties Estimation in Multi-View
Classification
Moreover, referring to the literature (Josang, Cho, and Chen
2018), we can explicitly estimate inherent uncertainties in
SMDC. As we focus on the multi-class setting, no compos-
ite values (i.e. simultaneously assigned to multiple classes)
are allowed, we just discuss two main uncertainties vacu-
ity and dissonance, which correspond to the vacuous evi-
dence and contradicting evidences. In particular, vacuity un-
certainty V ac (α) is defined as

V ac(α) =
K

S
, (2)

and the dissonance uncertainty Diss (α) is defined as

Diss (α) =
K∑

k=1

(
bk
∑

j ̸=k bjBal (bj , bk)∑
j ̸=k bj

)
, (3)

where bk = ek
S =αk−1

S and

Bal (bj , bk) =

{
1− |bj−bk|

bj+bk
ifbibj ̸= 0

0 otherwise
(4)

is the relative balance function.
The main cause of V ac (α) is a lack of evidence, which

refers to the uncertainty caused by insufficient information.
The Diss (α) belongs to the uncertainty caused by the con-
flict evidence. Here we interpret these two uncertainties in
terms of the class-level evidence measures of multi-view re-
sult. For a 3-classification problem, suppose we have three
results (α1,α2,α3). α1=(256, 1, 1) represents low uncer-
tainty which means the sample certainly belongs to the
first class; α2=(1, 1, 1) indicates the case of high vacuity
(V ac (α2) = 1) due to insufficient evidence, which com-
monly happens on the outlier; α3=(256, 256, 256) shows
low vacuity but high dissonance (Diss (α3) ≈ 0.996),
which indicates that although the vacuity is close to zero,
the result can not make a clear decision due to the strong
conflict among each classes. In general, these two uncertain-
ties always exist in multi-view classification, which causes
the classification performance degradation. Therefore, it is
necessary to decrease the vacuity and dissonance in the safe
multi-view classification.

Learning to Form Safe Multi-View Results
In this section, we will discuss how to train our model to
capture the evidence from multiple data views for producing
a safe multi-view classification result. Within our method,
for the ith sample xi with m views and one-hot label yi =
{yi1, . . . , yiK}, our goal is to find the optimal parameter α̂i

that prevents the performance degradation while minimiz-
ing the inherent uncertainties (vacuity and dissonance) to
provide safe classification results. Following the safety con-
straint, the initial loss function is designed as follows

α̂i = argmin
αi

n∑
i=1

ℓ (P (αi) ,yi), (5)

where α̂i is denoted as the optimal model trained with the
aggregated Dirichlet parameters αi and ℓ (P (αi) ,yi) is
prediction loss term which will be discussed in the next sec-
tion. Specifically, SMDC requires that the model constrained
by the uncertainties, i.e.,

α̂i = argmin
αi

n∑
i=1

V ac (αi) +Diss (αi). (6)

This means our model tries to minimize the vacuity and dis-
sonance to address the insufficient evidence and conflict ev-
idence problems in multi-view deep learning for promoting
the performance. Obviously, with the increase of data views,
the vacuity of multi-view result will decrease automatically
with the increase of the aggregated Dirichlet strength S.
Therefore, we just need to focus on the minimization of dis-
sonance uncertainty from the conflict in multiple data views.
Then we have,

α̂i = argmin
αi

n∑
i=1

Diss (αi). (7)

Moreover, we also need to make our model to capture the
evidence from the correct class and avoid generating evi-
dence for the incorrect classes. Thus we achieve this by in-
corporating a Kullback-Leibler (KL) divergence (Kullback
and Leibler 1951) term into our loss function that regular-
izes our predictive distribution by penalizing those incorrect
evidence to shrink to 0. The regularizing term ℓKL (αi) is

α̂i = argmin
αi

n∑
i=1

ℓKL (αi)

= argmin
α̃i

n∑
i=1

KL [Dir (Pi|α̃i)||Dir (Pi| ⟨1, . . . , 1⟩)],

(8)

where

α̃i = yi + (1− yi)⊙αi (9)

and Dir (Pi| ⟨1, . . . , 1⟩) means the uniform Dirichlet distri-
bution.

Finally, taking the Eq. (5), Eq. (7) and Eq. (8) into consid-
eration, the objective of our framework can be formulated as
the following optimization problem,

min

n∑
i=1

ℓ (P (α̂i) ,yi)

s.t.

α̂i = argmin
αi

n∑
i=1

ℓ (P (αi) ,yi) + λ1Diss (αi) + λ2ℓKL (αi) ,

(10)

where λ1 and λ2 are balance factors. In general, we set
λ1, λ2 = min (1.0, t/10) ∈ [0, 1] as the annealing coeffi-
cients to prevent the network from paying too much atten-
tion to the dissonance uncertainty and KL divergence in the
initial stage of training, t indicates the index of the current
training epoch.
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Algorithm 1: Algorithm for Safe Multi-View Deep Classifi-
cation (SMDC)

1: /*Training*/
2: Input: Multi-view dataset: D = {{Xv

n}
m
v=1 , yn}

N

n=1.
3: Initialize: Initialize the parameters of the neural net-

work.
4: while not converged do
5: for v = 1 : m do
6: ev ← non-negative output in neural network;
7: end for
8: e← aggregation in terms of Definition 2;
9: α← e+ 1;

10: Obtain the overall loss by updating α with Eq 10;
11: Update the neural networks with gradient descent ac-

cording to Eq 10;
12: end while
13: Output: parameters of neural networks.
14: /*Test*/
15: Obtain the class probability and corresponding uncer-

tainty degree.

Eq. (10) can be understood as: SMDC minimizes the un-
certainties and shrinks the evidence from incorrect classes
to 0 to promote the model for seeking the optimal evidence
from each view to support the sample can be classified into
right class and thereby make the learned α̂i to achieve a bet-
ter safe performance. The optimization process for the pro-
posed model is given in Algorithm 1.

Theoretical Studies
In this section, we will theoretically prove our model can
achieve a safe result, whose performance is never worse
when fusing multiple data views.

Given a training example xi with one-hot label yi =

{yi1, . . . , yiK}. Let Cat
(

⌢
y i = k |Pi

)
be the likelihood,

where Pi ∼ Dir (Pi |αi ), P i = (Pi1, ..., Pik)
T . The ex-

pected sum of squares loss of the aggregated multi-view rep-
resentation αi is defined as

ℓ (P (αi) ,yi) = EPi∼Dir(Pi|αi ) ∥yi − Pi∥22

=

K∑
j=1

(
y2
ij − 2yijE [Pij ] + E

[
P 2
ij

])
. (11)

Then, in order to show the safeness of SMDC, we analyze
the empirical risk of SMDC compared with the empirical
risk learned before fusion of the new coming view and ob-
tain the following theorem.

Theorem 1 (Safeness) Let α̂i be the optimal multi-view de-
cision learned from SMDC after the vth view coming, i.e.,

α̂i = min
n∑

i=1

ℓerr (P (α̂i) ,yi), where ℓerr (P (α̂i) ,yi)

indicates the prediction error. And let α′ be the optima
learned in SMDC before the vth view coming. Then our

SMDC model satisfies the safety constraint
⌢

R (α̂) ≤
⌢

R (α′)
to guarantee the safeness of multi-view classification, where

the empirical risk of α can be defined as

⌢

R (α) =
1

n

n∑
i=1

[ℓerr (P (αi) ,yi)]. (12)

Theorem 1 theoretically guarantees the safeness of the
empirical risk in our method, we further analyze the gen-
eralization risk of SMDC to better understand the effect of
our model parameter to α and drive the following theorem.

Theorem 2 (Generalization) Let X be a set of n samples
with label Y , α ∈ Bd be the parameter of loss function in a
finite d-dimensional unit ball. Define generalization risk as:

R (α) = E(X,Y ) [ℓerr (P (α) , Y )] . (13)

Let α∗ = argmaxα∈Bd R (α) be the optimal parameter in
the unit ball, α̂ be the optimal parameter of empirical risk
among a candidate set A. With probability at least 1− δ we
have,

R (α∗) ≤ R (α̂) +

(
12 +

√
4d ln (n) + 8 ln (2/δ)

)
√
n

.

(14)

Theorem 2 shows the generalization of SMDC can ap-
proach the optimal result in the order O

(√
d ln (n)/n

)
,

where d indicates the number of parameters in our model
and n denotes the number of samples. In summary, The-
orem 1 and Theorem 2 indicate the latent representation
learned from multiple views in SMDC is closer to the true
representation than the representation learned before fusion
of data views, which can produce more safe results.

Experiments
In this section, we extensively evaluate the proposed method
on real-world multi-view datasets and compare it with exist-
ing multi-view classification methods. Furthermore, we also
provide the analysis of safeness estimation on noisy data.
Experimental results show that our algorithm achieves the
state-of-the-art performance on various multi-view datasets.

Experimental Setup
Datasets and Comparative Methods We conduct exper-
iments on six real-world multi-view datasets as follows:
Handwritten (Van Breukelen et al. 1998), Scene15 (Fei-
Fei and Perona 2005), Animal (Lampert, Nickisch, and
Harmeling 2013), Caltech101 (Fei-Fei, Fergus, and Perona
2004), CUB (Wah et al. 2011) and HMDB (Kuehne et al.
2011). Also compare our method with existing state-of-the-
art multi-view classification methods: DCCA (Andrew et al.
2013), DCCAE (Wang et al. 2015a), CPM-Nets (Zhang
et al. 2020), MVTCAE (Hwang et al. 2021), DUA-Nets
(Geng et al. 2021) and ETMC (Han et al. 2022).
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Figure 2: Comparison with the prediction error of single-view.

Implementations For our algorithm, we conduct the
fully connected networks with Batch Normalization for all
datasets. The Adam optimizer (Kingma and Ba 2014) is used
to train the network, where l2-norm regularization is set to
1e−5. We then use 5-fold cross-validation to select the learn-
ing rate from

{
1e−4, 3e−4, 1e−3, 3e−3

}
. For all datasets,

20% samples are used as test sets. Furthermore, we run 5
times for each method to report the average values in Figures
or the mean values and standard deviations in Tables. The
model is implemented by PyTorch on one NVIDIA A100
with GPU of 40GB memory.

Experimental Results
Ablation Studies In this subsection, we first conduct a de-
tailed ablation study to clearly demonstrate the effectiveness
of our major technical components, which consist of evalua-
tion of multi-view fusion strategy, evaluation of dissonance
uncertainty loss and evaluation of KL-divergence loss. Ex-
cept for the result of first row in Table 1, that indicates the
best accuracy among each single-view, we evaluate these
three components on Caltech101 dataset with all the views.
Since the uncertainties loss and KL-divergence loss are not
applied to the single-view classification, thus there are five
combinations between these major components. As shown
in Table 1, our SMDC outperforms all other combinations
in terms of the average accuracy over 5 runs, which verifies
the effectiveness of our major technical components.

Performance Evaluation
In this subsection, we conduct two tests to evaluate the per-
formance of our method. The first is to verify the effective-
ness of our method and the second is to overall evaluate the
superiority of our method by comparing it with state-of-the-
art multi-view classification methods.

Effectiveness evaluation We first compare the average
prediction error for multi-view results with each single-view
on all datasets. Figure 2 shows the average classification er-
ror on testing set for multi-view (red line, termed as V) com-
pared with the average error from each single view (termed

Main Components Metric
Fusion Uncertainties KL-divergence ACC (%)

- - 86.20±0.80
✓ 96.00±0.12
✓ ✓ 96.89±0.20
✓ ✓ 97.33±0.12
✓ ✓ ✓ 97.78±0.01

Table 1: Ablation study on Caltech101, ‘’✓” means SMDC
with the corresponding component, ‘’-” means ‘’not ap-
plied”.

Views Accuracy (%)
V1+V2 85.25±0.04

V1+V2+V3 96.75±0.01
V1+V2+V3+V4 97.50±0.02

V1+V2+V3+V4+V5 98.75±0.02
V1+V2+V3+V4+V5+V6 99.00±0.01

Table 2: Accuracy on Handwritten with increase of views.

as V1-V6) over 5 runs. We can find our multi-view clas-
sification errors are always smaller than single-view errors
with the increase of epoch. Moreover, taking the test accu-
racy results on Handwritten dataset that contains six views
(termed as V1-V6) as examples, Table 2 shows the multi-
view classification accuracy increases with adding multiple
views. Both of the experimental results shown in Figure 2
and Table 2 validate SMDC is effective and safe.

Comparison with the methods Then we overall evalu-
ate the performance of our model. The detailed results are
shown in Table 4. We can clearly observe that SMDC con-
sistently achieves better performance than other methods.
Taking the results on HMDB as examples, our method im-
proves the accuracy by about 16% compared to the second-
best model. All of these results verify the improved perfor-
mance of our SMDC method.
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Noise ratio HMDB CUB Scene15 Caltech101 Animal Handwritten

λ = 0.0 90.76±0.01 96.65±0.01 72.76±0.06 97.78±0.01 94.10±0.01 99.00±0.01

λ = 0.1 88.56±0.01 83.33±0.00 68.32±0.02 96.65±0.10 87.23±0.02 98.33±0.01

λ = 0.2 88.46±0.01 79.33±0.00 67.52±0.10 96.02±0.12 86.98±0.01 98.00±0.01

λ = 0.3 88.44±0.00 78.47±0.05 68.00±0.15 95.11±0.02 86.78±0.00 98.00±0.01

λ = 0.4 88.33±0.01 78.46±0.03 67.01±0.02 95.01±0.10 86.00±0.01 97.50±0.02

λ = 0.5 88.40±0.00 78.31±0.01 65.33±1.12 94.73±0.12 83.67±0.01 97.25±0.02

Baseline 85.28±0.01 74.17±0.01 56.96±1.23 90.05±0.02 77.51±0.25 96.00±0.01

Table 3: Evaluation of safeness with different noise ratios (λ) based on classification accuracy (%).

Data DCCA DCCAE CPM-NetS MVTCAE DUA-Nets ETMC SMDC

CUB 82.03±2.40 85.50±1.37 89.44±0.06 92.00±0.04 81.42±1.15 91.23±1.21 96.65±0.01
HMDB 45.71±1.51 49.12±1.00 66.84±1.21 74.84±1.24 63.05±0.53 74.98±1.02 90.84±0.11
Scene15 54.77±1.13 55.12±0.23 67.09±0.05 66.43±0.06 68.43±0.02 68.30±0.01 72.80±0.13

Caltech101 84.00±0.15 90.03±0.11 90.05±1.42 91.76±0.01 93.83±0.34 93.41±0.22 97.78±0.01
Handwritten 94.55±2.01 97.01±0.23 94.45±1.11 97.00±0.23 98.10±0.32 98.51±0.13 99.00±0.01

Animal 83.33±1.25 85.80±0.51 86.59±0.05 86.32±0.16 89.05±1.22 89.71±0.34 94.10±0.01

Table 4: Comparison with state-of-the-art multi-view learning methods based on classification accuracy (%).
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Figure 3: Classification accuracy of noise view on HMDB
with different noise ratios (λ).

Safeness Estimation
In this part, we conduct qualitative experiments to overall
evaluate the safeness of our model.

Similar to the work (Geng et al. 2021), we first add noise
to the λ training data in one view, where λ is ranged from
0 to 0.5. Specifically, we generate λ noise vectors (denoted
as ϵ) that are sampled from Gaussian distribution N (0, I).
Then we add these noise vectors ϵ to pollute λ training data
in one view, i.e., x̃(1) = x(1)+ϵ. Figure 3 shows the average
testing accuracy on noise view over 5 runs. From the Fig-
ure 3, we observe that with the increasing of the noise ratio,
the polluted data are increased, then the classification accu-
racy of the data in noise view has significant decrease, which
means the noise can hurt the classification performance.

Then we test the classification accuracy of SMDC with
different noise ratios λ on various datasets to provide over-
all safeness guarantee. Table 3 summarizes the experimen-
tal results using different noise ratios (λ). In Table 3, the

‘Baseline’ means the multi-view results before adding new
coming noisy view and the others mean multi-view results
with the coming of polluted view. We can find that SMDC
always achieves better performance than the results with-
out new coming view even if the view is polluted by noise,
which verifies our method can guarantee that the classifica-
tion performance does not deteriorate when fusing multiple
data views. All of these experimental results validate the ef-
fectiveness and safeness of our model.

Conclusion
In this paper, we tackle an important problem of multi-
view deep classification, that is, performance degradation
in the presence of uncertain and inconsistency data sources.
We propose an efficient safe multi-view deep classification
method SMDC. The effectiveness of our proposal is demon-
strated both theoretically and empirically. In theory, adding
data views in our model is never worse than before in terms
of the empirical risk, and the generalization analysis guaran-
tees the generalization achieves the optimal in a faster order
O
(√

d ln (n)/n
)

. Empirical studies show that, our method
can still achieve better performance even if the view is pol-
luted by noise, which is in line with the theoretical results.
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