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Abstract

Generative Adversarial Networks (GANs) have shown com-
pelling results in various tasks and applications in recent
years. However, mode collapse remains a critical problem in
GANs. In this paper, we propose a novel training pipeline
to address the mode collapse issue of GANs. Different from
existing methods, we propose to generalize the discriminator
as feature embedding and maximize the entropy of distribu-
tions in the embedding space learned by the discriminator.
Specifically, two regularization terms, i.e., Deep Local Lin-
ear Embedding (DLLE) and Deep Isometric feature Mapping
(DIsoMap), are introduced to encourage the discriminator to
learn the structural information embedded in the data, such
that the embedding space learned by the discriminator can
be well-formed. Based on the well-learned embedding space
supported by the discriminator, a non-parametric entropy es-
timator is designed to efficiently maximize the entropy of em-
bedding vectors, playing as an approximation of maximizing
the entropy of the generated distribution. By improving the
discriminator and maximizing the distance of the most simi-
lar samples in the embedding space, our pipeline effectively
reduces the mode collapse without sacrificing the quality of
generated samples. Extensive experimental results show the
effectiveness of our method which outperforms the GAN
baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and
surpasses the recent state-of-the-art energy-based model on
the ANIMEFACE dataset (2.80 vs. 2.26 in Inception score).

Introduction
Generative Adversarial Networks (GANs) have attracted ex-
tensive attention in recent years (Schmidhuber 1990, 1991,
2020; Goodfellow et al. 2020). Generally speaking, a GAN
consists of a generator network and a discriminator net-
work, where the generator generates samples to fool the dis-
criminator, and the discriminator is trained to discriminate
real and generated samples. With such adversarial learn-
ing, GANs have shown high-fidelity results in various tasks
such as image inpainting (Yu et al. 2018) and photo super-
resolution (Li et al. 2019). Nevertheless, GANs suffer from
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mode collapse (or training instability) (Mangalam and Garg
2021; Saxena and Cao 2021), hindering their further devel-
opment in the generative learning community and potential
applications.

To alleviate the mode collapse in GANs, many efforts
have been devoted to introducing prior knowledge or adding
noise on the generator side. For example, the conditional
GANs (Mirza and Osindero 2014; Odena, Olah, and Shlens
2017; Brock, Donahue, and Simonyan 2019) handle the
mode collapse via introducing class-level prior knowledge
into GANs. By splitting the generated distribution into sev-
eral sub-distributions, the complexity of image synthesis
would be further reduced. As the distributions of differ-
ent classes are quite different, mode collapse can be miti-
gated to some extent. However, annotating the image classes
is time-consuming and deviates from the unsupervised set-
ting of GAN. Compared to conditional information, adding
noise into networks is a more flexible solution against mode
collapse. Specifically, Style-GANs (Karras, Laine, and Aila
2019; Karras et al. 2020b) add Gaussian noise to the out-
put of each convolutional layer to increase the variance of
the generated samples. Despite the rapid progress of GAN-
based approaches, mode collapse remains an unsolved and
challenging problem in GANs.

Different from GANs, another kind of generative model,
namely Energy-Based Models (EBMs) (Grathwohl et al.
2021; Geng et al. 2021; LeCun et al. 2006; Xie et al. 2016;
Xie, Zhu, and Nian Wu 2017; Xie, Zhu, and Wu 2019;
Xie et al. 2018b), have shown remarkable performances in
circumventing the mode collapse. These methods have at-
tracted increasing attention in recent years. Typically, EBMs
estimate the density of the target data distribution and are
trained via maximum likelihood. The partition function has
to be estimated during the training of EBMs by adopting
expensive Langevin dynamics, while the partition function
is generally intractable. Consequently, since training EBMs
is challenging, EMBs suffer from high computational com-
plexity and cannot generate images with competitive fidelity.

In this paper, inspired by the success of EBMs in avoid-
ing the mode collapse, we propose a novel pipeline named
MaEM-GANs (manifold entropy maximization) for train-
ing GANs through bridging Wasserstein GANs (WGANs)
and EBMs. By analyzing the connection between WGANs
and EBMs, we discover that mode collapse in GANs can
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Figure 1: Illustration of our main idea for combating the mode collapse. Different from the existing GANs (a), our MaEM-
GANs (b) generalize the discriminator such that it embeds an image into an m-dimensional space, instead of just outputting a
scalar value. With the embedding vectors of real/generated samples, we maximize the entropy of distributions in the embedding
space learned by our discriminator to prevent the mode collapse.

be avoided by maximizing the entropy of the generated dis-
tribution. However, it is nontrivial to directly estimate the
entropy of the generated distribution for GANs, especially
for large-scale and high-dimensional data. Instead, since the
discriminator heavily affects the training quality/stability of
GANs (Karras et al. 2020a), we propose to address the en-
tropy maximization on the discriminator side. In particular,
we propose to generalize the discriminator to feature embed-
ding, such that it embeds images into a lower-dimensional
embedding space (see Fig. 1), different from typical GANs.
We then maximize the entropy of distributions in the em-
bedding space learned by the discriminator. To further op-
timize such surrogate objective in an efficient and simple
manner, we propose a module named RB-MaEM based on
non-parametric entropy estimator using replay buffer. In ad-
dition, we introduce two regularization terms, namely, Deep
Local Linear Embedding (DLLE) and Deep Isometric fea-
ture Mapping (DIsoMap), which encourages the discrimi-
nator to learn the structural information embedded in the
data such that the embedding space is well formed. Benefit-
ing from DLLE and DIsoMap, our method, namely MaEM-
GAN, maximizes the entropy in the well-learned embedding
space to combat the mode collapse in GANs. Experimental
results show that the proposed MaEM-GAN outperforms the
recent advanced GAN method MaF-GAN (Liu et al. 2021)
on CelebA (9.13 vs. 12.43 in FID) and surpasses the re-
cent state-of-the-art EBM (Geng et al. 2021) on the ANI-
MEFACE dataset (2.80 vs. 2.26 in Inception score).

Our contributions are summarized as follows:

• We propose a novel training pipeline to address the
mode collapse issue in GANs, which effectively allevi-
ates mode collapse without sacrificing the image quality
of generated images.

• We show that the mode collapse in GANs can be reduced
by generalizing the discriminator as feature embedding
and maximizing the entropy of distributions in the em-
bedding space learned by the discriminator.

• Extensive experiments show that our method achieves
superior performances in terms of diversity and image
quality on various image generation tasks, compared
with both state-of-the-art GANs and EBMs.

Related Works
Generative Adversarial Networks. To overcome the mode
collapse, numerous methods have been proposed, such as
introducing class-level information (Mirza and Osindero
2014; Odena, Olah, and Shlens 2017; Brock, Donahue, and
Simonyan 2019; An et al. 2019) or adding noises to different
layers (Karras, Laine, and Aila 2019; Karras et al. 2020b).
However, these methods need additional annotation, which
deviates from the unsupervised setting of GAN, or intro-
duces complex network architecture. Differently, WGANs
(Gulrajani et al. 2017; Arjovsky, Chintala, and Bottou 2017)
re-designed the learning objective, where the discriminator
performs regression, rather than classification. By dynami-
cally modeling the distance between the generated and real
distributions, WGANs can reduce the risk for local minima
and mitigate the mode collapse to a certain extent. More re-
cently, Realness GANs (Xiangli et al. 2020) and Manifold-
preserved GANs (Liu et al. 2021) generalize GANs into a
high-dimensional form by mapping the output of the dis-
criminator into a vector to enhance the realness. Since the fi-
delity of the given image can be judged from different views
like ensemble learning, the generator can synthesize images
with different attributes to fit the discriminator. The above
works indicate that the discriminator is critical for GANs
and can be a potential target to combat mode collapse. Moti-
vated by these progresses (AZhang et al. 2020; Xiangli et al.
2020; Liu et al. 2021) with regard to the discriminator, we
propose a new pipeline, focusing on designing the simple
yet effective constraints on the discriminator side to pre-
vent the mode collapse. Different from the previous meth-
ods, we explore how to maximize the entropy of distribution
in the embedding space supported by the discriminator, and
how to well learn the embedding space. The empirical and
theoretical study pointed out that the learning objective of
GANs might neglect an intractable entropy term for maxi-
mum likelihood, which plays a key point in the mode col-
lapse and can be effectively tackled by high-dimensional
GANs. Manifold-preserved GAN (Liu et al. 2021) is the
most similar work to ours; however, it neglects the entropy
term.
Energy-based Models. There has been a rich history for
EBMs, which can be traced back to Hopfield networks
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(Hopfield 1982) and Boltzmann machines (Hinton and Se-
jnowski 1983). However, learning an EBM is difficult, since
the partition function (a.k.a. normalization constant) is in-
tractable and hard to estimate (Geng et al. 2021). A com-
mon solution is based on expensive Markov Chain Monte
Carlo (MCMC) sampling by generally adopting Langevin
dynamics (Du and Mordatch 2019; Xie et al. 2018a) and
Gibbs sampling (Carlo 2004; De Sa, Chen, and Wong 2018)
to estimate the partition function. Some strict requirements,
including parameter tuning (Grathwohl et al. 2020), early
stopping of MCMC (Nijkamp et al. 2019), and avoiding the
use of modern deep modules (e.g., self-attention, dropout
and batch/layer normalization) (Grathwohl et al. 2020), are
adopted to mitigate the training instability issue caused by
MCMC. These hard requirements limit the capacity of the
deep model and might reduce its applicability to some large-
scale datasets. More recently, an MCMC-free EBM training
strategy (Grathwohl et al. 2021) was proposed, where a gen-
erator is employed as a sampler to achieve amortized train-
ing of EBM. In particular, the output of the discriminator
(also regarded as EBM) is a single scalar, hence, it is hard
to directly estimate the entropy, resulting in complicated
processing based on variational inference (Grathwohl et al.
2021) or Jacobi-determinant (Geng et al. 2021). Inspired by
the amortized training strategy, we generalize WGAN into
a manifold representation and adopt a replay buffer strategy
to directly estimate the entropy of the manifold representa-
tion. Compared with the state-of-the-art EBMs, the proposed
method is simple but effective to estimate entropy, leading to
stronger diversity and fidelity in image generation.

Method
The purpose of our method is to combat the mode collapse
in GANs. To this end, we first bridge WGANs and EBMs,
since EBMs have shown remarkable performance in avoid-
ing the mode collapse. By analyzing the connections be-
tween WGANs and EBMs, we discover that mode collapse
in GANs can be prevented via maximizing the entropy of
the generated distribution. However, it is nontrivial to di-
rectly estimate the entropy of the generated distribution. In-
stead, we propose a new training pipeline MaEM-GANs to
approximate this objective. In particular, we generalize the
discriminator to feature embedding, to embed images into a
low-dimensional space. With the generalized discriminator,
we propose a surrogate objective to maximize the entropy
of the distribution in the embedding space learned by the
discriminator. RB-MaEM is proposed to efficiently optimize
the surrogate objective. Furthermore, we introduce two reg-
ularization terms, i.e., DLLE and DIsoMap, to ensure that
the embedding space is well-formed and captures the under-
lying manifold embedded in the high-dimensional data.

Problem Definition
Based on (Grathwohl et al. 2021; Geng et al. 2021), we re-
visit EBMs and WGANs. By analyzing the connections be-
tween them, we discover that the mode collapse can be pre-
vented by maximizing the entropy of generated distribution.
Definition 1. An EBM can be represented from Gibbs den-

sity:

pθ(x) =
efθ(x)

Z(θ)
, (1)

where fθ : Rh×w → R1 (h and w denote the height and
width of the image, respectively) and Z(θ) =

∫
efθ(x)dx

(Z(θ) is the partition function or normalizing constant).
EBMs are trained by maximum likelihood estimation:

Lebm(θ) :=−E
x∼Pr

[log(
efθ(x)

Z(θ)
)]=−E

x∼Pr

[fθ(x)] + logZ(θ),

(2)

where Pr is the data distribution.
Definition 2. The loss function of WGANs can be defined
as

Lwgan(θ) := E
x∼Pg

[D(x)]− E
x∼Pr

[D(x)], (3)

where Pg is the generated distribution. Concretely, the dis-
criminator D(·) is trained by minimizing Lwgan(θ), while
the generator G(·) is driven to maximize Lwgan(θ).
Proposition 1. Lwgan(θ) acts as a lower bound of Lebm(θ)
by maximizing the entropy of the generated distribution
H(Pg).
Proof: Given the probability density function q(x) of Pg as
input, an inequality can be derived as

logZ(θ) ≥ logZ(θ)− KL(q(x)||pθ(x)), (4)

where KL(·||·) denotes the KL-divergence. With respect to
pθ(x) = efθ(x)/Z(θ), logZ(θ) can be re-written as

logZ(θ) ≥ logZ(θ) +

∫
x

q(x)log(
efθ(x)

Z(θ)q(x)
)

= E
x∼Pg

[fθ(x)] +H(Pg),
(5)

where H(Pg) is the entropy of Pg . Note that model fθ(x) in
EBMs is equivalent to D(·) in GANs. Hence, the connection
between Lwgan and Lebm can be established as

Lebm(θ) = − E
x∼Pr

[fθ(x)] + logZ(θ)

≥ Lwgan(θ) +H(Pg)
(6)

Based on Eq. (6), Lebm(θ) is the upper bound of
Lwgan(θ) and an entropy term H(Pg). Generally, such an
upper bound is very tight, because of the distance between
Lwgan(θ) +H(Pg) and Lebm(θ) is the KL-divergence term
KL(q(x)||pθ(x)) (Grathwohl et al. 2021) (see Eq. (4)). That
is, for the generator, we can maximize Lwgan and the en-
tropy term H(Pg) to approximate Lebm that well alleviates
the mode collapse issue. Intuitively, H(Pg) plays a key role
to tackle the mode collapse problem, which is generally ne-
glected by existing GANs.

Manifold Representation for WGANs
As discussed above, mode collapse can be prevented by
maximizing the entropy of the generated distribution. How-
ever, directly estimating the entropy H(Pg) of the gener-
ated distribution is intractable, due to the large quantity and
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Figure 2: The pipeline of the proposed MaEM-GANs. Our discriminator embeds an input into an m-dimensional code V ,
instead of a scalar value. To preserve the structural information of manifolds embedded in the input data, we introduce two
regularization terms DLLE and DIsoMap. Within the embedding space learned by the discriminator, RB-MaEM module is
proposed to maximize the entropy of distributions by maximizing the distance of most similar samples in the replay buffer.

high dimensionality of data samples. We address the above
problem on the discriminator side, motivated by the fact the
discriminator heavily affects the training stability of GANs
(Karras et al. 2020a). Specifically, we propose to general-
ize the discriminator from the perspective of the manifold
and maximize the entropy of distributions in the embedding
space supported by the discriminator.

Typical GANs (Arjovsky, Chintala, and Bottou 2017;
Goodfellow et al. 2014; Gulrajani et al. 2017; Li et al. 2021)
treat the discriminator as a classifier, which classifies an im-
age x as real or fake according to a scalar value D(x). Dif-
ferent from the scalar-based discriminators, our generalized
discriminator D(·) learns a mapping which transforms an in-
put image to an m-dimensional embedding space: D(·) :
Rh×w → Rm, where h and w are the height and weight
of an image x, respectively, and m ≥ 1.

The embedding space D(·) is expected to capture infor-
mative characteristics of images. In other words, each di-
mension of the embedding space D(·) corresponds to a crit-
ical attribute of images, such as color, texture, and struc-
ture. Thus, compared with the scalar-based discriminators,
our generalized discriminator D can provide a more com-
prehensive representation for the data.

With our generalized discriminator D, we reformulate the
learning objective of WGANs in Eq. (3). Although the out-
put of our discriminator D is a vector, our discriminator de-
termines whether an image x is real/fake according to the
average value of D(x). The new objective function LMaF

can be formulated as:

LMaF ≜ E
z∼Pz

[
1

m

∑
k

Dk(G(z))]− E
x∼Pr

[
1

m

∑
k

Dk(x)],

(7)

where the standard normal distribution N (0, 1) is used for
pz and 1

m

∑
k Dk(x) indicates the realness of x.

Replay-Buffer-based Manifold Entropy Estimation
With our generalized discriminator D(·), we design a surro-
gate objective to maximize the entropy of distributions in the
embedding space supported by D(·).

Given the ith image xi, we represent it as an embedding
code Vi = D(xi) using our discriminator. With such rep-
resentation, we aim to maximize the entropy of the embed-
ding codes {Vi}’s distribution. Inspired by non-parametric
entropy estimator (Beirlant et al. 1997), our insight is that
if the distance between neighboring samples is maximized
in a manifold, the data points in such a manifold will fol-
low a uniform distribution, which maximizes the entropy of
data distributions. We hence propose RB-MaEM module to
efficiently conduct this objective using a replay buffer. As
shown in Fig. 2, RB-MaEM employs a first-in-first-out re-
play buffer R to store embedded codes {V0, ..., Vn} of n+1
sample images, where V0 is the code of the 0th image ly-
ing at the head of R and Vn is the last code at the tail of
R. We then search for an embedding code V ∗ which is the
most similar to V0 from V1, ..., Vn in buffer R. With V ∗, we
maximize the entropy of the distribution by maximizing the
distance of V0 and its most similar code V ∗:

Lent =
V0 · V ∗

||V0|| · ||V ∗||
+ λ||V0||, (8)
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where V ∗ = argmaxVi∈R( V0·Vi

||V0|| ||Vi|| ) obtained based on
cosine similarity, and λ||V0|| is a regularization term to en-
sure the stabilization of the discriminator.

We further show that maximizing the entropy of the gen-
erated distributions in the embedding space supported by
D(·) approximately maximizes the entropy H(Pg) of gen-
erated distribution which is stated in Proposition 1.
Proposition 2. The entropy of the distribution Pg in the em-
bedding space learned by the discriminator D(·) is the lower
bound of H(Pg), based on the non-parametric entropy esti-
mator and Lipschitz continuity.
Proof: Based on the non-parametric entropy estimator
(Beirlant et al. 1997), H(Pg) can be maximized by

max E
xi∼Pg

[log(dX (xi, x
∗
i ))], (9)

where x∗
i ≜ argmin

xj∼Pg

dX (xi, xj), and dX measures the dis-

tance between samples in image space X . Based on the con-
vergence of WGAN, D is under Lipschitz continuity:

KdX (xi, xj) ≥ dD(D(xi),D(xj)), (10)

where K is the Lipschitz constant, and dD is the metric in the
embedding space supported by D. Since K is typically set
to be 1, dD(D(xi),D(xj)) in the space of the discriminator
can be regarded as the lower bound of the distance between
xi and x∗

i in image space. By using dD(D(xi),D(xj)) (i.e.,
lower bound of dX (xi, xj) ) in Eq. 9 , we have

max E
xi∼Pg

[log(dX (xi, x
∗
i ))] ≥

max E
xi∼Pg

[log(dD(D(xi),D(x∗
i )))]

(11)

Therefore, the entropy of generated distribution in the image
space can be approximately maximized by maximizing the
entropy in the embedding space.

Manifold Regularization
The performance of the proposed RB-MaEM depends on the
quality of the embedding space learned by D(·). To ensure
that the embedding space captures underlying manifolds em-
bedded in the high-dimensional data, we introduce DLLE
and DIsoMap to regularize the learning of D.
DLLE. The first regularization term DLLE enforces the dis-
criminator D to preserve the nonlinear structure of high-
dimensional data by using the local symmetries of linear
reconstructions. In particular, DLLE is established upon a
simple geometric intuition (Roweis and Saul 2000), i.e., a
data sample and its neighbors lie on or are close to a lo-
cally linear region of the manifold learned by D(·). Inspired
by representation learning (Chen et al. 2020; AZhang et al.
2020), we characterize a different view of x as the neighbor
of x. Then, the learning objective LLLE of DLLE enforces
x and its neighbor to be similar in the embedding space of
D(·):

LLLE ≜ E
x∼Pr,Pg

[||D(F(x))− D(x)||2] (12)

= E
x∼Pr,Pg

[||VF (x) − Vx||2], (13)

where F(·) is the image transformation, such as rotation,
adding Gaussian noise, and adversarial noise. By capturing
the invariance between x and its neighbors, our DLLE helps
the embedding space of D(·) preserve the local geometry in
the original data, leading to meaningful representations.
DIsoMap. Inspired by MaF-GANs (Liu et al. 2021), we in-
troduce DIsoMap to improve the embeddings’ quality. In
DIsoMap, we preserve the relationship between the embed-
ding combination of {D(xi),D(xj)} and the embedding of
the combination of {xi, xj} with cosine similarity. Our DIs-
oMap further preserves the topological structure of different
samples for manifold learning.

Experimental Results and Analysis
We implement our MaEM-GAN using the public PyTorch
toolbox on eight NVIDIA V100 GPUs. To evaluate the per-
formance of the proposed method, extensive experiments
are carried on four publicly available datasets with dif-
ferent image sizes, including CIFAR-10 (32 × 32 pixels)
(Krizhevsky, Hinton et al. 2009),1 ANIMEFACE (64×64),2
CelebA (256 × 256) (Liu et al. 2015),3 and FFHQ (1024 ×
1024) (Karras, Laine, and Aila 2019).4 All the experimental
settings, such as optimizer, network architecture and learn-
ing rate, are identical to the public benchmarks (Geng et al.
2021; Liu et al. 2021; Xiangli et al. 2020; Karras, Laine, and
Aila 2019). Detailed information on the implementation of
our MaEM-GAN can be found in Supplementary Materials.

Evaluation metrics. We use Fréchet Inception Distance
(FID) (Heusel et al. 2017) and Inception Score (IS) (Sali-
mans et al. 2016) to evaluate the quality of generated images.
Following state-of-the-art approaches (Geng et al. 2021; Xi-
angli et al. 2020), we use FID as our main evaluation metric.

To evaluate the effectiveness of our method on alleviat-
ing the mode collapse of GANs, we introduce F8 and a
new metric named I-Variance, which measures the diversity
of generated images to represent the degree of mode col-
lapse. In other words, the larger diversity of the generated
images indicates a lower degree of mode collapse. Hence,
I-Variance is defined as the standard deviation of generated
distributions, where a generated image is represented by the
extracted feature using Inception-V3 (Szegedy et al. 2016):

I-Variance ≜
√

E
x∈Pg

[
||T (x)− E

x∈Pg

[T (x)||2
]
, (14)

where T (·) is the Inception-V3 pre-trained on ImageNet. In
all experiments, 50,000 images are randomly sampled to cal-
culate FID, IS, and I-Variance.

Ablation Studies and Analysis
Ablation studies. To conduct ablation studies, we remove
DIsoMap, DLLE, and RB-MaEM from our method to estab-
lish a baseline, i.e., a high-dimensional WGAN with LMaF .

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://www.kaggle.com/splcher/animefacedataset
3https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
4https://github.com/NVlabs/ffhq-dataset
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Baseline DIsoMap DLLE RB-MaEM FID↓
✓ × × × >100
✓ ✓ × × 51.96
✓ ✓ ✓ × 31.70
✓ ✓ × ✓ 30.73
✓ ✓ ✓ ✓ 29.22

Table 1: The ablation study of the proposed method on
CIFAR-10 in terms of FID.

w/ DLLE Adv. Noise Rot. and Gau. Noise FID ↓
✓ × × 30.73
✓ ✓ × 33.04
✓ × ✓ 29.22

Table 2: FID of the proposed method with different im-
age transformation strategies F(·) of DLLE on CIFAR-10.
(Adv.–Adversarial; Rot.–Rotation; Gau.–Gaussian)

Without our proposed components, the performance of this
baseline is unsatisfactory in terms of FID score, as listed in
Table 1. More specifically, the discriminator and generator
of the baseline with high dimension are trained in an imbal-
anced mode, which makes the training process unstable. In
contrast, the performance of our method is significantly im-
proved by adding each proposed component to the baseline,
validating the effectiveness of our components. As shown
in Table 1, DIsoMap is the key component to stabilize the
training process, since this term can dynamically ensure the
distance between the real and generated distributions to be
tractable. Hence, DIsoMap drives the baseline to achieve an
FID of 51.96. However, this term might lead to a trivial so-
lution, i.e., each dimension outputs the same value. To over-
come the issue, DLLE and RB-MaEM are added and help
the discriminator yield non-trivial representation, which fur-
ther improves our performance to 31.70 and 30.73 in FID,
respectively. By incorporating all proposed components, our
method achieves the best FID score of 29.22.
Impact of Hyper-parameters. For DLLE, Tab. 2 investi-
gates different strategies of generating the neighbors of a
given sample, where the first strategy adds the adversar-
ial perturbation into the image. The second strategy em-
ploys image augmentations i.e., rotation and adding Gaus-
sian noises, which is simpler yet achieves better perfor-
mance in FID than the first one. In addition, Table 3 lists
our results using different buffer sizes. Our method will be
degraded if the buff size is too small to store enough mean-
ingful samples for maximizing the entropy. When the buffer
size is 1024, our method achieves the best performance.
The effectiveness of the discriminator with manifold rep-
resentation. In our method, the discriminator yields a vec-
tor to measure the realness of generated images. Each ele-
ment in the vector measures the sample-wise realness from
a specific attribute. To demonstrate the effectiveness of
manifold representation, we feed 50,000 generated images
to our discriminator and obtain the corresponding vectors.
Fig. 3 shows the ‘realest’ samples ranked along different

𝔻(·)

Generated Images

Top 5 Samples Ranked by Dimension-1

Top 5 Samples Ranked by Dimension-2

Top 5 Samples Ranked by Dimension-3

Top 5 Samples Ranked by Dimension-4

Figure 3: Top five generated images ranked by the individ-
ual dimension of the discriminator on ANIMEFACE. In each
row, a generated image is ranked according to the cth dimen-
sion value of its embeded code V extracted by our discrimi-
nator (c = 1, 2, 3, 4).

Buffer size 128 512 1024 2048

FID 31.58 32.36 29.22 31.87

Table 3: FID ↓ of our method using different replay buffer
sizes on CIFAR-10.

elements/dimensions of the obtained vectors. We can ob-
serve that the top samples ranked by different dimensions of
our discriminator’s output exhibit different attributes such as
color and style. Hence, introducing manifold representation
is effective to estimate the entropy and helps the discrimina-
tor to assess the realness from different aspects.
The effectiveness of RB-MaEM on alleviating mode col-
lapse. We verify the importance of RB-MaEM in alleviating
the mode collapse issue by measuring the diversity of gener-
ated images, where the I-Variance score is adopted to quan-
titatively assess the diversity of generated images. Table 4
shows that our method without RB-MaEM only achieves an
I-Variance score of 3.41. In contrast, the I-Variance score
increases to 4.88 by adding RB-MaEM. This shows that our
RB-MaEM can significantly improve the diversity of gener-
ated images and effectively alleviate mode collapse.

Comparison with State-of-the-art Methods
To show the superiority of our method, we compare
our method with recent state-of-the-art GAN models and
energy-based models. Note that the results of all baseline
methods are duplicated from the existing benchmarks (Xian-
gli et al. 2020; Geng et al. 2021) without re-implementation.
Comparison with GAN models. Table 5 shows the com-
parison results on CIFAR-10 and CelebA datasets. We com-
pare our method with the state-of-the-art GANs, includ-
ing WGAN (Arjovsky, Chintala, and Bottou 2017), Hinge-
GAN (Zhao, Mathieu, and LeCun 2017), LSGAN (Mao
et al. 2017), Std-GAN (Goodfellow et al. 2014), WGAN-GP
(Gulrajani et al. 2017), Realness GAN (Xiangli et al. 2020),
and the family of MaF-GANs (Liu et al. 2021). Compared
with these methods, our method achieves the best FID score
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Configuration CIFAR-10 ANIMEFACE

Baseline 3.41 ± 0.03 2.46 ± 0.03
+ RB-MaEM 4.88 ± 0.04 2.59 ± 0.04

Table 4: The I-Variance score ↑ (×10−3) of our method on
CIFAR-10 and ANIMEFACE. I-Variance score denotes the
variance of the class-wise outputs from Inception-V3.

Model CIFAR-10 CelebA

WGAN 55.96 -
HingeGAN 42.40 25.57
LSGAN 42.01 30.76
Std-GAN 38,56 27.02
WGAN-GP 41.86 70.28

Realness GAN-Obj.1 36.73 -
Realness GAN-Obj.2 34.59 23.51
Realness GAN-Obj.3 36.21 -

MaF-CwGAN 39.24 -
MaF-DwGAN 33.73 -
MaF-EwGAN 30.85 12.43
Ours 29.22 9.14

Table 5: FID ↓ of GAN models on CelebA and CIFAR-10.
All methods use the same backbone of DCGAN (Radford,
Metz, and Chintala 2016).

on both datasets. Specifically, MaF-GAN is a recent work
most related to ours, which also generalizes WGAN into
a high-dimensional form. Our method surpasses MaF-GAN
by a large margin since our method explicitly maximizes the
entropy of distribution in the embedding space of the dis-
criminator. Furthermore, we demonstrate that our method
facilitates training very deep GAN architectures even with
complicated training strategies. In particular, our method is
incorporated into StyleGAN-V2 (Karras et al. 2020b) and
BigGAN (Brock, Donahue, and Simonyan 2019) by adding
the proposed learning objective to their methods. And the
consistent improvements can be found in Tables 5, 7 and 6.

Comparison with energy-based models. We compare our
method with representative energy-based models, including
MEG (Kumar et al. 2019), VERA (Grathwohl et al. 2021),
EBM-0GP (Geng et al. 2021) and EBM-BB (Geng et al.
2021). For a more comprehensive study, we also include De-
noising Diffusion Probabilistic Model (DDPM) (Ho, Jain,
and Abbeel 2020) and WGAN-0GP (Thanh-Tung, Tran,
and Venkatesh 2019). DDPM can be regarded as an upper
bound for generation performance since this method gen-
erates images by expensive iterative optimization. Follow-
ing (Geng et al. 2021), we conduct the experiments on the
AnimeFace dataset. Table 8 shows that our method outper-
forms all energy-based models with the highest IS (2.80)
and F8 (0.98), and lowest FID (8.62), demonstrating that our
method not only ensures the fidelity of the generated images
but also significantly improves their diversity.

Model FID ↓ IS ↑
Unconditional BigGAN 16.04 9.10
Unconditional BigGAN + Ours 13.86 9.27

Table 6: FID and Inception Score of BigGAN (Brock, Don-
ahue, and Simonyan 2019) and our method on CIFAR-10.

Model FID ↓
StyleGAN-V1 (Karras, Laine, and Aila 2019) 4.40
StyleGAN-V2 (Karras et al. 2020b) 2.84
StyleGAN-V2 + Ours 2.67

Table 7: FID of StyleGAN-V1/2 and our method on FFHQ.

Model IS ↑ FID ↓ F8 ↑
MEG 2.20 9.31 0.95
VERA 2.15 41.00 0.52
EBM-0GP 2.26 20.53 0.89
EBM-BB 2.26 12.75 0.94

DDPM∗ 2.18 8.81 0.94

WGAN-0GP 2.22 9.76 0.95
Ours 2.80 8.62 0.98

Table 8: FID, IS and F8 of EBMs, diffusion models and our
method on ANIMEFACE.

(a) CIFAR-10 (b) ANIMEFACE

(c) CelebA

(d) FFHQ

Figure 4: The generated samples of the proposed method on
(a) CIFAR-10 (32 × 32), (b) ANIMEFACE (64 × 64), (c)
CelebA (256 × 256) and (d) FFHQ (1024 × 1024).

Conclusion
In this paper, we proposed a novel method to alleviate mode
collapse in GANs. Our method generalizes the discriminator
as a feature embedder, and mode collapse in GANs can be
alleviated by maximizing the entropy of distributions in the
embedding space learned by the discriminator. Two man-
ifold regularization terms were introduced to preserve the
information in the manifold embedded in the data. Based
on the well-learned embedding space, a replay-buffer-based
entropy estimator was proposed to maximize the diversity of
samples in the embedding space. By improving the discrimi-
nator and maximizing the entropy of distributions in the em-
bedding space, our method effectively reduces the mode col-
lapse without sacrificing the quality of generated samples.
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