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Abstract

Vector Quantization (VQ) is a method for discretizing latent
representations and has become a major part of the deep learn-
ing toolkit. It has been theoretically and empirically shown that
discretization of representations leads to improved generaliza-
tion, including in reinforcement learning where discretization
can be used to bottleneck multi-agent communication to pro-
mote agent specialization and robustness. The discretization
tightness of most VQ-based methods is defined by the number
of discrete codes in the representation vector and the code-
book size, which are fixed as hyperparameters. In this work,
we propose learning to dynamically select discretization tight-
ness conditioned on inputs, based on the hypothesis that data
naturally contains variations in complexity that call for dif-
ferent levels of representational coarseness which is observed
in many heterogeneous data sets. We show that dynamically
varying tightness in communication bottlenecks can improve
model performance on visual reasoning and reinforcement
learning tasks with heterogeneity in representations.

Introduction

Discretization of latent representations via vector quantiza-
tion is a method for improving the robustness and general-
ization of learned models (Oord, Vinyals, and Kavukcuoglu
2017; Liu et al. 2021). Replacing a continuous representa-
tion with a discrete representation, and limiting the capacity
of the discrete representation, both improve generalization
guarantees (Liu et al. 2021). Discretization imposes a bottle-
neck (Tishby, Pereira, and Bialek 2000) as the representation
can take fewer values, and reducing capacity of the discrete
representation tightens this bottleneck.

Discretization can be used to bottleneck communication
in modular inference models, for example in multi-agent re-
inforcement learning. Modular inference combines outputs
across modules into new module inputs while restricting the
number of modules that communicate (Goyal et al. 2019). To
make up for the loss in expressivity from being restricted to
few communicative modules in each timestep, the model is
forced to learn to perform inference in steps of specialized
skill as opposed to applying all skills at once, which special-
izes the modules by definition since few are active in each
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step (Darwen and Yao 1996; Goyal et al. 2019; Bengio 2017;
Lamb et al. 2021). The communication bottleneck is tight-
ened by switching from continuous to discrete representations
(Liu et al. 2021). Beyond improvements in generalization er-
ror from decreasing capacity, it has been hypothesized that
the inductive bias of bottlenecked communication between
modules improves generalization by 1) reflecting the true
causal structure of data generated by sparse interactions be-
tween few variables, 2) increasing robustness when modules
are recombined in novel ways, compared to unspecialized
modules with all-to-all communication, 3) improving sample
efficiency since specialized modules require fewer training
points to learn (Goyal et al. 2019; Bengio 2017).

However, discrete bottleneck methods typically lack adapt-
ability. This work improves on the vector quantization
method of Liu et al. (2021) by making tightness of the bot-
tleneck dynamic. Instead of a single discretization function
that maps all inputs to a discrete space with fixed size, we
use a pool of discretization functions with varying levels of
output capacity, and choose the function applied for a given
input using key-query attention between representations of
the input and discretization functions.

The hypothesis is that this improves generalization because
the optimal level of discretization suggested by the bounds,
which is the tightest bottleneck such that training error can
still be minimized (Liu et al. 2021), is unlikely to be the same
for all regions of a data distribution. The shortest description
that captures adequate information in inputs for performing
well on a task generally varies with the input, for example
images contain different numbers of objects, and gameplay
involves goals of varying complexity. In terms of generaliza-
tion error, using a single discretization capacity is potentially
wasteful for simpler inputs, because the generalization gap
can be reduced by selectively imposing a tighter represen-
tation bottleneck on the former without increasing training
error. To minimize the model selecting looser bottlenecks
than necessary, we use an objective function that penalizes
the choice of bottleneck proportional to its capacity.

In summary, the contributions of our work are as follows:

* We propose a dynamic vector quantization method (DVQ)
that adaptively chooses the number of discrete codes and
the codebook size that control tightness of the bottleneck.

* Our theoretical analysis shows that dynamic adjustment of



the bottleneck improves generalization error under the suf-
ficient condition of tighter average bottleneck and equal
training loss.

* We empirically show improvement in performance by us-
ing DVQ to discretize inter-component communication
within a deep learning model and inter-agent communi-
cation between agents, compared to using VQ with fixed
bottleneck capacity.

Method
Communication Discretization

The process of converting data with continuous attributes
into data with discrete attributes is called discretization
(Chmielewski and Grzymala-Busse 1996). In this study, we
use discrete latent variables to quantize information com-
municated among different modules in a similar manner to
codebooks (Liu et al. 2021), which is a general version of vec-
tor quantization (VQ-VAE, Oord, Vinyals, and Kavukcuoglu
(2017)) where the hidden representation is a list of discretized
codes instead of a single discretized code. The discretization
process for each vector h € H C R™ is described as follows.
First, vector & is divided into G segments s1, S2, . . ., Sg With
h = CONCATENATE(s1, S2, ..., SG), where each segment
s; € R™/G with G € N*. Second, each continuous segment
s; is discretized separately by being mapped to a discrete
latent space vector e € RE*(™/G) where L is the size of the
discrete latent space (i.e., an L-way categorical variable):

€0, = DISCRETIZE(s;), where o; = argmin ||s; —e;l|.

j€{l,...,.L}
These discretized codes, which we call the factors of contin-
uous representation h, are concatenated to obtain the final
discretized vector z as

z = CONCATENATE(DISCRETIZE(s1),
DISCRETIZE(S2), ..., DISCRETIZE(S¢)).

ey

The multiple steps described above can be summarized
by z = q(h, L,G), where ¢(+) is the whole discretization
process using the codebook, L is the codebook size, and G is
number of segments or factors per vector.

The loss for model training is £ = Liasx + Laiscretization
where

2
2

1 G
Ediscretization = 5 ( Z H Sg(sz) — €0,
; @
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Liask 1 the loss for the specific task, e.g., cross entropy loss
for classification or mean square error loss for regression,
sg refers to a stop-gradient operation that blocks gradients
from flowing into its argument, and /3 is a hyperparameter
which controls the reluctance to change the code. The term
Zf || sg(si)—eo,||3 is the codebook loss, which only applies
to the discrete latent vector and brings the selected e, close

to the output segment s;. The term ZlG [|s; —sg(eo,)||3 is the

8826

commitment loss, which only applies to the target segment s;
and trains the module that outputs s; to make s; stay close to
the chosen discrete latent vector e,,. Following the original
codebooks and VQ-VAE papers, we found 0.25 to be a good
value for 3, and e was initialized using k-means clustering
on vectors h with k = L.

Dynamic Bottlenecks

Instead of a single codebook and discretization bottleneck,
we use multiple bottlenecks where the tightness of each bot-
tleneck is defined by the number of factors and codebook
size. A pool of N discretization functions Q@ = {g: }+c[n]
is made available to all representations being discretized,
where the number of factors and codebook size for each dis-
cretization function are given by G; and L, respectively. The
discretization functions in the pool do not share parameters
nor codebooks with each other. Each of the discretization
functions is associated with a signature key vector k; € R
which is randomly initialized and learned in the training pro-
cess. Key-value attention is conducted between k; and query
f(h) € R" where h is the continuous representation being
discretized and f is a single layer neural network projector.
Gumbel-softmax (Jang, Gu, and Poole 2016) is applied on
the attention scores to make a one-hot selection of which ¢;
to use, with categorical distribution 7" over discretization
functions for h given by

7Th (t) — exp(ktTf(h)) )
EjE[N] exp(k;f(h))

Bottleneck Tightness

In order to learn a communication bottleneck with as few
bits as necessary for minimizing training error, we introduce
pressure to choose ¢; with low G; and L;. This pressure is
implemented with capacity penalty Cpottienecking:

Cbottlenecking - Gt ln(Lt) (4)

L= £tusk + aﬁdiscretization + Bcbottlenecking (5)
where L is the overall loss for the representation being dis-
cretized, Lok 1S the task 10sS, Lyiscretization 1S the sum
of commitment and codebook losses from the discretization
process and Cyottienecking 1 the bottlenecking cost. v and 3
are hyperparameters that are chosen using a validation set.

In our experiments, we found that including a continuous-
valued function in the pool, corresponding to expressivity in
the limit of codebook size L; — oo, improved performance
in some tasks. In this case L; was set to be a large number
(10%) in the penalty term Chotticnecking-

3

Architectural Choices

Given continuous representation h, the bottleneck can be
enforced in either a flat or hierarchical manner (fig. 1). In
the flat case, the bottlenecked representation is the output
of a single ¢; € () selected with key-value attention. In the
hierarchical case, all functions {g; };c[n) are utilized by first
ordering them in order of descending G, and setting the
input segments of each function to be concatenated factors
produced by the previous function, with h as input into the
first function. Then output of a single ¢; € @ is selected with
key-value attention.
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(c) Adaptive bottleneck with hierarchical attention over dis-
cretization functions (our method).

Figure 1: Dynamic discrete bottlenecks can be implemented as a flat function of continuous input h (center), or as an iterative
function that produces progressively coarser outputs (right). Bottleneck functions ¢; for ¢t € [N], have different capacity and
separate parameters. One bottleneck is selected for each input using key-value attention between representations of the input and
discretization functions, f(h) and k; respectively.
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Theoretical Analysis

In this section, we show that the adaptive discretization pro-
cess has a potential advantage in improving the performance
of the final model by better trading off the balance between
the generalization and expressivity adaptively for each input.
Moreover, our analysis predicts that the additional regulariza-
tion, Chottienecking, in our algorithm plays an important role
for this tradeoff, and that the number of adaptive bottlenecks
N cannot be arbitrarily large. To achieve this goal, we follow
the abstract framework of Liu et al. (2021). That is, let ¢ be
an arbitrary function, which can refer to the composition of
an evaluation criterion and the rest of the network follow-
ing (adaptive) discretization bottlenecks. Given any function
¢ : R™ — R and any family of sets S = {S1,..., Sk} with
S1,...,5Kk C H, let us define the corresponding function
¢7 by ¢ (h) = 1{h € Si}¢(h) for all k € [K], where
K] = {1,2,... ,K}. Let e®) € RE«*(m/Gt) be fixed and

we denote by (Qé )k, cir
the discretization process for ¢-th adaptive bottleneck: i.e.,

q(h,Li, Gy) € U, [Lth]{QE:t)} for all h € H. We define

kmax = maxcn) Lth and Q,(ft) = () for all k; > Lth. Un-
der this abstract setting with ¢ = N = 1, the previous paper
(Liu et al. 2021) proved their main theoretical result, showing
that the models with non-adaptive discretization process have
advantages over the continuous models without it (we present
a slightly tighter version of the previous paper’s results in
Appendix ). Thus, in this section, we focus on the comparison
of adaptive and non-adaptive discretization processes.

To analyze the adaptive discretization process, we intro-
duce the additional notation: let ¢;(h) be the discretization
process with a particular bottleneck ¢ € [N], and ¢(h)
be the whole discretization process as g(h) = g;,)(h)

o all the possible values after

where #(h) is the result of the key-value attention. Define
I = {i € [n] : £(h;) = t}, which is the set of the indices of
training samples that end up using the ¢-th adaptive bottle-
neck.

The following theorem extends the main theorem from
Liu et al. (2021) to the setting of adaptive bottlenecking and
shows the advantage of the adaptive version over the non-
adaptive version:

Theorem 1. Let N € N, and Sy = {QVYX, for all
k € [kmax). Then, for any § > 0, with probability at least
1 — 0 over an iid draw of n examples (h;)}_;, the following
holds for any ¢ : R™ — R and k € [kmax]:

Enlo} Xﬁk
where o = supp,cy ¢k (h),

Nl [Gin(Ly) + In(N/S
~71=Z|n|\/ ( )2: (/)7

2NIn2+ 2111(1/6)

)+ a(Ji+TJ), (6)

Jo = ].{N > 2}\/
Proof. The proof is presented in Appendix O

Theorem 1 recovers the previous result of (Liu et al. 2021)
when we set N = 1 as desired. That is, by setting N = 1,
the inequality (6) in Theorem 1 becomes

Enf ()] < 5 > 0F @) @

N a\/Gl In(Ly) + In(1/5)

2n ’

which is the previous bound in Theorem 1 of Liu et al.
(2021). Thus, we successfully generalized the previous anal-
ysis framework to cover both the adaptive and non-adaptive
versions in an unified manner.

Theorem 1 shows that there are two ways that the adaptive
version can improve the non- adaptive version; i.e., the po-

tential improvement happens when Zt 1 ‘ﬁl Giyln(Ly) <
VG or Y0 68 (a(hi)) < LY, 65 (qr(h).
The first criterion is met when the weighted average of the
adaptive bottleneck sizes G In(L;) is smaller than the pre-
fixed bottleneck size GIn(L) = G;In(Ly). This is indeed
encouraged by the additional regularization, Cyottieneckings
in our algorithm. The second criterion is satisfied when the
training loss with adaptive bottlenecks is less than that with a
fixed bottleneck.

Theorem 1 provides the insight that the benefit of the adap-
tive bottlenecks lies in the tradeoff between the expressivity
(to minimize the training loss - Zz L #5(q(h;))) and gener-

alization (to minimize the term thl “Z‘ Gi1n(L)). Fora
fixed bottleneck, the training loss tends to decrease as G in-
creases because increasing G; improves the expressivity and
trainability. However, increasing (G; results in a worse bound
on the generalization gap as the gap scales as /G /n in The-
orem 1. Thus, we have a tradeoff between the expressivity
and generalization. For the adaptive bottlenecks, different
values of G; are used for different samples. As a result, the
adaptive bottlenecks can have a better tradeoff between ex-
pressivity and generalization by only using the necessary
expressivity or bottleneck G; (and L;) for each sample to
reduce Ziv 1 “:;l G4 1n(L4) while minimizing the training
loss 3+ 32, &7 (q(hi)).

For example, consider a scenario with a subset of training
samples that require G and L to be extremely large to min-
imize the training loss for the subset. If we use a pre-fixed
bottleneck, we need to make G In(L1) to be extremely large
to minimize all training samples. This results in a bad gen-
eralization term /G4 In(L1)/n in Theorem 1. On the other
hand, if we use the adaptive bottleneck, we can minimize the
training loss for all samples by using a large G In(L;) only
for the subset while using small values of G; In(L;) for other
samples.

In terms of these two criteria for the tradeoff, the adaptive
version seems to be always better as we increase N. However,
this better tradeoff comes with a cost. In Theorem 1, the cost

is captured by the additional term w, which

increases as NV increases. Thus, while the adaptive version is
better in the sense of the tradeoff of the two criteria, it comes



with the additional cost of \/N/n term. This predicts that N
cannot be arbitrarily large.

Related Works

Vector Quantization. VQ is motivated by the fundamental
result of Shannon’s rate-distortion theory (Gersho and Gray
1991; Cover and Thomas 2006): better performance can al-
ways be achieved by coding vectors instead of scalars, even if
the sequence of source symbols are independent random vari-
ables. K-means (MacQueen et al. 1967) is the prime method
for VQ. The K-means algorithm clusters data by trying to
separate the samples into n groups of equal variance, this by
minimizing the intra-class inertia. Despite the performance
of this algorithm, K-means based VQ has an exponential
complexity in encoding (computation and memory) and de-
coding (memory) (Tan et al. 2018). Various improvements
to K-means have been proposed to address complexity is-
sues (e.g., product quantization) (Ge et al. 2014), but their
performance is suboptimal compared to some deep neural net-
work (DNN) based approaches (Tan et al. 2018), where the
idea is to map input data from the original high dimensional
space to the DNN latent space with lower dimensionality,
and apply K-means to the latent codes. Because K-means
in the latent space is sub-optimal for VQ, Tan et al. (2018)
proposed DeepVQ, a fully-DNN architecture for vector quan-
tization, in the context of data compression. DeepVQ is an
autoencoder that overcomes the complexity issue by directly
mapping to the binary index of the codeword. Recent works
(Rolfe 2017; Maddison, Mnih, and Teh 2017) proposed novel
reparameterization methods to handle the non-gradient is-
sue for discrete random variables in VAE. VQ-VAE (Oord,
Vinyals, and Kavukcuoglu 2017) avoids such problem by
using the identity function, namely copying gradients from
the decoder input to encoder output (Bengio, Léonard, and
Courville 2013).

Bottlenecking inter-module communication within a
model. Many methods have been used in recent years to
enable efficient communication between specialized com-
ponents of machine learning models, from attention mech-
anisms for selectively communicating information between
specialized components in machine learning models (Goyal
et al. 2019, 2021b,a) and transformers (Vaswani et al. 2017,
Lamb et al. 2021); collective memory and shared parameters
for multi-agent communication (Pesce and Montana 2020),
node attributes in graph-based models (Koller and Friedman
2009; Battaglia et al. 2018) for relational reasoning, dynam-
ical systems simulation, multi-agent systems, and in many
other areas. While most of inter-specialist communication
mechanisms operates in a pairwise symmetric manner, Goyal
et al. (2021b) introduced a bandwidth limited communica-
tion channel to allow information from a limited number of
modules to be broadcast globally to all modules, inspired by
Global workspace theory (Baars 2019). Recently, Liu et al.
(2021) showed that replacing a continuous representation
with a discrete representation, and limiting the discrete rep-
resentation to a short list of codes from a small codebook,
both improve generalization guarantees. Following VQ-VAE
(Oord, Vinyals, and Kavukcuoglu 2017), Liu et al. (2021)
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proposed discrete-valued neural communication (DVNC) to
improve systematic generalization in a variety of architec-
tures, including transformers (Vaswani et al. 2017; Lamb
et al. 2021), RIMs (Goyal et al. 2020) , and graph neural
networks (Kipf, van der Pol, and Welling 2020).

Bottlenecking inter-agent communication in multi-agent
RL. A wide range of multi-agent applications have benefit-
ted from inter-agent message passing including distributed
smart grid control (Pipattanasomporn, Feroze, and Rahman
2009), consensus in networks (You and Xie 2011), multi-
robot control (Ren and Sorensen 2008), autonomous vehi-
cle driving (Petrillo et al. 2018), elevators control (Crites
and Barto 1998) and for language learning in two-agent sys-
tems (Lazaridou, Peysakhovich, and Baroni 2017). An impor-
tant challenge in MARL is how to facilitate communication
among interacting agents, especially in tasks requiring syn-
chronization (Scardovi and Sepulchre 2009; Wen et al. 2012).
For example, in the multi-agent deep deterministic policy
gradient (Lowe et al. 2020), which extends the actor-critic
algorithm (Degris, White, and Sutton 2013); the input size
of each critic increases linearly with the number of agents,
which hinders its scalability (Jiang and Lu 2018). To over-
come this, Pesce and Montana (2020) provides the agents
with a shared communication device that can be used to
learn from their collective private observations and share rel-
evant messages with others in the centralised learning and
decentralised execution paradigm (Foerster et al. 2016; Krae-
mer and Banerjee 2016; Oliehoek, Spaan, and Vlassis 2008).
However, their approach is limited to small-scale systems.
Igbal and Sha (2019) proposed Multi-Actor-Attention-Critic
to learn decentralised policies with centralised critics, which
selects relevant information for each agent at every time-step
through an attention mechanism. Many other communica-
tion mechanisms have been proposed, such as CommNet
(Sukhbaatar, Szlam, and Fergus 2016), IC3NEt (Singh, Jain,
and Sukhbaatar 2018), BiCNet (Peng et al. 2017), attention
(Jiang and Lu 2018) and soft-attention (Das et al. 2020) based,
master-slave architecture (Kong et al. 2017), Feudal Multia-
gent Hierarchies (Ahilan and Dayan 2019), Bayesian Action
Decoder (Foerster et al. 2019).

Experiments

In our experiments we test the hypothesis that imposing a
dynamic bottleneck on communication facilitates modular-
ization and improved out-of-distribution generalization to
data with heterogeneous representational coarseness com-
pared to a fixed bottleneck. We test our method in three
settings, 1) inter-component communication among different
components in the same model and test on in-distribution
homogeneous data , 2) same setting as 1) but test on out-
of-distribution data with representational coarseness hetero-
geneity among different data points and 3) inter-agent com-
munication in cooperative multi-agent reinforcment learning
(MARL) which natural have heterogeneity among observa-
tions of different agents.



Task/Model Continuous DVNC Adaptive Quantization(ours) | Adaptive Hierarchical(ours)
Alien 0.130 +0.023 | 0.152 4+ 0.026 0.170 £ 0.075 0.177 + 0.057
BankHeist 0.397 +0.043 | 0.371 4+ 0.057 0.406 4+ 0.037 0.414 + 0.084
Berzerk 0.436 + 0.250 | 0.584 = 0.011 0.630 = 0.016 0.580 4+ 0.021
Boxing 0.873 & 0.021 | 0.908 £ 0.068 0.929 4+ 0.031 0.957 + 0.041
MsPacman 0.152 + 0.037 | 0.135 £ 0.030 0.054 4+ 0.002 0.057 + 0.005
Pong 0.169 4+ 0.047 | 0.201 £ 0.035 0.205 4 0.068 0.225 + 0.031
shapes 0.674 £ 0.055 | 0.672 £ 0.053 0.664 + 0.034 0.692 + 0.065
Spacelnvaders | 0.138 4+ 0.037 | 0.199 4+ 0.085 0.258 + 0.103 0.232 +0.076

Table 1: Performance of different methods in bottlenecking inter-module communication in a visual reasoning model on

in-distribution test data
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Figure 2: Adaptive hierarchical bottlenecking show perfor-
mance advantages in out-of-distribution (OOD) test data with
high levels of heterogeneity. Graph neural networks with
adaptive hierachical bottlenecking (our method) in communi-
cation show high performance (left) and lower test loss (right)
than bottlenecking with fixed tightness (Liu et al. 2021) on
OOD test data with heterogeneous samples with different
image cropping. Heterogeneity levels indicate number of dif-
ferent augmentations applied on images in the OOD test data
set.

Experimental Setup

Discretize inter-module communication within a model.
We explore the effects of using DVQ to bottleneck inter-
module communication for visual reasoning tasks. The tasks
are to predict object movement in a grid world (referred
to as ‘““Shapes”) and 7 different Atari game environments.
In all of the environments, changes in each image frame
depend on the previous image frame and the actions applied
to different objects. Objects are captured by a convolutional
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Figure 3: Tighter bottlenecks are used in difficult tasks. A
positive correlation of both factor size (blue) and codebook
size (red) with model performance measured by reciprocal
rank (RR). The higher the RR, the better the model performs
in the task.

neural network and are passed to a Graph neural network
(GNN). Positions of objects are captured by nodes in the
GNN and the relative positions among different objects are
communicated through the network a discrete manner (Kipf,
van der Pol, and Welling 2020). In this work we apply either
DVQ or DVNC to discretize the vector sum of edges each
node is connected to. In the heterogeneous out-of-distribution
test data set, a different set of environmental images were
collected compared with the training set and different types
of image cropping were applied to the images in the OOD
test sets. Each image only receive one type of croppining and
the total number of different types of cropping applied to the
whole test set is defined as the heterogeneity level of the data
set. None of the image cropping types in OOD test set were
seen in training set.



Task/Model Continuous DVNC Adaptive Quantization(ours) | Adaptive Hierarchical(ours)
Alien 0.090 £ 0.013 | 0.102 &= 0.016 0.117 £ 0.045 0.117 £ 0.037
BankHeist 0.198 +0.022 | 0.251 4+ 0.052 0.270 4+ 0.049 0.271 £+ 0.033
Berzerk 0.335 +0.149 | 0.483 £ 0.009 0.501 £+ 0.015 0.512 £+ 0.015
Boxing 0.678 & 0.022 | 0.701 £ 0.018 0.710 4 0.033 0.761 £+ 0.021
MsPacman 0.099 + 0.012 | 0.110 £ 0.030 0.050 4+ 0.002 0.051 £+ 0.003
Pong 0.109 +0.037 | 0.120 = 0.014 0.135 4+ 0.023 0.145 £+ 0.032
shapes 0.410 = 0.045 | 0.559 + 0.066 0.600 £ 0.024 0.601 £ 0.035
Spacelnvaders | 0.102 + 0.017 | 0.109 4+ 0.035 0.168 + 0.63 0.182 + 0.086

Table 2: Adaptive bottlenecking in inter-module communication in a visual reasoning model on show performance advantages
on out-of-distribution test data with high level of heterogeneity(heterogeneity=10)

Bottleneck communication among reinforcement learn-
ing agents. To investigate the potential of using DVQ to
bottleneck communication among different reinforcement
learning agents, we conducted experiments in two MARL
environments with cooperative tasks. Multi-Agent Particle
Environment is a 2D cooperative MARL environment orig-
inally proposed in the MADDPG paper (Lowe et al. 2020).
There are 3 agents and 3 landmarks in a 2D space. In this
study, we use the cooperative navigation task (called *“Sim-
pleSpread”) where agents are required to cover all landmarks
while minimizing inter-agent collisions. The action space is
discrete and agents can move either up, down, left or right in
addition to a no-move “action”. Each agent only has a partial
view of the environment. In this work, we allow agents to
encode their partial view and send it as messages to other
agents. We apply discretization bottlenecks on the messages
each agent receives. The second MARL environment we use
is GhostRun. The environment consists of multiple agents,
each with a partial view of the ground below them. There
are multiple ghosts (red dots) moving randomly in the en-
vironment. All the agents work as a team to escape from
the ghosts. Once an agent has ghosts in its view, the team
receives negative rewards which are multiplied by the total
number of ghosts in the joint view of all agents. Similar to the
Particle environment, we allow agents to communicate with
each other by sending their encoded partial view as messages,
and we discretize the messages received by each agent.

Inter-module Communication

The bottlenecks were applied on edges of graphs in the
GNN linking nodes that represent objects in the image (Liu
et al. 2021). The visual reasoning tasks require the model to
forecast future scenes in the environments based on current
state and actions if available. Out of the 8 visual reasoning
tasks, DVQ slightly outperforms or matches fixed-bottleneck
DVNC in 7 tasks on the in-distribution test set (table 1), with
the adaptive hierarchical architecture best on average. On the
out-of-distribution test set with heterogeneity level 10, DVQ
significantly outperforms fixed-bottleneck DVNC in 7 tasks
(table 2), with the adaptive hierarchical architecture best on
average. In addition, we show that on average, DVQ have sim-
ilar performance as DVNC when heterogeneity level is low
but have better performance when heterogeneity level is high
(figure 2), which agrees with our hypothesis that adaptive bot-
tlenecking helps in data with heterogeneous representational
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coarseness. In addition, our ablation analyses show that the
observation we made above are robust to different number of
factors, codebook sizes, and other hyperparameters (appendix
figure).

Inter-agent Communication In Cooperative MARL

Next we investigate the potential benefits of using DVQ to
bottleneck information exchange among multiple agents in
two cooperative MARL tasks. Agents communicate with
each other in a broadcasting manner where each agent j
sends identical messages m;, the encoded partial obser-
vation of agent j, to all other team members simultane-
ously. Each agent in the cooperative game receive M; =
{m;+|0 < j < Nggents} from all agents in the team
at the same time and reads M, using an attention mech-
Lt s t\/d,n | where m/ , is the

M

anism m) , = softmax(

final message agent ¢ received from others at time step ¢ and
qfy = fq(mj.) and Ky = fr (M * t). Both f,,, and f, are
MLP encoders. At each time step, for each agent, m;t is
discretized. In DVQ, L € [16, 64,256] and G € [1,2,4]. In
the VQ baseline, L = 16 and G = 1. In the Particle environ-
ment, both dynamic hierarchical quantization and dynamic
quantization outperform VQ with fixed coarseness. In the
GhostRun environment, dynamic hierarchical quantization
outperforms the baseline and dynamic quantization ties with
the baseline (Figures in Appendix)

Task Difficulty And Bottleneck Tightness

In the sections above, our experiments showed that DVQ
outperforms VQ with fixed capacity in various tasks. Next,
we seek to understand behaviors of DVQ. In the visual rea-
soning tasks, difficulty varies significantly among different
games. For example, object movement in some Atari games
are more unpredictable than others. In addition, even within
the same game, difficulty many vary among episodes. This
motivates us to ask the question of whether the tightness of
bottleneck introduced by DVQ is influenced by how hard
a task is. To answer this, we first quantify difficulty of the
task based on the test performance of the visual reasoning
model. Reciprocal Ranks (RR) is used as the performance
metric where higher RR means better performance. Next, we
break down the capacity penalty into the factor loss, which
corresponds to penalty as a result of the number of factors,



and codebook size loss, which is the term that penalizes
high capacity caused by large codebook sizes. Our analy-
sis shows that both factor loss and codebook size loss have
positive correlation with RR, across the 8 tasks (Figure 3),
with stronger correlation in the case of number of factors.
Depending on the direction of causality in this observation,
it suggests that tighter bottlenecks are picked for hard tasks
either because of difficulty of optimization (when the optimal
level of bottleneck tightness is not found, the model tends to
undershoot capacity) or because harder tasks call for stronger
regularization from tighter bottlenecks.

Discretization Difficulty and Bottleneck Tightness

In addition to difficulty of the task itself, another dimension
to consider is the difficulty of discretization, which is largely
determined by distribution of the learned representation and
dynamics of the model. We estimate difficulty of discretiza-
tion using the discretization loss obtained during evaluation.
Recall that the discretization loss is averaged over factors.
We observed that DVQ tends to increase its capacity by in-
creasing both the number of factors and codebook size when
the discretization loss is high (appendix figures), which is rea-
sonable as high expressivity in inputs puts positive pressure
on decreasing the tightness of the bottleneck.

Conclusion

Effective communication between different specialized com-
ponents of a model or between different agents in a MARL
system requires compatible representations and synchronized
messages.

We have shown theoretically and empirically the benefits
of using a set of discretization functions with varying lev-
els of output capacity and choosing the function applied for
a given input using key-query attention, instead of using a
single discretization function that maps all inputs to a dis-
crete space of fixed size. Adaptively bottlenecking capacity
makes tightness dependent on inputs, which allows the gen-
eralization gap to be decreased. The experiments show that
performance is improved compared to using a fixed capacity
bottleneck across a range of tasks in visual reasoning and
multi-agent reinforcement learning.
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