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Abstract

With the increase of multi-view graph data, multi-view
graph clustering (MVGC) that can discover the hidden clus-
ters without label supervision has attracted growing atten-
tion from researchers. Existing MVGC methods are often
sensitive to the given graphs, especially influenced by the
low quality graphs, i.e., they tend to be limited by the ho-
mophily assumption. However, the widespread real-world
data hardly satisfy the homophily assumption. This gap lim-
its the performance of existing MVGC methods on low ho-
mophilous graphs. To mitigate this limitation, our motivation
is to extract high-level view-common information which is
used to refine each view’s graph, and reduce the influence
of non-homophilous edges. To this end, we propose dual
label-guided graph refinement for multi-view graph cluster-
ing (DuaLGR), to alleviate the vulnerability in facing low
homophilous graphs. Specifically, DuaLGR consists of two
modules named dual label-guided graph refinement module
and graph encoder module. The first module is designed to
extract the soft label from node features and graphs, and then
learn a refinement matrix. In cooperation with the pseudo
label from the second module, these graphs are refined and
aggregated adaptively with different orders. Subsequently, a
consensus graph can be generated in the guidance of the
pseudo label. Finally, the graph encoder module encodes the
consensus graph along with node features to produce the
high-level pseudo label for iteratively clustering. The experi-
mental results show the superior performance on coping with
low homophilous graph data. The source code for DuaLGR
is available at https://github.com/YwL-zhufeng/DuaLGR.

Introduction
As an important task in unsupervised learning, multi-view
clustering (MVC) keeps attracting attention in the past
decade. The goal of MVC is to partition the objects into dif-
ferent classes by exploiting on the consistency and comple-
mentarity across multiple views. Generally, the conventional
MVC methods can be mainly divided into two categories:
multi-view subspace clustering and multi-view graph-based
clustering. The former is dedicated to learning a consensus
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Datasets Graphs Edges Homo-edges HR

ACM G1 26256 21550 0.82
G2 2207736 1411658 0.64

DBLP
G1 7056 5636 0.80
G2 4996438 3346042 0.67
G3 6772278 2183134 0.32

Texas G1 574 50 0.09

Chameleon G1 62792 14476 0.23

Table 1: The description about edges and homophily ratio
(HR) of four graph datasets. G represents different views of
each dataset; the third column represents the number of all
edges in specific view without self-loop; the fourth column
means the number of homophilous edges; HR denotes the
homophily ratio defined as homo-edges / edges.

subspace representation through the learning and compari-
son of different views (Yang et al. 2022; Huang et al. 2021;
Tan et al. 2021; Xu et al. 2021). The latter usually focuses on
mining graph structure information in features and obtain-
ing assignment results via Laplace matrix eigendecomposi-
tion (Liang et al. 2022; Qiang et al. 2021; Zhong and Pun
2022). In recent years, MVC methods achieve impressive
performance. However, they are not competent in dealing
with graph data with both conventional features and graph
structure information as they tend to only focus on the fea-
ture or graph information while ignoring the other one.

Graph data are rich in structural information, thanks to
which graph neural networks (GNNs) have achieved impres-
sive success (Kipf and Welling 2016a; Cotta, Morris, and
Ribeiro 2021; Zhang et al. 2022; Tse et al. 2022). Consid-
ering that GNNs can simultaneously exploit the informa-
tion implied in features and graphs, some works attempt
to employ GNNs on multi-view graph clustering (MVGC),
such as O2MAC (Fan et al. 2020), MAGCN (Cheng et al.
2020), MVGRL (Hassani and Khasahmadi 2020). The de-
velopment of these methods has brought a breakthrough
in MVGC. However, the GNNs on which these methods
rely are based on the homophily assumption, i.e., edges
tend to connect similar nodes. The graph data in real-world
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scenarios often cannot fully satisfy this assumption, and
there may be a large number of non-homophilous edges that
connect the nodes from different classes, violating the ho-
mophily assumption. For example, Table 1 lists the num-
ber of edges, homophilous edges (Homo-edges) and ho-
mophily ratio (HR) of four widely used graph datasets. As
shown, these graphs are filled with great numbers of non-
homophilous edges, especially the G3 of DBLP (HR 0.32),
Texas (HR 0.09) and Chameleon (HR 0.23). Due to the ag-
gregation operation of GNNs, these noisy edges keep aggre-
gating feature representations from different classes, which
will have cascading effects with iterations, and thus affect
the distinguishability of clusters (Zhu et al. 2021). In such
a scenario, these homophily assumption based MVGC ap-
proaches may be ineffective.

To alleviate the limitations of existing MVGC methods
in low homophilous graphs, we propose a dual label-guided
graph refinement framework for multi-view graph cluster-
ing (named DuaLGR). With the absence of labels, we try
to make full use of the extracted high-level class informa-
tion, i.e., soft label and pseudo label. In specific, DuaLGR
consists of two modules, i.e., dual label-guided graph refine-
ment module and graph encoder module. On basis of the soft
label extracted from a pretrained autoencoder, a refinement
matrix can be learned. In cooperation with the pseudo label
from the followed graph encoder module, the graph of each
view can be aggregated adaptively and then refined by the
refinement matrix. With the guidance of the pseudo label
which carries the global information, the graphs are fused
to generate a consensus graph. Finally, the graph encoder
module is responsible for encoding the graphs along with
node features, and evaluating the predictions for each view.
In this way, the dual label-guided graph refinement mod-
ule helps the graph encoder module to encode node features
along with the global consensus graph. Thus, more distin-
guishable representations can be generated for clustering,
and the graph encoder module in turn facilitates the dual
label-guided graph refinement module for learning a better
refinement matrix and generating a better consensus graph.
To summarize, our main contributions are listed as follows:

• We propose a dual label-guided graph refinement frame-
work for multi-view graph clustering task in low ho-
mophilous graphs. In the framework, the extracted soft
label and pseudo label are fully exploited to learn a re-
finement matrix to refine the graphs, so the negative in-
fluence of non-homophilous edges is mitigated.

• We propose to use the pseudo label that carries global
high-level class information to adjust the aggregation of
graphs adaptively and to evaluate the weight of each
view, and thus a consensus graph is generated for clus-
tering.

• Experiments on widely used homophilous and low ho-
mophilous graph datasets demonstrate that DuaLGR has
competitive performance with SOTAs, and it can better
deal with the low homophilous data.

Related Works
In order to explore the feature information and graph struc-
tural information simultaneously, many methods seek help
from GNNs to solve the MVGC tasks. O2MGC is the first
work that attempts to employ the novel GNN for MVGC,
which encodes the attributed multi-view graphs to a low-
dimensional space by utilizing single-view graph convolu-
tional encoder and multi-view graph structure decoder (Fan
et al. 2020). Subsequently, Cheng et al. design two-pathway
graph encoders to map graph embedding features and learn
view-consistency information (Cheng et al. 2020). Hassani
and Khasahmadi introduce a GNN solution to learn node and
graph level representations for multi-view self-supervised
learning (Hassani and Khasahmadi 2020). Lin and Kang ap-
ply a graph filter to smooth the features and learn a consen-
sus graph for clustering (Lin and Kang 2021). Pan and Kang
utilize contrastive learning to dig out the shared geometry
and semantics for learning a consensus graph (Pan and Kang
2021). Despite the attractive performance of these methods,
they are often sensitive to the quality of graph structure. In
other words, low homophilous graphs may lead to unsatis-
factory performance when they are ignored in model design.

In recent years, some efforts have been extended to deal
with the low homophilous graphs (Lim et al. 2021; Suresh
et al. 2021). Chien et al. address heterophily and over-
smoothing by propagating with special learnable weight in
GNN (Chien et al. 2021). Wang et al. introduce two mea-
surements of homophily degree to change the propagation
and aggregation process adaptively (Wang et al. 2022). He
et al. introduce block modeling to implement automatically
learning of the corresponding aggregation rules for neigh-
bors of different classes (He et al. 2022). These improve-
ments, to some extent, have alleviated the problem of low
homophilous graphs. However, all these methods require la-
bel information when training, which is not applicable to un-
supervised tasks. In this work, we propose DuaLGR to solve
the difficulty of MVGC in low homophilous graphs. Du-
aLGR could extract dual label information in unsupervised
settings to learn a refinement matrix to refine the graphs and
generate a consensus graph for clustering.

Methodology
Notations. Given a multi-view graph data G(X,Av) with
shared feature X ∈ Rn×d, the undirected adjacent matrix
Av = {avij |avij ∈ {0, 1}} from v-th view represents the rela-
tionships between nodes. Specifically, aij = 1 means there
exists an edge between node i and node j. For an MVGC
task, its objective is to divide the n nodes into c classes. In
this work, Av is normalized as Ãv = (Dv)−1Av , where
diagonal matrix Dv

ii =
∑

j a
v
ij represents the degree matrix.

Motivation and Overview
Facing graph data with numerous noisy edges, i.e., non-
homophilous edges, an intuitive idea is to refine the graphs
so as to highlight the role of homophilous edges and re-
duce the influence of non-homophilous edges. However, in
MVGC task, how to refine the graphs without the label in-
formation is challenging.
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Figure 1: The illustration of DuaLGR. It consists of two main modules: dual label-guided graph refinement and graph encoder.
With the guidance of dual labels, the first module refines the multiple high-order A

v
of each view by learning a refinement

matrix, and then generates a global graph S through a weighted summation operation. The second module encodes the graph
and features together to produce pseudo label. After finishing training, the second module also obtains the final predictions.

Specifically, since no true label is provided, it is difficult
to get guidance information from given unreliable graphs
to refine the graphs themselves. To address this problem,
firstly, we try to extract the high-level soft label contain-
ing more accurate and reliable consensus information from
shared features and multiple graphs. The intuition comes
from that the view-common information must be more re-
liable. Therefore, the soft label can be used to guide the pro-
cess of each specific graph refinement.

On the other hand, the forward propagation of our graph
encoding module can well integrate feature with multiple
graphs together, and extract label information from them.
So, the final predictions can be regarded as pseudo label,
and they can be used to guide the update and the fusion of
each refined graph. To sum up, the proposed refinement pro-
cess is guided by dual labels (soft label and pseudo label),
generating a better consensus graph, and this in turn leads to
better label information. In this way, the model is optimized
alternatively. The overall process of proposed DuaLGR is
shown in Figure 1.

Soft Label Guided Graph Refinement
Soft label learning. There are abundant class informa-
tion and view-common information implied in node features
and graphs, and these information can be mined to gener-
ate a refinement matrix. Given the excellent information ex-
traction capability of autoencoder (Hinton and Salakhutdi-
nov 2006), we first pretrain an autoencoder to extract the
high-level semantic information, i.e., soft label, from the

shared node features X and graphs Av of different views.
Specially, the encoder Zf = f(σ(X;Wθ)) and decoder
Xf = g(σ(Zf ;Wϕ)) are used to encode and reconstruct
the shared feature X, where Zf ∈ Rn×c, c is the number of
classes, Wθ and Wϕ are learnable parameters for f(·) and
g(·), and σ(·) is activation function.

In order to enforce the encoder to mine more common
semantics across all views simultaneously, we define the au-
toencoder based reconstruction loss as:

L′
Rec = l(Xf ;X) +

V∑
v=1

l(σ(ZfZ
T
f );A

v), (1)

where l(·; ·) is loss function, and σ(·) is activation function,
instantiated as cross entropy and sigmoid here, respectively.

Soft label guided graph refinement. We consciously
compress the shared feature X from d-dimension to c-
dimension, thus the learned soft label Zf summarizes both
the class information of node features and common informa-
tion from all views with the constraint of L′

Rec. Considering
the Zf cannot directly guide the refinement of graphs, we
calculate a refinement matrix by it as follows:

Ω = ZfZ
T
f . (2)

The obtained Ω is a matrix that describes the similarity of
nodes. In other words, it indicates the intensity of the exis-
tence of an edge between two nodes. Since the soft label Zf

contains the feature information from node features and the
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first-order structural consensus information from different
graphs, the obtained Ω can provide guidance for the refine-
ment of low homophilous graphs. In this work, we first quan-
tize the dense Ω and then define the refinement of graphs
under the guidance of soft label as:

A
v
= αAv +Ω, (3)

where α is a hyperparameter that controls the influence of
the homophily of the graph acorss different views.

Intuitively, since Ω contains class information and global
common information, it can bring global complementary
information to each graph. When a particular graph is
a low homophilous graph, Ω can reinforce or generate
homophilous edges; when this particular graph is a ho-
mophilous graph, Ω naturally reinforces its homophily.

Pseudo Label Guided Graph Refinement and
Graph Fusion
Pseudo label guided graph refinement. Av in Eq. (3) is
defined as the first-order neighborhood relationship. More-
over, high-order graph structure can capture more relation-
ships (Chen et al. 2020), as different orders of Av contain
different structural information. Therefore, we consider the
multiple neighborhood relationship as:

Av
k =

1

k

k∑
i=1

(Av)i =
1

k
(Av + (Av)2 + ...+ (Av)k), (4)

where k denotes the order of neighborhood relationship ag-
gregation.

However, the HR of different graphs is different, aggre-
gation of the homophilous graph with high HR can dis-
cover similar nodes, while high-order aggregation of low ho-
mophilous graph with low HR tends to deteriorate the whole
network. Therefore, each graph aggregated with the same or-
der may not be an effective way. Naturally, the homophilous
graphs shall be assigned a high order to exploit as many as
neighborhoods as possible, while low homophilous graphs
shall be assigned a low order to reduce the influence of non-
homophilous edges. Faced with the challenge of unsuper-
vised learning, the quality of each graph cannot be evaluated
precisely. So, we seek help from the final pseudo label in the
current iteration to evaluate the HR of each view’s graph.
Specifically, we calculate the HR of each graph Av by the
pseudo label Ys as follows:

HRv =
sum(Av ⊙BBT − I)

sum(Av − I)
, (5)

where, sum(·) represents the summation operation, ⊙ repre-
sents the Hadamard product, B ∈ {0, 1}n×c is the one-hot
encoding of the pseudo label Ys, and I denotes the identity
matrix.

With the guidance of the pseudo label Ys, the obtained
HRv reflects the homophily of Av relative to Ys, i.e., the
confidence of the graph quality about Ys. On basis of the
confidence, the order of the specific graph Av can thus be
determined by:

odv =

{
0, if HRv ≤ ε,⌊
1

1−HRv

⌋
, if HRv > ε,

(6)

where ⌊·⌋ is floor operation, and ε is a cut-off to filter out
low homophilous graphs.

Via Eq. 6, the low homophilous graph will be assigned a
small order odv , and even it will be discarded when HR is
less than the cut-off ε. In contrast, the homophilous graph
with high HR will be assigned a higher order odv accord-
ingly. Finally, each view’s graph Av is refined with the guid-
ance of the dual labels:

A
v
= αAv

odv +Ω. (7)

Here, since odv is derived from the global pseudo label
Ys, it will be adjusted adaptively with Ys updating during
the iteration.

Pseudo label guided graph fusion. Av in different views
have complementary information, and it is important to in-
tegrate them for a consensus graph S. Intuitively, weighting
and summing up each refined A

v
is a simple yet effective

way. However, clustering is an unsupervised task without
label information for guidance, how to weight each A

v
is

challenging. To address this problem, we utilize the pseudo
label Ys to score each view with scorev , which is obtained
from the graph encoding module, to determine the weights
of each view. With the {scorev}Vv=1, we can calculate the
weight ωv of each view A

v
by:

ωv = (
socrev

max (score1, score2, ..., scoreV )
)p, (8)

where p is a smooth-sharp parameter. When p ∈ [0, 1], it
mainly plays a smoothing role. When p > 1, it will sharpen
the differences between views.

Finally, the global consensus graph S can be obtained:

S =
V∑

v=1

ωvA
v
=

V∑
v=1

αωvAv
odv + ωvΩ, (9)

where, V denotes the number of views.

Graph Encoding and View Evaluation
As shown in Figure 1, the input of the graph encoding mod-
ule is shared feature X, refined multiple high-order neigh-
borhood relationship A

v
and the consensus graph S. The

aim of this module is to encode the shared feature X along
with the structural information to generate the latent em-
bedding for training or clustering. Specifically, we train a
parameter-shared GNN to encode shared feature X with the
refined A

v
and S:

Hv = GNN(Ãv,X;Wξ), Hs = GNN(S̃,X;Wξ),
(10)

where GNN(·) represents a graph convolution operation
which contains two linear layers, Ãv and S̃ denote the nor-
malization of A

v
and S respectively, Wξ are the trainable

parameters for the shared GNN.
Since Ãv and S̃ have contained the high-order structural

information, the shared feature X is only aggregated once
followed by an activation function, and no more aggregation
or nonlinear layers are stacked behind.
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In addition, without the guidance of the ground truth, the
quality of each view can not be completely determined so
as to guide the graph fusion process. Since the latent em-
bedding Hs of the consensus graph S contains the global
common information from all views, we naturally treat the
pseudo label Ys obtained from it as ground truth to evaluate
the clustering score (scorev) of the predictions from each
view Hv . Specifically, the scorev can be calculated by:

scorev = metric(kmeans(Hv),Ys), (11)

where, metric(·) denotes the calculation of metrics such as
accuracy, and kmeans(·) represents the k-means algorithm.

Model Optimization
In DuaLGR, in order to preserve information as much as
possible, we stack a multilayer perceptron (MLP) decoder to
reconstruct X and Av from Hs by σ(HsHsT ). Specifically,
the reconstruction loss can be defined as:

LRec = l(MLP (Hs);X) +
V∑

v=1

l(σ(HsHsT );Av), (12)

where l(·; ·) is loss function, and σ(·) is activation function
(cross entropy loss and sigmoid function used in this work).

For multi-view clustering, the KL divergence loss is
adopted following the previous related work (Zhao et al.
2021; Ren et al. 2022). We first measure Hs to calculate the
distribution Qs of pseudo label by Student’s t-distribution:

qsij =
(1 + ||Hs

i − µs
j ||2)−1∑

j (1 + ||Hs
i − µs

j ||2)−1
, (13)

where µs are learnable parameters, which are adopted as the
centroids in K clusters and are initialized by performing k-
means on Hs.

And then, the target distribution Ps can be derived from
the Qs:

psij =
(qsij)

2/
∑

i q
s
ij∑

j ((q
s
ij)

2/
∑

i q
s
ij)

. (14)

Thus, the KL divergence loss is specified as follows:

LKL =
V∑

v=1

KL(Ps||Qv) +KL(Ps||Qs). (15)

The LKL on the one hand encourages the framework to
learn more discriminative latent embeddings Hv , and on the
other hand, enforces the soft distribution of each view to fit
the global graph’s latent embeddings Hs.

Finally, the loss function is formulated as:

L = LRec + γLKL, (16)

where, γ denotes the trade-off parameter.

Experiments
Experimental Setup
Datasets. The datasets consist of three categaries i.e., two
raw high homophilous datasets, two raw low homophilous
datasets and six synthetic datasets. The specific statistics in-
formation of these datasets is summarized in Table 2.

Datasets Clusters Nodes Features Graphs HR

ACM 3 3025 1830
G1 0.82
G2 0.64

DBLP 4 4057 334
G1 0.80
G2 0.67
G3 0.32

Texas 5 183 1703 G1 0.09

Chameleon 5 2277 2325 G1 0.23

Table 2: The statistics information of the four graph datasets.

• Homophilous graph datasets: two widely used ho-
mophilous multi-graph data, including ACM and DBLP.
ACM is a paper network from the ACM database1 and
consists of two graphs, i.e., co-paper and co-subject,
whose HR are 0.82 and 0.64 respectively. DBLP is an
author network from DBLP database2. Three graphs, co-
author (HR 0.80), co-conference (HR 0.67) and co-term
(HR 0.32), compose the dataset.

• Low homophilous graph datasets: Texas and Chameleon
are adopted to test the performance of DuaLGR in low
homophilous graphs. Texas is a webpage graph from We-
bKB3 with an HR of 0.09. Chameleon (HR 0.23) is a
subset of the Wikipedia network (Rozemberczki, Allen,
and Sarkar 2021). Since Texas and Chameleon are single-
view graph data, we copy the graph as the second view.

• Synthetic graph datasets: in order to observe the perfor-
mance of DuaLGR on low homophilous graph data more
intuitively, we take ACM as an example, and generate
low HR graphs with the same number of edges of each
view’s graph for the test. The HR of these graphs are
[0.00, 0.10, 0.20, 0.30, 0.40, 0.50] respectively.

Baselines. Several baselines are reproduced for compari-
son with DuaLGR.
• Single view clustering: Line (Tang et al. 2015) and

VGAE (Kipf and Welling 2016b) are two classical
single-view clustering methods.

• Graph besed multi-view clustering: PMNE (Liu et al.
2017), SwMC (Nie et al. 2017) and MNE (Zhan et al.
2018) are traditional MVGC methods based on graph
embedding. RMSC (Xia et al. 2014) is a multi-view spec-
tral clustering method.

• Multi-view graph clustering: O2MAC (Fan et al. 2020)
is the method that learns from both node features and
graphs. MvAGC (Lin and Kang 2021) and MCGC (Pan
and Kang 2021) are two recent methods based on graph
filter to learn a consensus graph for clustering.

For ACM and DBLP, the results of baselines are drawn
from the best in literature. For othter raw data, including

1https://dl.acm.org/
2https://dblp.uni-trier.de/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

11/www/wwkb
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Methods / Datasets ACM (HR 0.82 & 0.64) DBLP (HR 0.87 & 0.67 & 0.32)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

RMSC (2014) 39.7 33.1 63.2 57.5 71.1 76.5 89.9 82.5
LINE (2015) 39.4 34.3 64.8 65.9 66.8 69.9 86.9 85.5

VGAE (2016b) 49.1 54.4 82.2 82.3 69.3 74.1 88.6 87.4
PMNE (2017) 46.5 43.0 69.4 69.6 59.1 52.7 79.3 79.7
SwMC (2017) 8.4 4.0 41.6 47.1 37.6 38.0 65.4 56.0

MNE (2018) 30.0 24.9 63.7 64.8 − − − −
O2MAC (2020) 69.2 73.9 90.4 90.5 72.9 77.8 90.7 90.1
MvAGC (2021) 67.4 72.1 89.8 89.9 77.2 82.8 92.8 92.3

MCGC (2021) 71.3 76.3 91.5 91.6 83.0 77.5 93.0 92.5
DuaLGR (ours) 73.2 79.4 92.7 92.7 75.5 81.7 92.4 91.8

Methods / Datasets Texas (HR 0.09 & 0.09) Chameleon (HR 0.23 & 0.23)

VGAE (2016b) 12.7± 4.4 21.7± 8.4 55.3± 1.8 29.5± 3.1 15.1± 0.7 12.4± 0.6 35.4± 1.0 29.6± 1.7
O2MAC (2020) 8.7± 0.8 14.6± 1.8 46.7± 2.4 29.1± 2.4 12.3± 0.7 8.9± 1.2 33.5± 0.3 28.6± 0.2
MvAGC (2021) 5.4± 2.8 1.1± 4.1 54.3± 2.6 19.8± 5.1 10.8± 0.8 3.3± 1.7 29.2± 0.9 24.3± 0.5

MCGC (2021) 12.7± 2.9 12.9± 3.8 51.9± 0.9 32.5± 1.8 9.5± 1.3 5.9± 2.7 30.0± 2.0 19.1± 0.8
DuaLGR (ours) 32.6± 0.5 26.0± 0.6 54.3± 0.3 46.8± 0.3 19.5± 1.0 16.0± 0.6 41.1± 0.8 37.7± 1.5

Table 3: The clustering results on two raw homophilous graph datasets and two raw low homophilous graph datasets. The best
results are shown in bold, and the results which are not reported in the original papers are denoted by ‘−’. For ACM and DBLP,
there are no ‘std’ values as the results of compared methods are drawn from their original papers where the ‘std’ is absence.

Methods / Datasets ACM (HR 0.00 & 0.00) ACM (HR 0.10 & 0.10)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016b) 0.5± 0.3 0.5± 0.4 37.4± 1.4 37.1± 1.6 0.5± 0.3 0.5± 0.3 37.1± 1.0 35.6± 2.3
O2MAC (2020) 25.0± 15.6 24.7± 15.2 55.0± 11.6 54.6± 11.5 17.6± 14.7 17.1± 14.3 49.9± 12.1 49.7± 12.0
MvAGC (2021) 0.9± 0.4 0.9± 0.4 37.1± 0.7 35.5± 3.8 1.9± 0.4 2.0± 0.4 40.9± 1.6 39.1± 4.5

MCGC (2021) 49.8± 22.7 42.9± 19.6 63.0± 10.4 53.5± 5.1 52.9± 20.8 44.7± 17.9 63.9± 8.5 54.6± 3.1
DuaLGR (ours) 55.1± 0.0 60.7± 0.0 84.8± 0.0 84.5± 0.0 55.9± 0.0 61.7± 0.0 85.3± 0.0 85.0± 0.0

Methods / Datasets ACM (HR 0.20 & 0.20) ACM (HR 0.30 & 0.30)

VGAE (2016b) 0.4± 0.4 0.4± 0.4 36.9± 1.2 34.9± 2.3 0.7± 0.5 0.7± 0.5 38.0± 1.2 37.6± 1.5
O2MAC (2020) 9.6± 13.9 9.4± 13.5 42.9± 11.8 42.8± 11.7 6.7± 12.3 6.5± 12.0 40.7± 10.3 40.5± 10.2
MvAGC (2021) 5.3± 3.1 5.6± 3.4 45.7± 5.1 45.4± 5.3 15.4± 5.7 16.5± 5.9 57.7± 5.4 57.7± 5.5

MCGC (2021) 29.1± 5.4 31.7± 9.5 67.7± 8.2 67.2± 7.8 51.8± 9.0 57.2± 12.7 83.0± 6.7 82.9± 6.6
DuaLGR (ours) 59.2± 0.0 66.0± 0.0 87.3± 0.0 87.1± 0.0 60.2± 0.1 67.6± 0.0 88.0± 0.0 88.0± 0.0

Methods / Datasets ACM (HR 0.40 & 0.40) ACM (HR 0.50 & 0.50)

VGAE (2016b) 9.7± 2.5 8.1± 1.9 48.4± 3.0 49.0± 2.8 26.2± 6.1 27.0± 10.1 65.9± 7.8 66.4± 7.3
O2MAC (2020) 5.5± 11.0 5.4± 10.7 40.3± 9.3 40.2± 9.2 6.6± 11.1 6.7± 11.4 42.7± 10.8 42.6± 10.8
MvAGC (2021) 36.9± 4.2 39.5± 5.3 74.0± 3.1 74.2± 3.0 64.6± 3.7 71.1± 3.6 89.4± 1.5 89.4± 1.5

MCGC (2021) 83.9± 3.1 88.8± 2.9 96.2± 1.0 96.2± 1.0 91.0± 2.0 94.4± 1.4 98.1± 0.5 98.1± 0.5
DuaLGR (ours) 85.1± 0.6 90.1± 0.7 96.6± 0.2 96.6± 0.2 97.8± 0.1 98.9± 0.1 99.6± 0.0 99.6± 0.0

Table 4: The clustering results on six synthetic ACM graph datasets with different HR. The best results are shown in bold.

Texas and Chameleon, and synthetic data, all baselines are
conducted for 5 times and report the averages with standard
deviations to have a fair comparison.

Metrics. Following previous works, four commonly used
metrics, i.e., normalized mutual information (NMI), ad-
justed rand index (ARI), accuracy (ACC) and F1-score (F1),
are adopted to evaluate the clustering performance.

Overall Results
Raw data. The overall clustering results in the four real-
world graph datasets are shown in Table 3. The results on
homophilous graph datasets, i.e., ACM and DBLP, demon-

strate that the proposed DuaLGR has competitive perfor-
mance with SOTAs, especially with comparable clustering
results on ACM. When faced with the low homophilous
graphs, i.e., Texas and Chameleon, these SOTAs become
worse dramatically, while DuaLGR has outstandingly su-
perior performance. Specifically, DuaLGR improves NMI
by about 19.9% on Texas and 4.4% on Chameleon. In ad-
dition, although VGAE also performs well, it has signifi-
cant performance fluctuations (standard deviation of NMI
on Texas is 4.4), while DuaLGR is more stable (standard
deviation of NMI on Texas is 0.5). These results imply that
the proposed DuaLGR has competitive performance on ho-
mophilous graphs and excellent performance on low ho-
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Compenents / Datasets Raw ACM (HR 0.82 & 0.64) Synthetic ACM (HR 0.20 & 0.20)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

DuaLGR (w/o LRec) 1.7 1.8 41.1 41.0 0.07 0.06 37.0 36.5
DuaLGR (w/o LKL) 70.8 76.4 91.5 91.5 59.2 65.8 87.1 87.0

DuaLGR (w/o Ω) 61.8 65.8 86.9 86.9 44.5 48.6 79.0 78.6
DuaLGR (w/o odv) 65.2 66.6 86.9 87.0 52.7 58.8 84.0 83.7

DuaLGR-original 72.0 78.0 92.1 92.1 59.2 66.0 87.3 87.1

Table 5: The ablation study results of DuaLGR on raw ACM and synthetic ACM. The original results are shown in bold.

mophilous graphs, which alleviates the dilemma of MVGC
on low homophilous graphs.

Synthetic data. Table 4 reports the performance of four
SOTAs and DuaLGR on the six synthetic ACM datasets.
In general, DuaLGR outperforms all SOTAs in the low ho-
mophilous graph, especially HR in the range of 0.00-0.20.
As the HR decreases, all methods show varying degrees
of performance degradation. Taking MvAGC as an exam-
ple, the ACC dropped from 89.4% (HR 0.50) to 37.1%
(HR 0.00), which indicates that the low homophilous graph
severely constrains the performance of these methods. How-
ever, the proposed DuaLGR still has an ACC of 84.8% when
HR is 0.00, because the refined graph can reduce the influ-
ence of non-homophilous edges with the guidance of dual
labels.

Ablation Studies and Analysis
The ablation study results of DuaLGR are presented in this
subsection, including the effect of each component, conver-
gence analysis, and parameter sensitive analysis. For sim-
plicity, the ablation studies are conducted on the multi-graph
dataset ACM and synthetic ACM with HR 0.20 which has
enough homophilous edges and non-homophilous edges.

Effect of each loss. In order to understand the significance
of components of the proposed DuaLGR, we remove each
loss individually to observe the change in performance. The
performance without a specific component is listed in Ta-
ble 5, as can be seen, the performance of DuaLGR will
decrease with the absence of each component. Specifically,
LRec plays a significant role in DuaLGR, while LKL seems
to be faint.

Effect of each label’s guidance. In Table 5, we remove
each component, i.e., Ω and odv , to see the influences
from the guidance of the two labels respectively. As we
can see, the contributions of Ω and odv are similar on ho-
mophilous graphs, while on low homophilous graphs it is
Ω that contributes more, implying that the influence of non-
homophilous edges is attenuated with the refinement of Ω.

Convergence analysis. The left side of Figure 2 depicts
the trend of the loss with epoch in the training process. On
homophilous graphs, DuaLGR can converge more smoothly
and quickly. Despite the constraints of low homophilous
graphs, DuaLGR can still converge through the graph re-
finement process with the guidance of dual labels.
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Figure 2: Convergence analysis (left) and parameter sensi-
tive analysis (right) on ACM and synthetic ACM (HR 0.20).

Parameter sensitive analysis. The right side of Figure 2
shows the parameter sensitive analysis about α. α controls
the influence of given graphs, which means the larger the α
is, the lower the refining extent is, and vice versa. From the
right side of Figure 2, on ACM dataset, the highest ACC is
92.1% when α = 1, compared to 91.6% and 91.4% when
α = 0.1 and α = 10 respectively. This demonstrates that
on the homophilous dataset, we can also obtain a satisfac-
tory result when the extent of refinement is small. In con-
trast, on the synthetic low homophilous dataset ACM (HR
0.20), it is clear that the highest location is α = 0.1 where
the extent of refinement is largest. This shows that on the
low homophilous graphs, the refinement process contributes
largely to the results.

Conclusion and Future Work
In this work, we try to mitigate the reliance of most exist-
ing MVGC methods on homophily assumption, and focus
on the idea of graph refinement, proposing dual label-guided
graph refinement framework for multi-view graph cluster-
ing (DuaLGR). Specifically, DuaLGR extracts high-level se-
mantic and view-common information to generate soft-label
and pseudo label. The dual labels are then conducted to
guide the graph refinement and fusion process. Our exper-
imental results demonstrate the necessity of refining the low
homophilous graphs, and the effectiveness of the proposed
dual label guidance. We also show superior clustering per-
formance on both real-world and synthetic low homophilous
multi-view graphs datasets. In future works, we will try to
extent the proposed dual label-guided graph refinement idea
to more unsupervised tasks, such as traditional multi-view
clustering and single-view graph clustering tasks.
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