
On the Expressive Flexibility of Self-Attention Matrices

Valerii Likhosherstov1*, Krzysztof Choromanski2*, Adrian Weller1,3

1University of Cambridge
2Google Brain

3The Alan Turing Institute
vl304@cam.ac.uk

Abstract

Transformer networks are able to capture patterns in data
coming from many domains (text, images, videos, proteins,
etc.) with little or no change to architecture components.
We perform a theoretical analysis of the core component re-
sponsible for signal propagation between elements, i.e. the
self-attention matrix. We ask the following questions: Can
a self-attention matrix approximate arbitrary patterns?
How small is the query dimension d required for such ap-
proximation? Our first result shows that the task of deciding
whether approximation of a given pattern is possible or not
is NP-hard for a fixed d > 1. In practice, the self-attention
matrix typically exhibits two properties: it is sparse, and it
changes dynamically depending on the input to the module.
Motivated by this observation, we show that the self-attention
matrix can provably approximate sparse matrices. While the
parameters of self-attention are fixed, various sparse matri-
ces can be approximated by only modifying the inputs. Our
proof is based on the random projection technique and uses
the seminal Johnson-Lindenstrauss lemma. In particular, we
show that, in order to approximate any sparse matrix up to
a given precision defined in terms of preserving matrix el-
ement ratios, d grows only logarithmically with the se-
quence length n (i.e. d = O(logn)).

Introduction
Transformer networks have demonstrated strong perfor-
mance in the area of large-scale deep learning, coming close
to or beating the state of the art in a wide range of tasks. Ini-
tially proposed in the context of neural machine translation
(Vaswani et al. 2017), Transformers were found to general-
ize well across a variety of natural language processing tasks
when pretrained on large text corpora (Devlin et al. 2019;
Radford et al. 2019; Brown et al. 2020). These successes fa-
cilitated the application of Transformers in other domains.
For instance, in biology, Transformers pretrained on large
corpora of proteins were shown to predict proteins’ struc-
ture and function (Elnaggar et al. 2019; Rives et al. 2021),
and to generate protein sequences with specific properties
(Madani et al. 2020). Another exciting advancement was the
emergence of Vision Transformers (Dosovitskiy et al. 2021)
and, later, Video Vision Transformers (Arnab et al. 2021).

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Thus, Transformers appear domain-agnostic and can learn
any priors once a suitable large-scale dataset is provided.
Finally, Transformers were recently shown to be applica-
ble for end-to-end training on large-scale multimodal data of
images with textual annotations extracted from the Internet
(Radford et al. 2021; Jia et al. 2021). The resulting models
are highly generalizable and perform very well in zero-shot
classification from scratch, and when fine-tuned on standard
benchmarks of a smaller scale.

The omnivorous nature of these models suggests that
Transformers and their core component, self-attention, have
an inherent ability to capture useful patterns in data regard-
less of the domain. A thorough analysis is required to gain
a deeper understanding of this remarkable phenomenon. We
take a step in this direction by analyzing the expressiveness
of the self-attention module.

In self-attention, dependencies between elements of the
input are propagated via a self-attention matrix, which can
be thought of as an input-dependent linear projection applied
to the input. By the definition, this right stochastic matrix
(i.e. having nonnegative elements with rows summing up to
1) encodes input-dependent patterns in the data. Therefore,
we aim to analyze the expressiveness of this matrix, to un-
derstand how flexible these input-dependent patterns can be.
Importantly, we consider the setup when the query dimen-
sion of self-attention d is much smaller than the sequence
length n aiming to characterize relationships between the
two. We focus on the case when d < n because it is typical
in practice, e.g. d = 64, n = 512 in BERT (Devlin et al.
2019). Also, the case d ≥ n can model any right stochas-
tic matrix as shown in (Bhojanapalli et al. 2020). Finally,
smaller d facilitates computational efficiency of Transform-
ers, which are notorious for their high compute demand and
CO2 footprint (Strubell, Ganesh, and McCallum 2019).

Our first contribution shows that understanding which
right stochastic matrices can be approximated by a self-
attention matrix is a challenging task. Namely, we show that
the decision task which accepts the right stochastic matrix
and outputs whether approximation is possible or not for
a given d > 1 is NP-hard. We further show that the case
d = 1 is tractable and give an algorithm for the decision
problem. Our derivations are inspired by the theory of dot
product graphs (Kang and Müller 2012).

Since it is hard to tackle the general setup of approximat-
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Figure 1: Examples of self-attention matrices appearing in the trained DistilBERT model (Sanh et al. 2019). Each column
corresponds to a randomly chosen self-attention module defined by layer and attention head in the model. Cells in each column
correspond to realisations of self-attention matrix for randomly sampled input sentences from the text corpus. As we see, self-
attention matrices tend to be sparse.

ing any possible right stochastic matrix with self-attention,
we narrow down the scope by only considering sparse matri-
ces, meaning that most of the elements of the matrix are near
zero. In other words, each token of the output only depends
on a small number of input tokens. For instance, in neural
machine translation, output words usually depend on a short
context near the word they translate. This assumption typi-
cally holds in practice, as illustrated in Figure 1. The sparsity
assumption, in particular, has provided insight for a series
of results related to fast computation of self-attention for
long sequences (Kitaev, Kaiser, and Levskaya 2020; Vyas,
Katharopoulos, and Fleuret 2020; Roy et al. 2020). Conse-
quently, two questions of interest are: Can a self-attention
module approximate arbitrary sparse patterns depend-
ing on the input? How small is the query dimension d
required for such approximation?

We make progress in addressing these questions by theo-
retically showing that there exist self-attention weights such
that, when the precision of approximation is fixed, d grows
only logarithmically with the sequence length n to ap-
proximate any sparse matrix by only changing the input to
the module. Here, the approximation precision is defined in
terms of preserving attention weight ratios, and sparsity is
characterized by the bounded number of nonzero elements
in each row and column. Our proof uses random projection
techniques and the seminal Johnson-Lindenstrauss lemma.

We commence by defining the self-attention module and
self-attention matrix. After that, we present NP-hardness re-
sults and approximation results and proceed with the proof.
Finally, we present experimental simulations, discuss related
work and make concluding remarks.

Prerequisites: Self-Attention Module
Let n be the length of a processed sequence and dhid be
the size of a hidden representation passed through the neu-

ral network. We define the unnormalized self-attention ma-
trix as a parametrized mapping from the current hidden state
X ∈ Rn×dhid into Rn×n. The mapping depends on two
learnable parameter matrices WQ,WK ∈ Rdhid×d, d ≤
dhid, where d ≤ dhid is the query dimension. The mapping
is defined as
USAM(X; d, dhid,WQ,WK)=exp[XWQW

⊤
KX⊤], (1)

where exp[·] is an elementwise exponent. Next, we define
the (normalized) self-attention matrix as
SAM(X; d, dhid,WQ,WK) =

RN(USAM(X; d, dhid,WQ,WK)). (2)
Here, RN(·) (row normalization) divides each row by the
sum of its elements, so that the result is right stochastic
meaning that all rows are nonnegative and sum to 1.

Finally, self-attention is defined as a parametrized map-
ping from X into Rn×d with parameters WQ,WK,WV ∈
Rdhid×d. It has the form:

SA(X; d, dhid,WQ,WK,WV) =

SAM(X; d, dhid,WQ,WK)XWV . (3)
Self-attention has the form of a differentiable dictionary,

where the output at each position 1 ≤ i ≤ n is a sum of
all values W⊤

V Xi′ , 1 ≤ i′ ≤ n, weighted proportionally
to exponentiated dot products of the query W⊤

QXi and the
key vectors W⊤

V Xi′ . Usually (Vaswani et al. 2017), these
dot product are also divided by

√
d, since this empirically

facilitates stable training. Without loss of generality, we do
not include this linear scaling factor in our definition (1),
since it can be fused into one of the matrices WQ or WK.

NP-Hardness of Approximation
Below we define a notion of SAM(X; d, dhid,WQ,WK)
weakly approximating a right stochastic matrix A = RN(S),
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where S ∈ {0, 1}n×n is a matrix of zeros and ones with
at least one 1 in every row so that its row normalization is
well-defined. The goal of this notion is to capture a min-
imal set of conditions which make it possible to say that
SAM(X; d, dhid,WQ,WK) approximates A:
Definition 0.1. Suppose S ∈ {0, 1}n×n has at least one 1 in
every row and X ∈ Rn×dhid , WQ,WK ∈ Rdhid×d, dhid ≥
d, are some matrices. M = SAM(X; d, dhid,WQ,WK)
weakly approximates A = RN(S) when

∀1 ≤ i ≤ n : min
j,Ai,j>0

Mi,j > max
j,Ai,j=0

Mi,j , (4)

where we assume that max over an empty set is −∞. If such
X,WQ,WK exist for A, then we say that A can be (d, dhid)-
weakly SAM-approximated.

According to this definition, M approximates A if in each
row, the values of M corresponding to zero positions in A
are smaller than values corresponding to nonzero positions
in A. For integers dhid ≥ d ≥ 1, by (d, dhid)-WEAK-SAM-
APPROX we denote the algorithmic problem of deciding,
given an integer n > 0 and a matrix S ∈ {0, 1}n×n ver-
tices with at least one 1 in each row, whether RN(S) can be
(d, dhid)-weakly SAM-approximated or not. Consequently,
(d, dhid)-WEAK-SAM-APPROX returns either True if the
approximation is possible or False otherwise. Our first con-
tribution is as follows:
Theorem 0.2. (d, dhid)-WEAK-SAM-APPROX is NP-hard
for all dhid ≥ d > 1.

Proof. See Appendix.

Theorem 0.2 states that the approximation task with a
small d (since the size of the graph n can be arbitrarily large
in (d, dhid)-WEAK-SAM-APPROX) is very hard and possi-
bly unsolvable in polynomial time. This supports our initial
claim that the problem of right stochastic matrix approxima-
tion by self-attention is a challenging task. The proof is in-
spired by a similar result in the theory of dot product graphs
(Kang and Müller 2012).

For completeness, we also show that the case of (1, dhid)-
WEAK-SAM-APPROX, dhid ≥ 1, has a positive character-
ization:
Theorem 0.3. Algorithm 1 solves (1, dhid)-WEAK-SAM-
APPROX in the time which is polynomial of the input’s size.

Proof. See Appendix.

Since the general case of right stochastic matrix approxi-
mation by self-attention is very hard and potentially unsolv-
able, in the next section we focus on a special case of sparse
matrices. For this class of matrices, we derive a lower bound
on d which gives a provable approximation.

Approximating Sparse Matrices by
Self-Attention Matrix

The Main Result
We will call the square matrix k-nonzero-bounded if for each
row or column of the matrix, the total number of nonzero
elements is no more than k.

Algorithm 1: Algorithm for solving (1, dhid)-WEAK-SAM-
APPROX (V denotes {1, . . . , n}.). Input: S ∈ {0, 1}n×n

with at least one 1 in each row. Output: True or False.

1: For 1 ≤ i ≤ n, set I(i) = {1 ≤ j ≤ n |Mi,j = 1}.
2: Set K0 = {1 ≤ i ≤ n | I(i) ̸= {1, . . . , n}}. If K0 = ∅,

return True.
3: Let H be a graph on K0 as vertices, such that there is an

edge between v, w if I(v) ⊆ I(w) or I(w) ⊆ I(v).
4: If H doesn’t consist of two (possibly empty) connected

components K1,K2 ⊆ K0, return False.
5: For 1 ≤ i ≤ n, set I ′(i) = I(i) if i /∈ K2 and I ′(i) =

V \ I(i) if i ∈ K2.
6: If there exist i, j ⊆ K0 such that neither I ′(i) ⊆ I ′(j),

nor I ′(j) ⊆ I ′(i), return False.
7: If dhid > 1, return True.
8: Let i1, . . . , in be an ordering of 1, . . . , n such that

I ′(i1) ⊆ · · · ⊆ I ′(in).
9: If K2 ⊆ I ′(i1), or I ′(in) ⊆ K2 or there is 1 ≤ r < n

such that I ′(ir) ⊆ K2 ⊆ I ′(ir+1), return True.
10: If K2 ⊆ V \ I ′(in), or V \ I ′(i1) ⊆ K2, or there is

1 ≤ r < n such that V \ I ′(ir+1) ⊆ K2 ⊆ V \ I ′(ir),
return True.

11: Return False.

Apart from the notion of the bounded number of nonzero
elements, we also define matrices with elements of a
bounded variation. For γ ≥ 1, we call the matrix A ∈ Rn×n

with nonnegative elements γ-variation-bounded, if for every
row 1 ≤ i ≤ n and every column indices 1 ≤ j1, j2 ≤ L
such that Ai,j1 , Ai,j2 ̸= 0,

γ−1 ≤ Ai,j1

Ai,j2

≤ γ. (5)

For instance, all nonzero entries of a 1-variation-bounded
matrix are the same for each row of the matrix.

The following theorem is the main result about approxi-
mation of sparse matrices by self-attention:

Theorem 0.4. Let n > 1, k, dhid, d ≤ min(dhid, 2n) be
natural numbers, 0 < ϵ1 < 1, ϵ2 > 0, γ ≥ 1 be real num-
bers,

d = 2⌈16k2
(
log γ − log ϵ1

ϵ2
+ 1

)2

×(2 log n+ log(n− 1) + log 2)⌉. (6)

Then there exist WQ,WK ∈ Rdhid×d, such that for any
right stochastic, k-nonzero-bounded, γ-variation-bounded
matrix A ∈ Rn×n, there is X ∈ Rn×dhid and M =
SAM(X; d, dhid,WQ,WK) satisfying

1. For all row indices 1 ≤ i ≤ n and column indices 1 ≤
j1, j2 ≤ n such that Ai,j1 = 0, Ai,j2 ̸= 0, it holds that

Mi,j1

Mi,j2

< ϵ1; (7)
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2. For all row indices 1 ≤ i ≤ n and column indices 1 ≤
j1, j2 ≤ n such that Ai,j1 ̸= 0, Ai,j2 ̸= 0, it holds that

Ai,j1

Ai,j2

· exp(−ϵ2) <
Mi,j1

Mi,j2

<
Ai,j1

Ai,j2

· exp(ϵ2). (8)

WQ,WK can be constructed in O(dhid · d) time. For any A,
X and M can be computed in randomized time polynomial
in n, dhid, k.

Informally, Theorem 0.4 states that for hidden sizes
dhid, d growing only logarithmically with the sequence
length n when the sparsity and variability parameters
(k, γ) are fixed, there exist fixed parameter matri-
ces WQ,WK such that for any nonzero-bounded matrix
A there is a self-attention input X such that M =
SAM(X; d, dhid,WQ,WK) approximates A very well. The
quality of approximation is characterized by upper and lower
bounds on ratios of elements located in the same row of M :
1. Equation (23) means that zero elements of A are approx-

imated by elements of M which are small compared to
nonzero elements of the same row when ϵ1 is chosen
small. By definition M is a strictly positive matrix, there-
fore in principle we can only approximate zero elements
of A by very small positive numbers.

2. Equation (24) means that ratios of nonzero elements of
the same row in M are in a close multiplicative neighbor-
hood of the corresponding ratios in A when ϵ2 is chosen
small. Since rows of both matrices A and M sum up to 1,
similar enough ratios of element pairs also imply element
similarity in terms of their absolute magnitude.

Remark 0.5. In the statement of Theorem 0.4, M weakly
approximates A for any 0 < ϵ1 < 1, ϵ2 > 0 which can be
checked by Definition 0.1 (Equation 23).

Finally, as the proof is constructive, we will obtain an al-
gorithm for computing WQ,WK, which turn out to be matri-
ces of a simple structure. For any A from the theorem state-
ment, the probabilistic algorithm induced by the proof en-
ables X and M to be computed in randomized polynomial
time in n, dhid, k.

In the rest of the section we describe the detailed proof
and intuition behind it.

Proof of Theorem 0.4: Matrix B and the Intuition
Behind the Proof
Define vector α ∈ Rn so that for each row index 1 ≤ i ≤ n,
the minimal nonzero element in this row is αi. Define matrix
B ∈ Rn×n as follows. For all 1 ≤ i, j ≤ n,

Bi,j =

{
0 if Ai,j = 0;

log(Ai,j/(ϵ1αi)) + ϵ2 otherwise.
(9)

Observe, that C = ϵ1 exp(−ϵ2)diag(α) exp(B) can be
thought of as an approximation of A:

C = ϵ1 exp(−ϵ2)diag(α) exp(B) ≈ A. (10)

Indeed, for any 1 ≤ i, j ≤ n such that Ai,j ̸= 0, Ci,j = Ai,j

by definition of B and C (Equations 9, 10). On the other
hand, when Ai,j = 0, Ci,j = ϵ1 exp(−ϵ2)αi ≤ ϵ1, where

we use ϵ2 > 0 and αi ≤ 1, since A is a right stochastic
matrix. Hence, smaller ϵ1 yields a better approximation (10).

Suppose we find X,WQ,WK such that

B ≈ XWQW
⊤
KX⊤. (11)

Intuitively, if the approximation (11) is sufficiently good
then

USAM(X; d, dhid,WQ,WK) = exp(XWQW
⊤
KX⊤)

≈ exp(B) = ϵ−1
1 exp(ϵ2)diag(α)

−1C

≈ ϵ−1
1 exp(ϵ2)diag(α)

−1A, (12)

where in the last transition we use (10). Since the unnor-
malized self-attention matrix USAM(X; d, dhid,WQ,WK)
is a good approximation for A with rescaled rows (recall
ϵ−1
1 exp(ϵ2)diag(α)

−1 multipliers), the normalized self-
attention matrix SAM(X; d, dhid,WQ,WK) should be a
good approximation for A, which is itself row-normalized
(right stochastic):

SAM(X; d, dhid,WQ,WK) ≈ A. (13)

Next, we formally construct such X,WQ,WK and derive
tight error bounds for the approximation (13) in terms of
matrix element ratios (23,24).

Proof of Theorem 0.4: Construction of X,WQ,WK
through Random Projections
Consider a singular value decomposition (SVD, Trefethen
and Bau 1997) of the matrix B: B = UΣV ⊤, where U, V ∈
Rn×n are orthogonal matrices and Σ = diag(σ1, . . . , σn),
σ1 ≥ . . . σL ≥ 0 are singular values of B. Define D = UΣ,
then B can be decomposed as B = DV ⊤.

We will use random projections to compress D and V
into matrices of shape n× d/2 (d is even according to (22)).
Namely, let Y ∈ Rn×d/2 be a random matrix sampled from
a uniform distribution (Haar measure) on a set of Stiefel ma-
trices1 {Ω ∈ Rn×d/2|Ω⊤Ω = Id/2}. Here, Id/2 is a (d/2)×
(d/2) identity matrix. Then we set X(1) = (2n/d)1/2DY ∈
Rn×d/2, X(2) = (2n/d)1/2V Y ∈ Rn×d/2. X(1), X(2) can
be considered as compressions of D,V since X(1)X(2)⊤ is
an unbiased approximation of B = DV ⊤:

EX(1)X(2)⊤ = D × E
[
(2n/d) · Y Y ⊤]× V ⊤

= D × E
[
n · Y:,1Y

⊤
:,1

]
× V ⊤ = DV ⊤ = B, (14)

where we use the fact that columns of Y are marginally uni-
formly distributed on Sn−1. See Figure 2a for an illustration.
We set X,WQ,WK as

X =
[
X(1) X(2) 0L×(dhid−d)

]
, (15)

WQ=
[
Id 0d×(dhid−d)

]⊤
, (16)

1While Y can be defined as a matrix with i.i.d. sub-Gaussian en-
tries (Kaban 2015), in general, orthogonal projections outperform
unstructured ones in theory and practice (Choromanski, Rowland,
and Weller 2017; Choromanski et al. 2021; Lin et al. 2020). We
also manage to obtain better dot product concentration results for
Stiefel projections compared to unstructured ones (see discussion
in Appendix).
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Figure 2: Illustration of the approximation scheme. (a) exp(B) is a row-rescaled approximation of A (Equation 10), whereas
X(1)X(2)⊤ is an unbiased approximation to B (14). (b) Representation of X(1)X(2)⊤ as XWQWKX

⊤ according to (15,16,17).

WK=

[[
0d/2×d/2 Id/2
0d/2×d/2 0d/2×d/2

]
0d×(dhid−d)

]⊤
, (17)

where 0···×... denotes a zero matrix of the corresponding
shape. It is easy to see that in this case XWQW

⊤
KX⊤ =

X(1)X(2)⊤ (see Figure 2b).
Our next step is to prove that with a nonzero probability,

differences of elements in XWQW
⊤
KX⊤ concentrate near

the same differences in B:
Lemma 0.6. With probability greater than (n+2)−1 it holds
that

∀1 ≤ i, j1, j2 ≤ n, j1 ̸= j2 : |(XWQW
⊤
KX⊤)i,j1−

(XWQW
⊤
KX⊤)i,j2 −Bi,j1 +Bi,j2 | < ϵ2. (18)

The proof (in Appendix) uses a corollary of the seminal
Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss
1984) about inner product preservation under random pro-
jections (Kaban 2015). Two crucial observations are that
• WQ and WK do not depend on A by construction

(16,17);
• according to Lemma 0.6, X satisfying (18) can be found

with any probability by redrawing Y O(n) times.
Suppose that (15,16,17) hold. Then for any 1 ≤ i, j1, j2 ≤

n, j1 ̸= j2:

Bi,j1 −Bi,j2 − ϵ2 < (XWQW
⊤
KX⊤)i,j1

−(XWQW
⊤
KX⊤)i,j2 < Bi,j1 −Bi,j2 + ϵ2. (19)

By definition of B (9), whenever Ai,j1 = 0, Ai,j2 ̸= 0, the
right hand side inequality in (19) is rewritten as

(XWQW
⊤
KX⊤)i,j1 − (XWQW

⊤
KX⊤)i,j2 <

− logAi,j2 + logαi + log ϵ1 ≤ log ϵ1. (20)

Here we also used Ai,j2 ≥ αi. (20) is equivalent to (23)
after exponentiating, since exponents of (XWQW

⊤
KX⊤)i,j1

and (XWQW
⊤
KX⊤)i,j2 are Mi,j1 and Mi,j2 rescaled by the

same factor.
Similarly to (20), whenever Ai,j1 , Ai,j2 ̸= 0, by expand-

ing B’s definition, (19) is rewritten as

logAi,j1 − logAi,j2 − ϵ2 < (XWQW
⊤
KX⊤)i,j1

−(XWQW
⊤
KX⊤)i,j2 < logAi,j1 − logAi,j2 + ϵ2, (21)

which is equivalent to (24) after exponentiating. This con-
cludes the proof of Theorem 0.4.

The Case of Causal Self-attention
Another popular type of self-attention mechanism is causal
self-attention, when each position i only attends to elements
j ≤ i. This modification is required for autoregressive lan-
guage modelling (Radford et al. 2019; Brown et al. 2020)
when each token is modelled as depending only on previous
tokens in the sequence. We define the causal self-attenion
matrix CSAM and causal self-attention CSA as

CSAM(X; d, dhid,WQ,WK) = diag(M′1n)
−1M′,

M′ = tril(USAM(X; d, dhid,WQ,WK)),

CSA(X; d, dhid,WQ,WK,WV) =

CSAM(X; d, dhid,WQ,WK)XWV ,

where tril(·) is the lower triangular part of the argument
matrix, meaning that it zeroes out all elements strictly above
the main diagonal.

A natural question is whether the analog of Theorem 0.4
holds for causal self-attention matrices. Since these matrices
are lower triangular, we should only attempt to approximate
lower-triangular right-stochastic matrices A. In fact, we ob-
tain the following result (differences with Theorem 0.4 are
highlighted in bold).
Corollary 0.7. Let n > 1, k, dhid, d ≤ min(dhid, 2n) be
natural numbers, 0 < ϵ1 < 1, ϵ2 > 0, γ ≥ 1 be real num-
bers,

d = 2⌈16k2
(
log γ − log ϵ1

ϵ2
+ 1

)2

×(2 log n+ log(n− 1) + log 2)⌉. (22)

Then there exist WQ,WK ∈ Rdhid×d, such that for any
lower triangular, right stochastic, k-nonzero-bounded, γ-
variation-bounded matrix A ∈ Rn×n, there is X ∈ Rn×dhid

and M = CSAM(X; d, dhid,WQ,WK) satisfying
1. For all row indices 1 ≤ i ≤ n and column indices

1 ≤ j1, j2 ≤ i such that Ai,j1 = 0, Ai,j2 ̸= 0, it holds
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that
Mi,j1

Mi,j2

< ϵ1; (23)

2. For all row indices 1 ≤ i ≤ n and column indices
1 ≤ j1, j2 ≤ i such that Ai,j1 ̸= 0, Ai,j2 ̸= 0, it holds
that

Ai,j1

Ai,j2

· exp(−ϵ2) <
Mi,j1

Mi,j2

<
Ai,j1

Ai,j2

· exp(ϵ2). (24)

WQ,WK can be constructed in O(dhid · d) time. For any A,
X and M can be computed in randomized time polynomial
in n, dhid, k.

Proof. The proof is unchanged compared to the proof of
Theorem 0.4 with the only change that j1, j2 are consid-
ered in the range 1 ≤ j1, j2 ≤ i when computing differ-
ence bounds (20,21). Cases when column indices j1 or j2
are bigger than the row index i are redundant, since both A
and M = CSAM(X; d, dhid,WQ,WK) have zero entries
above the main diagonal.

We conclude that the same logarithmic dependence d =
O(log n) holds for causal self-attention.

Experiments
Theorem 0.4 suggests an upper bound (r.h.s. in Equation 22)
for the dmin(ϵ1, ϵ2) – i.e. the minimal d which results in M
satisfying (23,24) for fixed ϵ1, ϵ2. A question which we ad-
dress in the experimental section is, therefore, ”What is the
actual dmin(ϵ1, ϵ2) in practice? Does it satisfy the loga-
rithmic law d = O(logn)?”

To answer this question, we perform the following sim-
ulation. We select a range of (k, γ, ϵ1, ϵ2) parameters. For
each set of parameters, we iterate over n on a uniform grid
from 512 to 3072 with a step size 256. For each n we sample
the matrix A and iterate over a uniform grid of d values in
ascending order until we find such d which results in M sat-
isfying (23,24). We sample nonzero positions of A by taking
a union over k random permutation matrices. The nonzero
value is set to either 1 or γ by a coin flip.

To check whether for the current d there is M satisfying
(23,24), we construct Y , X(1), X(2) and M using the algo-
rithm implied by the proof of Theorem 0.4. To sample Stiefel
matrices Y , we use the algorithm based on QR decompo-
sitions of random Gaussian matrices from (Stewart 1980).
We redraw the Y matrix Qn times, Q = 1, in the spirit of
Lemma 0.6 suggesting that O(n) redraws should be enough
to find the right Y,X(1), X(2), X with a constant probability
(when d is big enough).

Figure 3 illustrates the results. A remarkable observation
is that, although empirical dmin(ϵ1, ϵ2) (red circles) grows
slower than the theoretical upper bound (blue dashed line
shows the angle of this line), it nicely fits the logarithmic
curve d = O(log n) (black dotted line) in all twelve evalu-
ated setups. The fact that the true dmin(ϵ1, ϵ2) grows slower
than (22) is natural, since (22) is an upper bound on it.
Though, as experiments reveal, both curves differ only by
a constant multiplicative factor.

We run an additional experiment to reveal how
dmin(ϵ1, ϵ2) depends on the number of samples Qn used to
find M satisfying (23,24). We take 2 setups and try a range
of Q values from 0.1 to 5.0. Results are shown in Figure 4.
We observe that dmin(ϵ1, ϵ2) does not depend a lot on the
choice of Q and is roughly unchanged. Therefore, we con-
clude that our findings regarding the behaviour of empirical
dmin(ϵ1, ϵ2) do not depend on Q much and Q = 1 is a rea-
sonable choice. Additional experimental details and results
(plots for bigger k values) can be found in Appendix.

Related Work
Expressivity of Transformers. As Transformers gained
popularity, more theoretical results have emerged to ex-
plain their expressivity. Transformers were shown to be uni-
versal approximators (Yun et al. 2020a), Turing-complete
(Bhattamishra, Patel, and Goyal 2020) and able to recog-
nize counter languages (Bhattamishra, Ahuja, and Goyal
2020). Furthermore, Transformer modifications such as Big-
Bird (Zaheer et al. 2020), Transformers with hard atten-
tion (Pérez, Marinković, and Barceló 2019) and sparse
Transformers (Yun et al. 2020b) were shown to be uni-
versal approximators. Note that (Yun et al. 2020a; Bhat-
tamishra, Patel, and Goyal 2020) rely on multilayer con-
structions, whereas we consider a single self-attention mod-
ule, and (Zaheer et al. 2020; Pérez, Marinković, and Bar-
celó 2019; Yun et al. 2020b) analyze nonconventional forms
of self-attention. Dong, Cordonnier, and Loukas (2021) an-
alyze limitations of a pure self-attention Transformer, i.e.
without feedforward blocks and skip connections. Cordon-
nier, Loukas, and Jaggi (2020) show that multi-head self-
attention can provably model any image convolution layer.
Bhojanapalli et al. (2020) show that for large d (d ≥ n)
and fixed inputs, there exist WQ,WK which approximate
any positive right stochastic matrix via self-attention. In con-
trast, we analyze expressivity when d is very small (d =
O(log n)).

Random projections and Johnson-Lindenstrauss
lemma. Our proof techniques rely on the seminal Johnson-
Lindenstrauss tranformation (JLT, Johnson and Linden-
strauss 1984) used for dimensionality reduction (Fedoruk
et al. 2018). A random projection approach similar to ours
was used by Frankl and Maehara (1987) to lower-bound
graph sphericity – a characteristic which is NP-hard to
compute in general. A related random features technique,
relying on random projections, was originally introduced
to improve efficiency of kernel SVMs (Rahimi and Recht
2008), but recently found application in speeding up long-
sequence Transformers (Choromanski et al. 2020, 2021).
We use Stiefel matrices as random projections, which in
general result in tighter approximations than unconstrained
projections (Lin et al. 2020). Ensembles of orthogonal
random projections were shown to provide much better
concentration results for the estimators relying on them in
various other contexts, in particular: kernel approximation
(Choromanski and Sindhwani 2016; JLT can be considered
a special instantiation with a dot-product kernel), estimation
of the gradients of Gaussian smoothings with evolution
strategy methods (Choromanski et al. 2018), kernel ridge
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Figure 3: Finding empirical dependency of dmin(ϵ1, ϵ2) on n given the fixed set of parameters (k, γ, ϵ1, ϵ2). Each plot corre-
sponds to one out of six sets of tested parameters. Red circles correspond to simulation results: we redraw matrix A 5 times
for each n, resulting in 5 red circles per n. The horizontal n axis is in a logarithmic scale, so that O(log n) corresponds to a
straight line. The black dotted line corresponds to a O(log n) fit for the dots (linear when x axis scale is logarithmic). The blue
dashed line indicates the slope of the theoretical upper bound on dmin(ϵ1, ϵ2) (right hand side in Equation 22). We experiment
with k from {1, 2} (results for bigger values of k can be found in Appendix). The slope of the observations is lower than for the
theoretical blue line, confirming our theoretical result.

n n

Figure 4: Empirical dependence of dmin(ϵ1, ϵ2) on Q – the factor defining the number of samples Qn (rounded to an integer)
used to find the right matrix M . For each Q we repeat the procedure to generate empirical values of dmin(ϵ1, ϵ2) (red circles
from Figure 3) and connect them into a line for the better visualization.

regression (Choromanski, Downey, and Boots 2018), sliced
Wasserstein distance (Rowland et al. 2019) and more.

Conclusion
We have analyzed the expressive flexibility of the self-
attention matrix as a mechanism to approximate sparse pat-
terns. First, we show that even deciding whether the approx-
imation is possible or not for a given pattern is NP-hard in
general. Then we prove that weights of self-attention can be

constructed in such a way that any sparse matrix can be ap-
proximated with certain input to the self-attention module.
We show that, when error and other parameters are fixed,
d grows only logarithmically with the sequence length n,
i.e. d = O(log n) when other matrix parameters are fixed.
We hope our work will facilitate further in-depth theoret-
ical analysis of self-attention and Transformers to under-
stand better their remarkable performance across a variety
of tasks.
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