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Abstract

Behavioral metrics can calculate the distance between states
or state-action pairs from the rewards and transitions differ-
ence. By virtue of their capability to filter out task-irrelevant
information in theory, using them to shape a state embed-
ding space becomes a new trend of representation learning for
deep reinforcement learning (RL), especially when there are
explicit distracting factors in observation backgrounds. How-
ever, due to the tight coupling between the metric and the
RL policy, such metric-based methods may result in less in-
formative embedding spaces which can weaken their aid to
the baseline RL algorithm and even consume more samples
to learn. We resolve this by proposing a new behavioral met-
ric. It decouples the learning of RL policy and metric owing
to its independence on RL policy. We theoretically justify its
scalability to continuous state and action spaces and design
a practical way to incorporate it into an RL procedure as a
representation learning target. We evaluate our approach on
DeepMind control tasks with default and distracting back-
grounds. By statistically reliable evaluation protocols, our
experiments demonstrate our approach is superior to previ-
ous metric-based methods in terms of sample efficiency and
asymptotic performance in both backgrounds.

1 Introduction
Deep reinforcement learning (RL) has made a series of ma-
jor breakthroughs in recent years (Mnih et al. 2015; Sil-
ver et al. 2018; Vinyals et al. 2019). The quality of the
state representation (Lesort et al. 2018) is crucial for the
performance of RL algorithms, especially faced with high-
dimensional observations, like images. An ideal representa-
tion is expected to contain non-redundant information that is
sufficient for decision-making.

One way to obtain such representation is to define a be-
havioral metric between states and then use the state sim-
ilarity quantified by this metric to shape the embedding
space via an auxiliary representation learning objective built
upon it. Essentially, such metric-based representation learn-
ing methods use specific reward sequences as a supervised
signal for representation learning, so they are expected to
help ignore task-irrelevant information in raw observations.
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Bisimulation metrics (Ferns, Panangaden, and Precup
2004, 2011; Ferns and Precup 2014) are representative of
such metrics.However, computing them exactly needs the
knowledge of ground truth dynamics and the computation
complexity prevents their direct use in large-scale problems.
The π-bisimulation metric (Castro 2020) and the MICo dis-
tance (Castro et al. 2021) overcome the disadvantages by
considering state similarity under the dynamics induced by
a specific policy. Such modification allows them to be esti-
mated from sampled transitions, leading to tractable approx-
imation. They have successful application to representation
learning in large-scale RL tasks (Zhang et al. 2021; Castro
et al. 2021). Despite this, they are still problematic due to
their dependence on an RL policy. When the RL policy is
fixed, e.g., in policy evaluation settings, these two metrics
are good enough. However, when the RL policy is learned
online, the metrics may provide uninstructive or even erro-
neous learning signal on shaping the embedding space due
to the policy’s sub-optimality and consequently only have
limited power to help policy learning. In light of this, it is
desired to minimize the impact of policy changes on metric
estimation as much as possible, while ensuring scalability.

To this end, we propose a new behavioral metric, named
the conservative state-action discrepancy, to compute the
similarity not only between state pairs but also between
state-action pairs. We quantify the similarity by evaluating
the maximum difference of the reward sequences that two
states can achieve upon taking the same action sequence. It
is a policy-independent behavioral metric from the definition
and we give formal reasons on its advantages. We show the-
oretically that the conservative state-action discrepancy can
be exactly derived in the dynamic programming setting and
unbiasedly estimated in the sampling setting due to its equiv-
alence to Q-value function in a certain constructed MDP.
We also compare the conservative state-action discrepancy
with the MICo distance in detail and reveal a new persec-
tive on the latter one. The corresponding learning algorithm
is originated from Q-learning (Watkins 1989) and computes
the relationship between two state-action pairs, so it is called
Q2-learning. Taking advantage of the equivalence relation-
ship further, we propose to utilize the deterministic policy
gradient algorithm (Silver et al. 2014) to address computa-
tion difficulties when faced with continuous action spaces.
The approach enables to scale to large tasks as an auxiliary
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learning target for representation, as it can be combined with
function approximators that satisfy the properties of the con-
servative state-action discrepancy.

We successfully validate its scalability and effectiveness
via experiments on the DeepMind Control Suite (Tassa et al.
2018), which consists of tasks with high-dimensional obser-
vations and continuous action spaces. We further replace the
default background with frames from natural videos that are
unrelated to the control tasks to demonstrate the approach’s
robustness and ability to ignore task-unrelated information
even if faced with distracting observations. Finally, we con-
duct multiple ablation experiments to illustrate the necessity
of our method’s design.

2 Background
Q2-learning combines RL with a behavioral metric. Here we
review RL and introduce the concept of behavioral metric.

2.1 Reinforcement Learning
A typical RL setting is formalized with a Markov Decision
Process (MDP). An MDP is a tuple M = ⟨X ,A, P, r, γ⟩,
where X is the state space, A is the action space, P :
X ×A → P(X ) is the transition function, r : X ×A → R
is the reward function, and γ ∈ [0, 1) is the discount factor.
For notional convenience we use P ax and rax to denote the
transition distributions and reward functions, respectively.
Typically, the reward is bounded, and we denote the range
as [rmin, rmax]. The return is defined as discounted sum of re-
wards Rt =

∑∞
i=t γ

i−traixi
. Agent acts according to a policy

π : X → P(A). When P is a Dirac distribution, the pol-
icy becomes deterministic. The objective of RL is to find the
optimal policy πω : X → P(A) to maximize the expected
return J(ω) = Ex0∼ρ,at∼πω,xt+1∼Pat

xt
[R0], where ρ is the

initial state distribution.
Qπ(x, a) = Exi∼P,ai∼π[Rt|x0 = x, a0 = a] is the ex-

pected return taking action a at state x and following π
after, known as the Q-value function. The Bellman (Bell-
man 1957) evaluation operator defines the connection of
the Q-values between consecutive states: Bπ(Q)(x, a) :=
rax + γEx′∼Pa

x ,a
′∼π[Q(x′, a′)], and we denote the unique

fixed point ofBπ asQπ . The Bellman optimality operator is
B∗(Q)(x, a) := rax+ γEx′∼Pa

x
maxa′ Q(x′, a′), and we de-

note the unique fixed point of B∗ as Q∗, called the optimal
Q-value function.

For continuous control problems, actor-critic methods are
widely applied. The policy, known as the actor, is updated
via the deterministic policy gradient theorem (Silver et al.
2014): ∇ωJ(ω) = Ex∼pπ [∇aQ

π(x, a)|a=πω(x)∇ωπω(x)].
A specific algorithm is Soft Actor-Critic (SAC) (Haarnoja

et al. 2018). It additionally uses the maximum entropy
framework to enhance exploration and training stability. It
maintains two parameterized functions Qθ and πω to ap-
proximate Q-value function and policy, respectively. Here,
θ and ω are parameters of the two networks.

The function Qθ is updated by minimizing the following
mean squared Bellman error:

Lθ = Et∼B[(Qθ(x, a)− (rax + γT ))2], (1)

where t = (x, a, r, x′) is a tuple sampled from replay buffer
B, containing state x, action a, reward r, and next state x′.
The Bellman target T is defined as Ea′∼πω

[Qθ̂(x
′, a′) −

α log πω(a
′|x′)], where θ̂ is the exponentially moving av-

erage of θ, the corresponding network Qθ̂ serves as a sta-
ble target, and α is the temperature coefficient to control the
contribution of the entropy term to the gradient.

The policy πω is updated by minimizing the KL-
divergence between parameterized policy distribution and a
Boltzmann distribution induced by Q-values:

Lω = Ex∼B[Ea∼πω
[α log πω(a|x)−Qθ(x, a)]]. (2)

2.2 Behavioral Metrics in MDPs
Behavioral metrics is one kind of metrics constructed from
environment’s information, typically measuring differences
in rewards and transitions (Le Lan, Bellemare, and Castro
2021). We continue to use this concept here to collectively
refer to a series of metrics describing the similarity of states
or state-action pairs in RL from this perspective, including
the bisimulation metric, the lax-bisimulation metric (Taylor,
Precup, and Panagaden 2008) and so on. We focus on the
following two metrics:
Definition 2.1. (Castro 2020; Castro et al. 2021) Given an
MDP M and a policy π, the operator Fπ: RX×X → RX×X ,
with RX×X be the set of functions from X × X → R, is

Fπ(Ds)(x, y) := |rπx − rπy |+ γW1(Ds)(P
π
x , P

π
y ) (3)

and the MICo update operator FπM : RX×X → RX×X is

FπM (Ds)(x, y) := |rπx − rπy |+ γE x′∼Pπ
x

y′∼Pπ
y

[Ds(x
′, y′)] (4)

for all functions Ds : X ×X → R, with rπx =
∑
a∈A

π(a|x)rax
and Pπx =

∑
a∈A π(a|x)P ax for all x ∈ X .

The Fπ’s fixed point is called the π-bisimulation metric.
It quantifies similarity of states under the dynamics induced
by π, including the policy-weighted immediate rewards dif-
ference and the Wasserstein-1 distance (Villani 2009), de-
noted as W1, of policy-weighted transition distributions.

The FπM ’s fixed point is called the MICo distance. It en-
codes information of state similarity in a self-referential
manner. Same as the π-bisimulation metric, the rewards
and transitions are related to the policy. The MICo distance
only utilizes independent coupling of transition distribu-
tions, while all the coupling of them are considered in the π-
bisimulation metric due to the existence of the Wasserstein-1
distance. These two fixed points are both policy-dependent,
and we use Dπ to denote both of them. They can bound dif-
ferences of value functions under arbitrary policies:
Proposition 2.2. (Castro 2020; Castro et al. 2021) For any
two states x, y ∈ X and any policy π, we have |V π(x) −
V π(y)| ≤ Dπ(x, y).

3 Methodology
In this section, we first point out the problems of previous
metrics, then introduce the conservative state-action discrep-
ancy and propose a specific architecture to learn it.
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3.1 Problems of Policy-Dependent Metrics
To explain the impact of policy-dependent metrics on the
state space formally, based on previous work (Kemertas and
Aumentado-Armstrong 2021), we derive an upper bound on
the diameter of X :
Lemma 3.1. Policy-dependent metrics of Eqs. 3
and 4 have an upper bound determined by their
policy π: diam(X ;Dπ) = supx,y∈X D

π(x, y) ≤
1

1−γ supx,y∈X |rπx − rπy |.
All Proofs on new theoretical results are in the ap-

pendix1.Consider the extreme case that for any (x, y), the
equality |rπx − rπy | = 0 happens at some training time. For
example, at the early training stage the policy could perform
badly everywhere so the rewards collected by this policy
could be zero everywhere. It results in a degenerate solu-
tion that diam(X ;Dπ) = 0, i.e., the so-called representation
collapsing problem.

Additionally, though Proposition 2.2 is always appreci-
ated in the related literature, such property as well means
that non-optimal policies’ performance have chance to in-
troduce bias to the representation learning when using these
metrics to shape the embedding space. The bias is because
states may be forced to be in the wrong location in the em-
bedding space. Specifically, two states whose optimal val-
ues have a quite small difference, can be mapped far away
due to a large difference between their values induced by
a sub-optimal policy. Unfortunately, the policy learning it-
self is based on the learnt representation. If the representa-
tion is biased, then it will increase the difficulty of learning
the optimal policy, and may reduce learning efficiency or
even make the policy converge to local optima. In conclu-
sion, sub-optimal policies arising from the learning process
can affect the validity of such metrics.

3.2 Conservative State-Action Discrepancy
To overcome above limitations, we propose a novel behav-
ioral metric.
Definition 3.2. Given an MDP M, we define the conser-
vative state-action discrepancy D∗

SA : X 2 × A2 → R and
the conservative state discrepancy D∗

S : X × X → R in a
recursive way as follows:

D∗
SA([x, a], [y, b]) = |rax−rby|+γE x′∼Pa

x
y′∼Pb

y

[D∗
S(x

′, y′)], (5)

D∗
S(x, y) = maxa∈AD

∗
SA([x, a], [y, a]), (6)

for every state pair (x, y) ∈ X × X and state-action pair
([x, a], [y, b]) ∈ X 2 ×A2.

For any state pair or state-action pair, the conservative
discrepancy evaluates the maximum difference of the re-
ward sequences between them under the same action se-
quence. In this case, only states that behaviorally similar
enough could have a small distance, so we call it conserva-
tive. From another perspective, it introduces pessimism that
we always consider the most dissimilar situation between
two states. Previous works argue (Castro and Precup 2010;

1https://www.lamda.nju.edu.cn/liaowj/AAAI23 supp.pdf

Castro 2020) this pessimism can bring bad impact, however,
they only have evidence in the transfer learning setting, as
for the online policy learning settings, there is no theoretical
or empirical support on whether it will harm performance or
not. Thus we insist on the usage of it because it can bring us
the following important advantages explicitly.

It has two main differences compared with the previous
metrics. One is that previous ones consider the state similar-
ity under the entire policy distribution, while this one only
considers under certain action and the other is that it extends
behavioral similarity measure to the state-action joint space.

The first difference brings policy-independence. Based on
this, the influence of the conservative state discrepancy on
the representation space is determined by the structure of
the underlying MDP instead of policy’s performance.

Lemma 3.3. The conservative state discrepancy defined in
Eq. 6 leads to a fixed upper bound on the diameter of X :
diam(X ;D∗

S) ≤ 1
1−γ |rmax − rmin|.

The second difference allows us to smooth any function
defined over the state-action space (e.g., Q-value function).

Proposition 3.4. For any pair ([x, a], [y, b]) ∈ X 2 ×A2, we
have |Q∗(x, a)−Q∗(y, b)| ≤ D∗

SA([x, a], [y, b]).

We get the upper bound of the optimal Q-value function
here, which means that using the conservative state-action
discrepancy to help learn representation can directly make
Q-network generalize better on state-action pairs with simi-
lar Q-values.

To compute D∗
SA in an iterative way, we define a func-

tional operator FC : RX 2×A2 → RX 2×A2

as:

FC(DSA)([x, a], [y, b]) := |rax − rby|+
γE x′∼Pa

x
y′∼Pb

y

[max
a′

DSA([x
′, a′], [y′, a′])]. (7)

for all functions DSA : X 2 ×A2 → R. Next, we show that
the operator FC’s fixed point is the unique solution of Eqs. 5
and 6, and so we can get D∗

SA by iteratively applying FC .

Proposition 3.5. The operator FC on RX 2×A2

is a contrac-
tion mapping with respect to the L∞ norm.

As FC is a contraction mapping and RX 2×A2

is complete
under ∥ · ∥∞, by directly applying Banach’s fixed-point the-
orem we can get the following result:

Corollary 3.6. FC has a unique fixed point, i.e., for any ini-
tial DSA on RX 2×A2

, lim
n→∞

FCFC · · ·FC︸ ︷︷ ︸
n times

(DSA) = D∗
SA.

3.3 Links to the MICo Distance
First, we look back on a property of the MICo distance:

Lemma 3.7. (Castro et al. 2021) The MICo operator FπM
is the Bellman evaluation operator for the auxiliary MDP
M̃M = ⟨X̃ , Ã, P̃ , r̃, γ⟩, where X̃ = X × X , Ã = A × A,
P̃

(a,b)
(x,y) = P axP

b
y , and r̃(x,y) = |rπx−rπy |, for any x, y, x′, y′ ∈

X and a, b ∈ A.

Similarly, we have the following lemma.
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Figure 1: The backup diagrams for Q-learning (left) and Q2-
learning (right). The dashed line means that the connected
node is coupled. Black nodes represent (state-)action values
and white nodes represent state values.

Lemma 3.8. The operator FC is the Bellman optimality
operator for the auxiliary MDP M̃C = ⟨X̃ , Ã, P̃ , r̃, γ⟩,
where ⟨X̃ , Ã, P̃ ⟩ are the same as the ones in M̃M , and
r̃(x,a),(y,b) = |rax − rby|.

With Lemma 3.7, the temporal difference (TD) update
rule can be applied to compute the MICo distance through
sampling; correspondingly, we can apply Q-learning to com-
pute D∗

SA and we name it Q2-learning because the elements
of each node in its backup diagram appear in pairs. See
Fig. 1 for the difference in their backup diagrams (Sutton
and Barto 2018).

In fact, the MICo distance can also have a “state-action
pair” version when applied to deterministic policies. To see
this, we first introduce:

Dπ
SA([x, a], [y, b]) = |rax − rby|+ γE x′∼Pa

x
y′∼Pb

y

Dπ
S(x

′, y′), (8)

Dπ
S(x, y) = Eπ(a|x)

π(b|y)

Dπ
SA([x, a], [y, b]). (9)

Here, π(a|x) and π(b|y) are stochastic policies. It is straight-
forward to show that these two equations can also de-
fine a Bellman evaluation operator for an auxiliary MDP.
In fact, this MDP is exactly the same as M̃C . Further,
if we replace Eπ(a|x),π(b|y) with maxa,b, then it imme-
diately transforms into the optimality operator and also
becomes a policy-independent behavioral metric, which
is very similar to the conservative state-action discrep-
ancy. However, we achieve a more refined state simi-
larity measurement (e.g., tighter upper bound of value
functions difference) because maxaD

∗
SA([x, a], [y, a]) ≤

maxa,bD
π
SA([x, a], [y, b]). When π(a|x) and π(b|y) are de-

terministic policies, Eqs. 8 and 9 can be seen as the state-
action pair version of MICo.

The following property can guide us in scaling D∗
SA to

the continuous action space.
Proposition 3.9. D∗

SA and D∗
S can be regarded as the op-

timal action-value function and optimal state-value function
of the auxiliary MDP M̃C , respectively.

3.4 Scale to Continuous Action with
Approximation

The “max” operator in D∗
SA hinders the application of Q2-

learning to continuous action spaces. By Proposition 3.9, we

𝜑(𝑦, 𝑏)𝜑(𝑥, 𝑎)

𝐷𝜑

(𝑦, 𝑏)(𝑥, 𝑎)

𝐷𝜓

𝑎

𝑦𝑥

T

Figure 2: Dφ and Dψ’s architecture. “T” block means the
concatenate operation that ensures inputs are invariant to
permutations.

can use an actor-critic method to overcome the problem, like
what DDPG (Lillicrap et al. 2016) or TD3 (Fujimoto, Hoof,
and Meger 2018) does. We consider two parameterized func-
tions Dφ and Dψ with parameters φ and ψ, respectively, as
the corresponding critic and actor serve for estimating D∗

SA.
And we call them as D∗

SA critic and D∗
SA actor.

However, not as simple as the typical actor and critic func-
tions, theD∗

SA critic and actor functions need to satisfy some
additional important properties. These properties come from
D∗
SA itself. We study the characteristics of D∗

SA in environ-
ments with the deterministic transitions.
Proposition 3.10. For environments with deterministic tran-
sitions, D∗

SA is a pseudometric2.
Building on this and referring to (Dadashi et al. 2021),

we use the Siamese network (Bromley et al. 1993) for the
D∗
SA critic function since such architecture design preserves

the pseudometric property. Concretely, we define the D∗
SA

critic as Dφ([x, a], [y, b]) = ||φ(x, a) − φ(y, b)||1, where
|| · ||1 is the L1 norm, and we use parameters φ to denote the
network and its parameters simultaneously for simplicity.

As for the D∗
SA actor function, we require that

Dψ(x, y) = Dψ(y, x) for any x, y ∈ X , i.e., the per-
mutation invariance of input variables holds. The typical
way that concatenates two input variables as a single one
to be the input violates such invariance. Referring to (Chen,
Cheng, and Mallat 2014), we fix it by inputting the model:
concatenate(x + y, |x − y|). Thus, its value is irrelevant to
the input order and the input can be recovered: max(x, y) =
(x+y+ |x−y|)/2,min(x, y) = (x+y−|x−y|)/2, which
means it is an injective mapping. The overall architecture is
shown in Fig. 2.

And then, similar to Eq. 1, we can learn Dφ by minimiz-
ing the following mean-squared Bellman error:

Lφ = E (x,a,rax,x′)∼B
(y,b,rby,y′)∼B

[(||φ(x, a)− φ(y, b)||1 − |rax − rby|

− γ||φ̂(x′, Dψ(x
′, y′))− φ̂(y′, Dψ(x

′, y′))||1)2].
(10)

Here, φ̂ denotes the target network and its parameters,
and it acts like the target network in DQN (Mnih et al.

2A pseudometric d is a metric on a set X: X × X → [0,∞)
satisfying for any x, y, z ∈ X: (1) x = y =⇒ d(x, y) = 0; (2)
d(x, y) = d(y, x); and (3) d(x, y) ≤ d(x, z) + d(z, y).
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𝑎

𝑎

ℒ𝜑

ℒ𝜓

ℒ𝜃

ℒ𝜔

Figure 3: The connection of method’s components. The dark
solid lines represent the forward computation process. The
dashed lines indicate the gradient backpropagation paths of
the corresponding loss functions, respectively. The blue ones
mean the gradients propagate to the encoder and the yellow
ones mean they only propagate to the D-head or Q-head.

2015), which is used to provide a stable learning tar-
get. The symbol φ means that gradients will not pass
through φ. We empirically find that using it can make
training process more stable. According to the determinis-
tic policy gradient theorem, we can learn Dψ by maximiz-
ing Ex,y[Dφ([x,Dψ(x, y)], [y,Dψ(x, y)])]. Specifically, we
minimize this objective for Dψ:

Lψ = E x∼B
y∼B

[−||φ(x,Dψ(x, y))− φ(y,Dψ(x, y))||1]. (11)

3.5 Integration with Policy Learning
We could apply Q2-learning to assist any RL algorithm and
we choose SAC here. The overall network structure is shown
in Fig. 3. The encoder, usually composed of convolutional
layers, is used to map the high-dimensional observations to
low-dimensional vectors. Its parameters are updated by the
gradients coming from both Q-head and D-head. The so-
called “head” represents several fully-connected layers. Q-
head is used to learn the policy, while D-head is used to learn
D∗
SA. To make Q-value function more locally smooth, we

only allow the gradients from the D∗
SA critic to backprop to

the encoder. Empirically, this is a good choice.

4 Experiments
In this section, we want to demonstrate the scalability of
Q2-learning and study whether policy-independent metric
can truly contribute to online policy learning by ignoring
task-irrelevant information, especially faced with complex
observations. Thus, we conduct experiments on the Deep-
Mind Control Suite (Tassa et al. 2018), where the state and
action spaces of the tasks are both continuous, and the ob-
servations are high-dimensional images. Two different back-
ground settings are taken into consideration. One is the de-
fault setting, called the clean background; and the other set-
ting replaces the default background with natural videos that
play a role of distractors to the control task, called the clut-
ter background. Some examples are shown in Fig. 4. The
latter setting is adapted from (Zhang et al. 2021), where
the difference is that we randomly sample multiple videos
from the kinetics dataset (Kay et al. 2017) as background
rather than single one in (Zhang et al. 2021), which makes
the background more complex and more unpredictable. This

Figure 4: The most left picture is one control task with the
clean (default) background and the other three are with the
clutter backgrounds, which are frames randomly selected
from videos of “driving car” class (Kay et al. 2017).

change is motivated by the realistic situation that there is no
static or single background in the real world. We use eight
control tasks, from locomotion to swingup, from easy to
hard, and from dense reward to sparse reward for relatively
sufficient demonstration. They are Walker-Walk, Hopper-
Stand, Cheetah-Run, Finger-Spin, Walker-Run, Hopper-
Hop, Pendulum-Swingup, and Cartpole-Swinup sparse, re-
spectively.

We compare our method with MICo (Castro et al. 2021)
and DBC (Zhang et al. 2021), based on the MICo distance
and the π-bisimulation metric, respectively. Also, the base-
line control algorithm, SAC is included. Additionally, we
consider an important variant of DBC, DBC-normed (Ke-
mertas and Aumentado-Armstrong 2021), which is an im-
provement version of DBC. It remediates the potential rep-
resentation explosion problem of DBC by adding a norm
constraint, and except that it uses the Huber loss to train
the “Wasserstein part” of the π-bisimulation metric approx-
imately. They further enhance DBC-normed with intrinsic
reward and inverse dynamic model to address the sparse re-
ward challenge. However, these two modules will not be in-
volved in our experiments, because we they are orthogonal
to discussing what kind of behavioral metrics will contribute
to online policy learning. And we could inject such a module
into every behavioral metric-based method by careful de-
sign. We leave it as a future work. Implementation details
are presented in the appendix from the same link.

4.1 Performance Evaluation
We adopt two evaluation protocols from (Agarwal et al.
2021) to display different aspects of performance gains
of Q2-learning, including score distribution, the fraction
of runs above a certain threshold, and interquartile mean
(IQM), the mean of the middle half of running results. We
use stratified bootstrap confidence interval (CI), bootstrap
confidence interval (Efron 1992) with stratified sampling,
for interval estimation. They are all task-level protocols and
can reflect the overall performance across tasks and well-
suited for few-run regime due to robustness to outliers and
less statistical uncertainty. They are computed based on the
normalized score, which is the sum of the undiscounted re-
wards collected by the agent in an episode divided by 1000
(the most it can collect). Each run provides a normalized
score. The computation of them combines all runs across
tasks and seeds, with a total of 10 (seeds) × 8 (tasks) runs in
each background. We run 500K environment steps for each
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Figure 5: Score distributions using normalized score ob-
tained on the 500K-th step. Shaded regions are 95% strat-
ified bootstrap CIs. 10 seeds for each task are used.

task. Per-task training curves are presented in the appendix
from the same link.

In Fig. 5, a method is better in a certain score interval if
its curve is above others in that interval. We can easily read
methods’ advantages in different score intervals. For exam-
ple, in the clutter background, MICo is slightly better than
SAC for τ ≥ 0.4 but for τ ≤ 0.6, MICo is worse because the
fraction of runs above this score is almost zero. In two back-
grounds, Q2-learning’s curve is above others in most score
intervals. DBC and DBC-normed are highest in the intervals
near 1.0 in both backgrounds due to their great performance
on Finger-Spin (episodic returns are near 1000). But their
curve is lowest in many other intervals, which means a dom-
inant advantage across all tasks is not achieved.

Figure 6 conveys finer quantitative comparisons. The su-
periority of Q2-learning is obvious, which has the best sam-
ple efficiency and asymptotic performance in both back-
grounds, and especially in the clean one, there is a clear gap.
While MICo brings no obvious improvement over SAC and
it is even little worse than SAC in the clean one. MICo only
has limited help to representation learning. As for DBC and
DBC-normed, they are both majorly worse than SAC. It is
not strange that it performs bad in the clean background be-
cause the original paper already shows this. The reason be-
hind its failure in the clutter background is that we use mul-
tiple videos as backgrounds which is more complex than the
original setting of single video. They need latent dynamic
models that are inherently difficult to learn, and more com-
plex backgrounds increase the difficulty of learning.

In some tasks policy-dependent methods can perform
very well (e.g., DBC on Finger-Spin), but the overall per-
formance is even worse than the vanilla RL algorithm be-
cause poor performance on more other tasks offsets good
ones, while our method significantly and consistently im-
proves the baseline. It implies the potential practical prob-
lem with policy-dependent metrics. They can result in large
performance variability across tasks. We argue it is because
that different policy learning and optimization processes on
different tasks can affect metric learning. Our metric is more
robust and stable at the task level.

4.2 Representation Visualization
To observe the structure of learned representations, we
visualize the distribution of observation points of the
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Figure 6: IQM normalized score evolves throughout the
training process. The environment step is the actual exe-
cution time steps of the simulator (Laskin, Srinivas, and
Abbeel 2020). IQM is evaluated every 50K steps. Shaded
regions are 95% stratified bootstrap CIs. 10 seeds for each
task are used.
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Figure 7: The visualization of representations. We use the
UMAP method (McInnes, Healy, and Melville 2018) to
project high-dimensional embedding vectors. The color of
each point represents its state value’s magnitude.

Hopper-Stand task in the embedding space. We use
UMAP (McInnes, Healy, and Melville 2018) to do the di-
mension reduction. The color associates with the state value,
which is computed by another algorithm other than these
three for fair comparison. Here, we use SAC that is trained
long enough to return a near-optimal policy. And these three
methods use the same source of trajectories to do this visu-
alization. The trajectories are sampled from policies trained
by these three methods respectively and then mixed up. In
Fig. 7, all three methods present a phenomenon that points
with same color form clusters, which means that observa-
tion points with similar values are mapped together in the
embedding space. So it can be seen that Q2-learning has the
same ability as MICo and DBC-normed, i.e., it can build the
structural and informative representation for RL to some ex-
tent.

According to (McInnes, Healy, and Melville 2018), this
method can preserve the structure of the orginal space to
some extent, so started from this view of point, compared
to MICo and DBC-normed, Q2-learning seems to achieve a
more compact embedding space because it does not have a
cluster that is significantly separated from the other points,
but MICo and DBC-normed have. Such compactness may
imply better smoothness of the value function in the rep-
resentation space, which helps Q-value function generalize
better over the representation space shaped by Q2-learning
(Le Lan, Bellemare, and Castro 2021). It can lead to better
sample efficiency and asymptotic performance.
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Figure 8: Performance comparison of variants of Q2-
learning in the clean background setting. Q2-learning-a
means the gradient coming from D∗

SA actor. Results shown
here are computed using scores from all runs (8 tasks with
10 seeds).

4.3 Ablations
We demonstrate the value of each part of our representation
learning method via two ablation experiments.

Where do the gradients come from? We use the gradient
coming from the D∗

SA critic to update the encoder, which
means we utilize a conservative state-action discrepancy to
shape the embedding space. What if we replace this with
a conservative state discrepancy, i.e., use the gradient from
the D∗

SA actor? As Fig. 8 shows, the corresponding method
Q2-learning-a brings poor effect.

MICo-SA vs. MICo. As stated in Section 3.3, the MICo
distance can also be extended to state-action spaces (Eqs. 8
and 9), and applied to representation learning. We call this
method MICo-SA. It uses function approximators to repre-
sent the metric, like Q2-learning. The learning procedure is
similar to MICo, using the TD update rule. MICo-SA up-
dates the encoder with gradients from that part of the net-
work regarding state-action similarity.

The results are shown in Fig. 8. MICo-SA brings no sub-
stantial improvement over MICo, which suggests simply us-
ing more parameters to approximate the metric or consid-
ering the similarity of state-action pairs cannot bring about
performance improvement.

Two key characteristics of Q2-learning are the state-action
similarity and policy-independence. From the first ablation,
we can see that even with policy-independence, only con-
sidering the state similarity, the method fails. From the sec-
ond ablation, we can see that without policy-independence,
MICO-SA and MICo are not much different. So both are
indispensable and Q2-learning combines them effectively.

5 Related Work
Bisimulation equivalence (Givan, Dean, and Greig 2003) is
one form of state abstraction (Li, Walsh, and Littman 2006).
Its original definition is too strict to put into practice so
the subsequent works (Ferns, Panangaden, and Precup 2004,
2011) turn to seek a real-valued metric that can reflect the
bisimulation relationship, e.g. bisimulation metric (Ferns,

Panangaden, and Precup 2004). The “max” operator also ex-
ists in its definition and it is also policy-independent. But
it cannot deal with the troublesome of maximization when
faced with continuous action spaces. Learning state similar-
ity based on bisimulation online is mainly served for learn-
ing an informative representation for high dimensional in-
puts. Besides that, there are many other similar notions of
state similarity proposed for policy transfer (Castro and Pre-
cup 2010), generalization (Agarwal et al. 2020), and goal-
conditioned RL (Hansen-Estruch et al. 2022).

MDP homomorphism (Ravindran and Barto 2003) is an-
other state abstraction method. The difference is that MDP
homomorphism simultaneously considers the behavioral
equivalence of state and action. Similarly, follow-up works
(Ravindran and Barto 2004; Taylor, Precup, and Panagaden
2008) improve it by relaxing the condition for state-action
aggregation to let it be more useful in practice. The cor-
responding behavioral metric is called the lax-bisimulation
metric (Taylor, Precup, and Panagaden 2008). Despite this, it
is still hard to be applied in large-scale tasks and in the case
that policy is improved online. What our work proposes is
also a state-action based behavioral metric, but the differ-
ence is that we can easily combine it with policy learning
algorithms and scale it to continuous state and action spaces.

There are also lots of works (Ha and Schmidhuber 2018;
Watter et al. 2015; Gelada et al. 2019) based on unsupervised
learning to aid representation learning in RL. Their core idea
is to learn low-dimensional latent states through reconstruc-
tion. The reconstruction objective can be the original obser-
vation, the next observation, or just the reward. Recently,
more and more works (Laskin, Srinivas, and Abbeel 2020;
Stooke et al. 2021; Schwarzer et al. 2020; Mazoure et al.
2020) are motivated by self-supervised learning (Henaff
2020; Chen et al. 2020) widely applied in computer vision.
These works utilize the state similarity based on temporal
vicinity or image augmentation to establish the contrastive
loss function. Features learnt in this way can capture the
temporally predictable elements contained in the original
observation more effectively than unsupervised approaches,
but these methods cannot filter out task-irrelevant informa-
tion in theory.

6 Conclusion and Future Work

We introduce a novel behavioral metric, the conservative
state-action discrepancy, which is policy-independent while
remains scalability. Theoretical results show that our Q2-
learning is sound. On DeepMind control tasks, empirical re-
sults indicate that Q2-learning consistently improves SAC’s
performance and is significantly more effective than other
metric-based methods in the clean background setting and
remains competitive in the clutter background setting. We
break past prejudice that the inherent pessimism of policy-
independent metrics (Castro and Precup 2010; Castro 2020)
is not conducive to their application in RL. As a future topic,
we hope to investigate more usages of this scalable policy-
independent metric beyond representation learning.
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