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Abstract

MinMax Multiple Travelling Salesman Problem (mTSP) is
an important class of combinatorial optimization problems
with many practical applications, of which the goal is to min-
imize the longest tour of all vehicles. Due to its high compu-
tational complexity, existing methods for solving this prob-
lem cannot obtain a solution of satisfactory quality with fast
speed, especially when the scale of the problem is large. In
this paper, we propose a learning-based method named Split-
Net to transform the single TSP solutions into the MinMax
mTSP solutions of the same instances. Specifically, we gen-
erate single TSP solution sequences and split them into mTSP
subsequences using an attention-based model trained by rein-
forcement learning. We also design a decision region for the
splitting policy, which significantly reduces the policy action
space on instances of various scales and thus improves the
generalization ability of SplitNet. The experimental results
show that SplitNet generalizes well and outperforms existing
learning-based baselines and Google OR-Tools on widely-
used random datasets of different scales and public datasets
with fast solving speed.

Introduction
Travelling Salesman Problem (TSP) is a classical NP-Hard
problem. Given a list of nodes and the distances between
each pair of nodes, a vehicle is required to find the short-
est route that starts from a specified origin node, visits each
node exactly once, and returns to the origin node (Jünger,
Reinelt, and Rinaldi 1995). As an important variant of TSP,
the multiple Travelling Salesman Problem (mTSP) requires
multiple vehicles to visit every node under the same con-
straints of TSP, making the problem more complicated.
Compared with TSP of only one vehicle (single TSP), mTSP
is more widely applicable in practical scenarios. MinMax is
a typical optimization objective of mTSP aiming to mini-
mize the longest travelling distance of all vehicles. It is of
more practical significance since it is related to balancing
the workload, which is important in various scheduling and
routing problems. For example, in rescue applications, it’s
desired to find people in danger as soon as possible by dis-
patching humans and vehicles efficiently. In the scenario of
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exploration of natural resources, the equitable distribution of
workload for each vehicle is important.

After decades of development, many methods for rout-
ing problems have emerged both in OR and ML commu-
nities. Conventional methods for solving MinMax mTSP
mainly resort to various heuristic algorithms. Popular com-
mercial solvers include Gurobi (Gurobi 2020) and CPLEX
(IBM 2018). Evolutionary algorithm, also called genetic
algorithm, is also used to solve mTSP (Carter and Rags-
dale 2006). Lin-kernighan-helsgaun solver (LKH) (Hels-
gaun 2000), an advanced heuristic solver, implements an
outstanding local search heuristic that benefits from the vari-
able depth search. LKH3 (Helsgaun 2017), the extension of
LKH, is proposed to solve TSP with additional constraints
such as mTSP and can obtain approximated optimal or even
optimal results on many benchmark instances. OR-Tools
(Google 2012) tends to seek approximated optimal solutions
on large-scale mTSP with relatively fast speed. (Lupoaie
et al. 2019) proposed an algorithm SOM based on meta-
heuristic algorithms and is combined with self-organizing
map. Most of these conventional methods either compute ex-
pensively or perform terribly when solving MinMax mTSP,
especially when the scale of problems is enormous. In ad-
dition, it cannot be ignored that these conventional heuristic
algorithms usually rely on domain knowledge and the rules
should be manually constructed, which could be of limited
generalizability.

With the development of deep Reinforcement Learning
(RL), many methods for solving routing problems based on
deep learning have been proposed in recent years. (Bello
et al. 2016; Kool, Van Hoof, and Welling 2018; Xin et al.
2021a; Gao et al. 2020; Chen and Tian 2019; Li, Yan, and
Wu 2021; Xin et al. 2021b; Duan et al. 2020; Fu, Qiu, and
Zha 2021; Kwon et al. 2020; Zong et al. 2022; Kool et al.
2022; Vidal 2022) are examples that use learning meth-
ods to solve VRP, a typical routing problem. As for the
MinMax mTSP, to the best of our knowledge, there are
three RL-based algorithms. (Hu, Yao, and Lee 2020) de-
signed a clustering method to solve the MinMax mTSP. It
assigns nodes to different clusters with distributed policy
networks, and uses meta-heuristic methods to obtain the sin-
gle TSP solutions of each cluster. (Cao, Sun, and Sartoretti
2021) proposed a constructive policy, i.e., Decentralized
Attention-based Neural Network (DAN) based on Trans-
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former, and trained the model using RL. (Park, Bakhtiyar,
and Park 2021) introduced type-aware graph attention on
the basis of DAN and proposed a new constructive method,
which can efficiently extract the features in the graph. How-
ever, although these RL-based methods achieve faster speed
and stronger generalization ability compared with traditional
methods, there is still a certain gap in solution quality.

Considering the similarity in the topology of solutions
of a single TSP and mTSP, we investigate the relationship
between the optimal solutions of the two problems on the
same instances and find that they have 63% ∼ 74% overlap.
Therefore, an intuitive idea is to directly split a single TSP
sequence and connect the exposed end nodes with the origin
node to get the mTSP solution. Motivated by this, we pro-
pose a method named SplitNet that transforms a single TSP
solution into a MinMax mTSP solution using a splitting op-
eration to obtain a high-quality solution. The workflow of
SplitNet includes the following three steps: 1) Generate:
generate single TSP solution sequences; 2) Split: split each
single TSP solution sequence and connect the exposed end
nodes with the origin node to get several subsequences, the
number of which equals to the number of vehicles; 3) Re-
form: reform each subsequence to further get the optimized
MinMax mTSP solution. To enhance the generalized perfor-
mance on large-scale MinMax mTSP, we further design a
decision region to reduce the scope of SplitNet’s splitting
operation. Experiments show that SplitNet can achieve bet-
ter performance than several baselines on random and public
datasets with relatively faster speed.

Our main contributions are as follows:
(1) Based on the high similarity between the optimal solu-

tions of single TSP and mTSP of the same instance, we for
the first time propose the framework of transforming sin-
gle TSP solution sequences into MinMax mTSP solution se-
quences.

(2) Under the above framework, we design a single TSP
solution sequence splitting model and the corresponding RL
training scheme. We also design a decision region to reduce
the splitting action space to further improve the generaliza-
tion of the splitting model.

(3) Compared with learning-based methods and Google
OR-Tools, our algorithm achieves superior performance on
public dataset mTSPLib (Necula, Breaban, and Raschip
2015) and various scales of random datasets with faster
speed.

Problem Formulation
In this section, we introduce the formulation and optimiza-
tion objective of the MinMax mTSP. Figure 1 shows an
mTSP instance. On a 2-dimensional Euclidean plane, as-
sume there are N nodes, including one origin node n0 and
N − 1 other nodes denoted as n1, ..., nN−1. m vehicles
start from the same origin node to visit other nodes and
return to the origin node. In the following, unless other-
wise claimed, we regard N as the number of total nodes
(including the origin node) and m as the number of total
vehicles. An mTSP solution consisting of m subsequences
is denoted as [..., [n0, ai1, ..., aij , ..., aiM(i), n0], ...], where

Graph instance Solution sequences set
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Figure 1: An mTSP instance. Each instance is composed of
one origin node and several other nodes a11, ..., a42. The ar-
rows of different colors represent the routes in different sub-
sequences.

aij ∈ {n1, ..., nN−1}, 1 ≤ i ≤ m, 1 ≤ j ≤ M(i), M(i) in-
dicates the total number of visited nodes except for n0 of the
i-th subsequence, and Σm

i=1M(i) = N−1. Define d(ni, nj)
as the Euclidean distance between two nodes ni and nj , then
the total length of the i-th (1 ≤ i ≤ m) subsequence is:

Li = d(n0, ai1) +

M(i)−1∑
j=1

d(aij , ai(j+1)) + d(aiM(i), n0)

(1)
The optimization objective is to minimize the maximum

travelling length of all the vehicles:

min max{Li|∀i, 1 ≤ i ≤ m} (2)

subject to

aij1 ̸= aij2 , 1 ≤ i ≤ m, 1 ≤ j1 < j2 ≤ M(i) (3)
Ai ∩Aj = ∅, 1 ≤ i < j ≤ m (4)

m
∪
i=1

Ai = V (5)

where Ai = {ai1, ..., aiM(i)} represents the set of all nodes
in the i-th subsequence except for the origin node, V =
{n1, ..., nN−1} represents the set of all nodes in the instance
except for the origin node. Constraint 3 ensures that any
node in the mTSP solution sequence except for the origin
node is only visited once by a certain vehicle. Constraint 4
ensures that any node in the mTSP solution sequence except
for the origin node is only visited by one vehicle. Constraint
5 ensures that each node except for the origin node is in-
cluded in the mTSP solution sequence.

Method
In the initial research phase, we find that the overlap rate of
the optimal solution for single TSP and the optimal solution
for mTSP of the same instance exceeds 63%. Therefore, an
intuitive idea is to directly split an optimal single TSP solu-
tion and connect the exposed end nodes with the origin node
to get a satisfactory MinMax mTSP solution.

Motivated by this, in this section, we design a method
named SplitNet to transform single TSP solutions into Min-
Max mTSP solutions. The workflow of SplitNet includes
the following three steps, as shown in Figure 2: 1) Gen-
erate: generate several single TSP solution sequences; 2)
Split: split each single TSP solution sequence into m seg-
ments and connect the exposed end nodes with the origin
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node to transform each single TSP solution sequence into
a MinMax mTSP solution consisting of m subsequences;
3) Reform: reform each subsequence to get the optimized
MinMax mTSP solution. In the following subsections, we
introduce them in detail.

Generate Single TSP Solution Sequences
As it cannot be guaranteed to obtain the optimal solution of
the MinMax mTSP starting from an optimal single TSP so-
lution sequence after the above splitting and reforming op-
erations, we sample several different single TSP solution se-
quences instead of only using an optimal one to obtain a
higher quality solution of the MinMax mTSP. Specifically,
for a given instance, we first find k nodes closest to the ori-
gin node, and then designate these nodes as the first nodes
to visit after the vehicle leaves the origin node. On this ba-
sis, we use LKH3 to generate k different single TSP solution
sequences. Then the splitting and reforming operations are
performed on each of the k sequences as described in the
following sections.

Split Single TSP Solution Sequences
Given a single TSP solution sequence, with the purpose of
minimizing the maximum travelling length of all the m ve-
hicles, we perform m− 1 splitting operations to transform it
into MinMax mTSP solutions with m subsequences. This
process can be achieved using exhaustive algorithms, but
its time complexity, i.e., O(Nm−1), makes it impossible to
solve the splitting problem in an acceptable time. Therefore,
we model the decision-making process that successively se-
lects and splits edges from the entire single TSP solution
sequence as a Markov Decision Process (MDP). The edge
splitting is performed by a solution sequence splitting policy
π (called SplitNet policy), which is instantiated as a neural
network model designed based on Attention Model (AM)
(Kool, Van Hoof, and Welling 2018) and trained using RL.
We also keep track of the obtained policies during training
and denote πb as the rollout baseline policy that achieves
the best results in the validation set among all the obtained
policies at different time steps.

Markov Decision Process (MDP) We first introduce the
MDP modeling of solution splitting, including the state, ac-
tion, and reward.

State. The state consists of each edge’s static and dy-
namic features in the single TSP solution sequence. The
static features of an edge include the length of the edge and
the distances from the two end nodes of the edge to the ori-
gin node. The dynamic features include which edges can be
split, the number of remaining time steps, and the length of
the longest subsequence of all the already obtained subse-
quences. All the above features are normalized and concate-
nated together.

Action. We define the action of the RL agent as a split-
ting operation. A splitting operation is to choose an edge
from the solution sequence, split the edge and connect the
two end nodes with the origin node, as shown in Figure 2.
For a single TSP solution [a0, a1, ..., ai, ai+1, ..., aN−1, aN ]
(in particular a0 = aN = n0), we define ei as the

edge connecting ai and ai+1. When splitting ei, if ai ̸=
n0 and ai+1 ̸= n0, then we get two subsequences
[n0, a1, ..., ai, n0] and [n0, ai+1, ..., aN−1, n0]; if ai = n0,
we get [n0] and [n0, ai+1, ..., aN−1, n0]; if ai+1 = n0, we
get [n0, a1, ..., ai, n0] and [n0].

In practice, we force the agent to split the edges in the
order of e0 ∼ eN−1 to make the training process faster and
more stable. We stipulate that when the agent has split the
edge ei, it cannot split any edge in {e0, ..., ei−1}. In other
words, these edges are masked in the subsequent time steps.

Reward. Intuitively, we can directly set the negative num-
ber of the longest sub-tour length as the reward to match our
optimization objective. However, similar to the considera-
tion of ScheduleNet (Park, Bakhtiyar, and Park 2021), the
scale of the reward should neither depend on the problem
size (N,m), nor on the quality of single TSP solutions, but
only on the solution qualities gap between the current RL
policy π and the rollout baseline policy πb. We set the ex-
pectation of cost under the current policy, i.e., the tour length
of the longest subsequence, to L(π). We also set the cost of
πb to L(πb), thus the solution qualities gap is L(π)−L(πb).
Considering that our model needs to be trained on instances
of different scales and the scale of the gap of the solution
qualities is also different, we further use L(πb) to normalize
L(π)−L(πb). Therefore, our reward function is as follows:

rt =


0, t ̸= T,

−L(π)− L(πb)

L(πb)
, t = T.

(6)

where t is the index of the current state, and T is the index
of the terminal state. This reward formulation is effective
in reducing variance and accelerating the coverage speed of
RL algorithm (Williams 1992). Note that this reward func-
tion is sparse, which means the non-zero reward can only be
obtained when the splitting is finished.

Model of SplitNet Policy In this section, we introduce the
model structure of our splitting policy as shown in Figure 3.

Encoder. The input of the encoder includes static and dy-
namic features of each edge, and the output is the embedding
of each edge. The static edge features are passed through
linear projection (LP) and L attention blocks (AB) to ex-
tract the static embeddings of edges based on their different
importance in the single TSP solution sequence. The static
embeddings are calculated only once in the entire decision-
making process. In contrast, the dynamic information such
as which edges can be split and how many time steps are
left is updated after each splitting. We use an MLP to extract
the dynamic embedding of each edge. Then the static infor-
mation and the dynamic information are merged to get the
mixed embedding of each edge. Note that we also introduce
the positional encoding used by (Vaswani et al. 2017) into
the static edge embeddings so that the model can perceive
the serialization features of the ordered input.

Decoder. The decoder takes a context c = [hgraph, hlast]
as input, where hgraph is the mean pooling of all edge em-
beddings and hlast is the embedding of the last selected
edge. The context is input into a Multi-Head Attention
(MHA) layer as a query, while the mixed embedding of all
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Figure 2: SplitNet Framework. The red dotted line represents the edge to split, and the dotted arrows represent the edges formed
by connecting the two end nodes of the split edge to the origin node.
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Figure 3: Model of SplitNet Policy

edges is processed by an MLP to obtain the key and value,
respectively. The output of the MHA layer is then input into
a single head attention (SHA) layer as a query, together
with the key calculated based on the mixed embedding of
all edges. The SHA layer outputs N single values for each
edge. Then these values are limited to [-10, 10] by a tanh
activation function, and the values of unavailable edges are
masked to negative infinity. Finally, a softmax layer is used
to obtain the probability of selecting each edge to split.

Decision Region However, the performance can be catas-
trophically poor when directly transferring the SplitNet pol-
icy introduced above to large-scale mTSP after training
on small-scale datasets. This phenomenon is aroused by
the dramatic change in the size of the policy action space
on large-scale problems compared to small-scale problems.
One solution is to restrict the range of edges that the policy
can split at each time step so that its action spaces on prob-
lems of different scales become similar, thereby improving
its generalization.

Since our goal is to minimize the longest subsequence,
ideally, the length of each subsequence obtained by dividing
a single TSP sequence and connecting with the origin node
should be relatively similar, i.e., the ideal ratio of the length

of each subsequence to the entire TSP sequence should be
the same. To this end, we can approximate the ideal ratio
of the length of the new subsequence obtained via splitting
to the length of the remaining sequence after the splitting
operation at the i-th splitting using:

Ratioi =


S0

m + l̄

(m− 1)S0

m + l̄
, i = 0,

S0

m + 2l̄

(m− 1− i)S0

m + l̄
, 1 ≤ i ≤ m− 2.

(7)

where S0 is the total length of the single TSP solution se-
quence, l̄ is the average distance from all nodes to the origin
node.

At the i-th splitting, for all the remaining N − i edges,
we calculate the ratio of the length of the new subsequence
obtained via splitting each edge to the length of the remain-
ing sequence after the splitting operation, respectively. Then
we can find the edge whose corresponding ratio is closest
to the approximated ideal ratio, and we name it as the core
edge. Considering the difference between the approximated
ideal ratio Ratioi and the real ideal ratio, directly splitting
the core edge may yield sub-optimal solutions. Therefore,
to help the policy find the edge that can yield optimal solu-
tions, we delineate the neighbourhood of the core edge and
let the policy learn to select and split edges within this neigh-
bourhood. We name the neighbourhood of the core edge as
the decision region, i.e., the reduced action space, where the
ideal splitting edges locate. An example is given in Figure
4. Through experiments, we also verify that edges that yield
high-quality subsequences after splitting are often located at
adjacent positions in the sequence at each decision step. It
means restricting candidate edges to be split by specifying
the decision region may have a very limited negative impact
on finding the optimal solutions.

Training of SplitNet Policy We train the SplitNet policy
with the REINFORCE (Williams 1992) method with rollout
baseline. Given an mTSP instance s, its loss function is as
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Figure 4: The process of obtaining the decision region. The
number marked on each edge represents its corresponding
ratio value. As the ratio of the red arrow is closest to the ap-
proximated ideal ratio, it is set to the core edge. Centered on
it, the edges in the gray dotted square box together constitute
the decision region. The policy then chooses to split an edge
within the decision region.

follows:
∇L(θ|s) = Epθ(π|s)[G∇log pθ(π|s)] (8)

where G is the return obtained after finishing all the splitting,
pθ(π|s) is the probability distribution defined by SplitNet
policy for a given instance s, from which we can sample
a splitting action. As the reward function described in the
MDP subsection is a sparse reward, G is equivalent to rT .
By substituting rT in Equation 6 to Equation 8, the above
loss function can be rewritten:

∇L(θ|s) = Epθ(π|s)[
L(π)− L(πb)

L(πb)
∇log pθ(π|s)] (9)

Reform Subsequences
The above splitting method will produce m high-quality
subsequences with similar lengths. However, the obtained
subsequences may still be different from the optimal ones.
After splitting an edge, we obtain two end nodes. Directly
connecting one of the end nodes to the origin node is equiv-
alent to forcing the corresponding vehicle to either visit the
end node firstly after leaving the origin node, or to visit it
lastly before returning to the origin node. It’s obvious that
the nodes visiting order can still be further optimized.

Therefore, to further improve the solution quality of
mTSP, we perform a reforming operation for each subse-
quence. The specific method is to reform each subsequence
by taking the solution obtained by splitting as the initial
solution of LKH3 for further optimization. The reforming
can eliminate the unreasonable edges generated by splitting
and effectively improve the quality of each subsequence. Be-
sides, considering that the nodes of the instances have been
relatively evenly divided into m parts, the size of each sub-
problem is relatively small. Therefore, the reforming will
only take a very short time.

Experiments
In order to verify the effectiveness of our framework, we
trained SplitNet policy on random datasets generated uni-

formly in the unit square [0, 1]2 with the number of nodes
ranging from 30 to 100, and tested it on random datasets
with the number of nodes ranging from 30 to 1000 (we gen-
erate 100 instances for each problem scale) and the public
benchmark mTSPLib (Necula, Breaban, and Raschip 2015).
We generate 30720 random uniform instances as the training
set and generate 25 different single TSP solution sequences
for each instance using the generating method described in
the method section. The number of vehicles in each training
instance is randomly generated independently in each epoch,
ranging from 3 to 15. We train the model for 80 epochs, of
each the gradient step is 1920, and the batch size is 400. Dur-
ing the inference of splitting edges, we sample 64 splitting
policies (denoted as s.64) instead of using the greedy method
(denoted as g.), and the best sampled policy is adopted as de-
scribed in (Kool, Van Hoof, and Welling 2018). All the tests
are running on a single A100 GPU with Intel(R) Xeon(R)
CPU @ 2.20GHz.

In order to obtain the rollout baseline as described before,
we generate a validation set containing 320 instances and
8000 solution sequences to validate all policies obtained dur-
ing training. The training and validation set share the same
distribution of the number of nodes and vehicles, but the
number of vehicles in each instance is fixed when generating
the validation sets for fair comparison.

Note that although our research focuses on the MinMax
mTSP, it is proved that our framework also has the potential
for solving MinSum mTSP. We run the exhaustive splitting
algorithm to solve the small-scale Capacitated Vehicle Rout-
ing Problem(CVRP, a typical MinSum mTSP) and achieve
better results than OR-Tools and learning-based constructive
approaches.

Complete experimental results are provided in appendix.

Baselines
When testing on random uniform datasets, we compare
our algorithm with LKH3, OR-Tools, and two problem-
specific learning-based methods GNN-DisPN (Hu, Yao, and
Lee 2020) and DAN (Cao, Sun, and Sartoretti 2021). We
also modify the state-of-the-art learning-based method L2D
(Learn to delegate) (Li, Yan, and Wu 2021) for MinSum
CVRP (a method iteratively improves the solution by iden-
tifying subproblems and delegating their improvement to a
subsolver) to apply it to MinMax mTSP. The results of base-
lines in Table 1 and 2 are reproduced using open-sourced
codes from the official implementations. When testing on
the mTSPLib datasets, we compare the results of our algo-
rithm with OR-Tools, LKH3, and learning-based algorithms,
including (Hu, Yao, and Lee 2020; Cao, Sun, and Sartoretti
2021; Park, Bakhtiyar, and Park 2021; Li, Yan, and Wu
2021). Because of the consistency of the datasets, in Table 4,
we directly quote the results of OR-Tools, DAN, and Sched-
uleNet reported by (Park, Bakhtiyar, and Park 2021), while
the results of LKH3, GNN-DisPN, and L2D are reproduced
using open-sourced codes.

Results on Random MTSP Datasets
We tested the algorithms on the random datasets of vari-
ous scales. Table 1 reports the results on small-scale ran-
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N 30 50 100 200
m 2 3 5 2 5 7 10 2 5 10 15 2 10 15 20

LKH3 2.71 2.17 1.91 3.17 2.01 1.93 1.92 4.08 2.22 1.97 1.97 5.50 2.05 2.03 2.03
OR-Tools 2.86 2.26 1.95 3.40 2.07 2.00 2.00 4.52 2.40 2.26 2.29 6.23 2.79 2.92 2.90

GNN-DisPN 3.22 2.63 2.01 3.58 2.14 2.10 1.99 5.11 2.56 2.22 2.04 7.37 2.97 2.30 2.15
DAN(g.) 3.46 2.59 2.10 4.19 2.28 2.10 2.02 5.49 2.70 2.17 2.10 7.39 2.42 2.23 2.18

DAN(s.64) 3.01 2.31 1.95 3.73 2.12 1.98 1.94 5.03 2.52 2.06 2.01 7.17 2.31 2.13 2.09
L2D 3.17 2.47 2.16 3.69 2.28 2.09 1.98 4.66 2.56 2.10 2.02 6.04 2.26 2.12 2.07

SplitNet(s.64) 2.72 2.23 1.94 3.25 2.08 1.95 1.91 4.17 2.42 2.01 1.97 5.61 2.27 2.12 2.07

Table 1: Random mTSP results.

dom datasets, of which the number of nodes ranges from 30
to 200 and the number of vehicles ranges from 2 to 20. It
is noted that SplitNet improves the results by about 10%
compared with OR-Tools and reaches performance closer
to LKH3. Table 2 reports the results on large-scale mTSP
datasets. The number of nodes ranges from 400 to 1000, and
the number of vehicles is set to 3 and 10 for comprehensive
comparison. It should be emphasized that although SplitNet
is trained on random datasets with the number of nodes rang-
ing from 30 to 100, it obtains much better results than OR-
Tools and learning-based methods DAN and GNN-DisPN
on the large-scale datasets. It also reaches slightly better re-
sults than L2D with faster speed. The results demonstrate
the superior generalization ability of SplitNet on large-scale
MinMax mTSP.

Table 3 reports the average computation time of each al-
gorithm on instances of different scales without considering
the I/O cost. The computation time of SplitNet is the sum
of the computation time of all steps described in the method
section. As we can see, the solving speed of SplitNet is faster
than that of L2D, DAN, OR-Tools, and LKH3, especially
when encountering large-scale mTSP. Note that techniques
such as multi-threading sampling can be used to further im-
prove the speed of SplitNet.

Results on Public Benchmarks
We also test the performance of SplitNet on real-world mT-
SPLib datasets (Necula, Breaban, and Raschip 2015) after
training on the random datasets. MTSPLib contains four
datasets namely Eil51, Berlin52, Eil76, and Rat99, of which
the corresponding number of nodes are 51, 52, 76, and 99.
The number of vehicles in each group is set to 2, 3, 5, and
7. The results of different datasets in Table 4 indicate that
SplitNet has the least gap with CPLEX/LKH3 and outper-
forms OR-Tools, GNN-DisPN, DAN, ScheduleNet and L2D
in most instances. By examining the performance of Split-
Net on real-world datasets, we can further confirm its out-
standing generalization ability. Note that the performance of
CPLEX in Table 4 is inferior to that of LKH3 as the solution
of CPLEX is the upper bound of the optimal solution while
LKH3 can often find the optimal solution.

Ablation Studies
Effectiveness of generating multiple single TSP solution
sequences As mentioned before, it cannot be guaranteed
to obtain the optimal solution of MinMax mTSP from the

optimal single TSP solution by splitting and reforming op-
erations. Therefore, we sample multiple single TSP solution
sequences before feeding them into the SplitNet policy to
improve the quality of the obtained mTSP solution.

We sample 1, 10, 20, 30, and 40 single TSP solution se-
quences using LKH3 and compare the results of using differ-
ent numbers of sampled sequences. As shown in Table 5, the
more sequences we sample, the better the results of mTSP
solution will become. When the sampling number k is set
to 30, compared with the results of k setting to 1, the length
can be reduced by around 0.6% ∼ 5.8%. This indicates that
the sampling techniques can be beneficial to improving the
policy performance. When the sampling number k = 40, the
policy performance improvement is limited while the com-
putation time could be increased compared with that when
k = 30. Therefore, to balance the performance and the com-
putation time of our algorithm, we set k = 30 in our sam-
pling process.

Improvements brought by the decision region In or-
der to prove that the decision region can improve the gen-
eralization ability of SplitNet policy, we train the model
with the length of decision region (denoted as len) of
{10, 20, 40, 60, 80} and compare them with two special situ-
ations: (1) the model without using decision region, recorded
as len = inf ; (2) the model directly taking the centers of de-
cision regions as actions, recorded as len = 1. To compare
the generalization of different models, we train them on the
datasets with N ranging from 30 to 100, and test them on
random datasets with N = 200, 400, 600.

As we can see from Table 6, the models using decision re-
gion can achieve better results on large-scale problems than
the model without decision region and the model taking the
centers of decision regions as actions. This indicates that in-
troducing decision region can significantly improve the gen-
eralization of the SplitNet policy. We can also conclude that
SplitNet can achieve better performance on datasets of dif-
ferent numbers of nodes when the length of decision region
is set to 10 or 20.

Benefits of Reforming subsequences To verify the effec-
tiveness of the reforming operation, we record the maximum
lengths of the subsequences from the initial output of the
SplitNet policy, and compare them with that of the reformed
subsequences using LKH3 (i.e. the final output of our al-
gorithm). The results in Table 7 indicate that the maximum
lengths of the subsequences are reduced averagely by around
0.8% ∼ 3.1% after reforming.
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N 400 600 800 1000
m 3 10 3 10 3 10 3 10

LKH3 5.22 2.20 6.27 2.39 7.18 2.60 7.99 2.82
OR-Tools(1800s) 6.15 5.24 9.81 9.79 11.74 11.76 14.92 15.22

GNN-DisPN 11.10 7.75 13.41 10.84 16.63 13.09 18.84 14.63
DAN(g.) 7.08 2.96 9.43 3.62 11.05 4.20 13.25 4.80

DAN(s.64) 6.78 2.81 9.12 3.46 10.73 4.07 12.99 4.69
L2D 5.57 2.52 6.55 2.75 7.41 2.93 8.20 3.18

SplitNet(s.64) 5.40 2.59 6.38 2.82 7.27 3.07 8.06 3.32

Table 2: Results on the large-scale random mTSP datasets. ’1800s’ means the running time of OR-Tools is upper limited by
1800 seconds.

N 30 50 100 200 400 1000
m 3 5 5 7 10 5 10 15 10 15 20 10 10

LKH3 4.8 2.4 11.0 11.1 9.5 30.2 32.4 25.6 133.8 112.7 109.5 484.3 920.0
OR-Tools 0.3 0.4 2.0 2.0 2.0 26.2 26.9 24.8 209.7 214.4 207.6 2522.0 >30000

DAN(s.64) 17.5 17.6 27.4 31.7 36.6 55.7 62.2 75.1 98.4 106.5 148.4 222.6 422.2
L2D 4.8 2.5 6.0 4.4 2.2 15.1 7.7 4.4 15.7 11.5 6.7 42.2 131.5

SplitNet(s.64) 0.4 0.6 1.1 1.3 1.6 2.7 3.5 4.2 6.5 7.8 8.6 14.3 55.1

Table 3: Comparison of computation times (in seconds).

Instance Eil51 Berlin52 Rat99
m 2 3 5 7 2 3 5 7 2 3 5 7

CPLEX 222.7* 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 728.8 587.2 469.3 443.9
LKH3 222.7 159.6 118.1 112.1 4127.9 3189.5 2440.9 2440.9 666.0 517.7 454.1 438.6

OR-Tools 243.3 170.5 127.5 112.1 4665.5 3311.3 2482.6 2440.9 762.2 552.1 473.7 442.5
GNN-DisPN 260.0 202.5 120.1 120.8 5081.5 4431.8 2855.2 2724.7 1067.8 881.1 854.4 641.4

DAN(g.) 274.2 178.9 158.6 118.1 5226.0 4278.4 2758.8 2696.8 930.8 674.1 504.0 466.4
DAN(s.64) 252.9 178.9 128.2 114.3 5097.7 3455.7 2677.1 2494.5 966.5 697.7 495.6 462.0

ScheduleNet(g) 263.9 200.5 131.7 116.9 4826.1 3644.2 2757.8 2514.6 843.8 671.8 524.3 480.8
ScheduleNet(s.64) 239.3 173.5 125.8 112.2 4591.6 3276.1 2517.3 2441.4 781.2 627.1 502.3 464.4

L2D 257.3 181.4 130.3 120.1 4179.8 4103.6 2865.2 2669.5 786.6 547.9 537.2 452.5
SplitNet(s.64) 228.3 164.7 127.5 112.6 4244.2 3191.2 2662.9 2440.9 683.3 577.8 491.3 458.9

Table 4: Results on mTSPLib. The symbol * refers to the optimal result.

N 50 100
m 5 7 10 5 10 15

k=1 2.182 1.987 1.918 2.569 2.058 1.984
k=10 2.105 1.952 1.909 2.453 2.020 1.974
k=20 2.090 1.947 1.907 2.434 2.015 1.972
k=30 2.082 1.945 1.907 2.420 2.009 1.972
k=40 2.078 1.942 1.908 2.407 2.010 1.972

Table 5: Results of generating k initial single TSP se-
quences.

len \N 200 400 600
1 2.32 2.66 2.89

10 2.25 2.61 2.85
20 2.27 2.59 2.82
40 2.37 2.67 2.86
60 2.46 2.78 2.92
80 2.50 2.87 3.04
inf 2.62 3.62 4.16

Table 6: Results of various decision regions.

N 30 50 100
m 3 5 5 7 5 10

init 2.299 1.962 2.124 1.960 2.498 2.027
Reform 2.232 1.942 2.082 1.945 2.420 2.009

Table 7: Effectiveness of reforming the subsequences.

Conclusions
In this paper, we propose SplitNet to transform the sin-
gle TSP solutions into the MinMax mTSP solutions of the
same instances. We generate several single TSP solution
sequences and split them into mTSP subsequences using
an attention-based model trained by reinforcement learning,
coupled with a reforming technique. To further improve the
generalization ability, we design a decision region to signif-
icantly reduce the action space of the splitting policy. The
experimental results show that SplitNet can achieve supe-
rior performances compared with existing baselines on dif-
ferent scales of random datasets and public datasets with a
fast solving speed. We leave the adaptation of SplitNet to
more complicated fields as our future work.
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