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Abstract

Constructing useful representations across a large number
of tasks is a key requirement for sample-efficient intelligent
systems. A traditional idea in multitask learning (MTL) is
building a shared representation across tasks which can then
be adapted to new tasks by tuning last layers. A desirable
refinement of using a shared one-fits-all representation is to
construct task-specific representations. To this end, recent Path-
Net/muNet architectures represent individual tasks as path-
ways within a larger supernet. The subnetworks induced by
pathways can be viewed as task-specific representations that
are composition of modules within supernet’s computation
graph. This work explores the pathways proposal from the
lens of statistical learning: We first develop novel generaliza-
tion bounds for empirical risk minimization problems learn-
ing multiple tasks over multiple paths (Multipath MTL). In
conjunction, we formalize the benefits of resulting multipath
representation when adapting to new downstream tasks. Our
bounds are expressed in terms of Gaussian complexity, lead
to tangible guarantees for the class of linear representations,
and provide novel insights into the quality and benefits of a
multipath representation. When computation graph is a tree,
Multipath MTL hierarchically clusters the tasks and builds
cluster-specific representations. We provide further discussion
and experiments for hierarchical MTL and rigorously identify
the conditions under which Multipath MTL is provably supe-
rior to traditional MTL approaches with shallow supernets.

1 Introduction

Multitask learning (MTL) promises to deliver significant ac-
curacy improvements by leveraging similarities across many
tasks through shared representations. The potential of MTL
has been recognized since 1990s (Caruana 1997) however its
impact has grown over time thanks to more recent machine
learning applications arising in computer vision and NLP that
involve large datasets with thousands of classes/tasks. Repre-
sentation learning techniques (e.g. MTL and self-supervision)
are also central to the success of deep learning as large pre-
trained models enable data-efficient learning for downstream
transfer learning tasks (Deng et al. 2009; Brown et al. 2020).

As we move from tens of tasks trained with small mod-
els to thousands of tasks trained with large models, new
statistical and computational challenges arise: First, not all
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Figure 1: In Multipath MTL, each task selects a pathway
within a supernet graph. The composition of the modules
along the pathway forms the task-specific representation.
Fig. 1a depicts a general supernet graph (highlighted in gray
block), and the pathways for different tasks are shown in
colored arrows. Fig. 1b is a special instance where related
tasks are hierarchically clustered: For instance, Tasks 1 and 2
are assinged the same representation 13 o 1)y .

tasks will be closely related to each other, for instance, tasks
might admit a natural clustering into groups. This is also
connected to heterogeneity challenge in federated learning
where clients have distinct distributions and benefit from per-
sonalization. To address this challenge, rather than a single
task-agnostic representation, it might be preferable to use a
task-specific representation. Secondly, pretrained language
and vision models achieve better accuracy with larger sizes
which creates computational challenges as they push towards
trillion parameters. This motivated new architectural propos-
als such as Pathways/PathNet (Fernando et al. 2017; Dean
2021; Gesmundo and Dean 2022b) where tasks can be com-
puted over compute-efficient subnetworks. At a high-level,
each subnetwork is created by a composition of modules
within a larger supernet which induces a pathway as depicted
in Figure 1. Inspired from these challenges, we ask

Q: What are the statistical benefits of learning task-
specific representations along supernet pathways?

Our primary contribution is formalizing the Multipath MTL
problem depicted in Figure 1 and developing associated sta-
tistical learning guarantees that shed light on its benefits. Our
formulation captures important aspects of the problem includ-
ing learning compositional MTL representations, multilayer



nature of supernet, assigning optimal pathways to individ-
ual tasks, and transferring learned representations to novel
downstream tasks. Our specific contributions are as follows.

e Suppose we have N samples per task and 7 tasks in total.
Denote the hypothesis sets for multipath representation by @,
task specific heads by H and potential pathway choices by
A. Our main result bounds the task-averaged risk of MTL as

DOF(q)used)
\/ NT +

\/ DoF(#) + DoF(A)

¥ (M)

Here, DoF(+) returns the degrees of freedom of a hypothe-
sis set (i.e. number of parameters). More generally, Theo-
rem 1 states our guarantees in terms of Gaussian complexity.
Dysea C© @ is the supernet spanned by the pathways of the
empirical solution and 1/NT dependence implies that cost of
representation learning is shared across tasks. We also show
a no-harm result (Lemma 1): If the supernet is sufficiently
expressive to achieve zero empirical risk, then, the excess
risk of individual tasks will not be harmed by the other tasks.
Theorem 2 develops guarantees for transferring the resulting
MTL representation to a new task in terms of representation
bias of the empirical MTL supernet.

e When the supernet has a single module, the problem boils
down to (vanilla) MTL with single shared representation
and our bounds recover the results by (Maurer, Pontil, and
Romera-Paredes 2016; Tripuraneni, Jin, and Jordan 2021).
When the supernet graph is hierarchical (as in Figure 1b), our
bounds provide insights for the benefits of clustering tasks
into similar groups and superiority of multilayer Multipath
MTL over using single-layer shallow supernets (Section 5).

e We develop stronger results for linear representations over a
supernet and obtain novel MTL and transfer learning bounds
(Sec. 4 and Theorem 4). These are accomplished by develop-
ing new task-diversity criteria to account for the task-specific
(thus heterogeneous) nature of multipath representations. Nu-
merical experiments support our theory and verify the ben-
efits of multipath representations. Finally, we also highlight
multiple future directions.

2 Setup and Problem Formulations

Notation. Let || - || denote the ¢5-norm of a vector and opera-
tor norm of a matrix. |- | denotes the absolute value for scalars
and cardinality for discrete sets. We use [K] to denote the
set {1,2,..., K} and <, 2 for inequalities that hold up to
constant/logarithmic factors. Q€ denotes K -times Cartesian
product of a set Q with itself. o denotes functional composi-
tion, i.e., f o g(x) = f(g(z)).

Setup. Suppose we have T tasks each following data dis-
tribution {D;}._,. During MTL phase, we are given T
training datasets {S;}._; each drawn i.i.d. from its corre-
sponding distribution D;. Let S; (xei, yei) }2,, where
(x5, yri) € (X, R) is an input-label pair and X is the in-
put space, and |S;| = N is the number of samples per task.
We assume the same NV for all tasks for cleaner exposition.
Define the union of the datasets by Sy = Uthl S; (with

|Sat| = NT), and the set of distributions by D = {D;}1_,.
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Following the setting of related works (Tripuraneni, Jin,
and Jordan 2021), we will consider two problems: (1) MTL
problem will use these 7' datasets to learn a supernet and
establish guarantees for representation learning. (2) Transfer
learning problem will use the resulting representation for a
downstream task in a sample efficient fashion.

Problem (1): Multipath Multitask Learning (M>TL). We
consider a supernet with L layers where layer ¢ has K, mod-
ules for ¢ € [L]. As depicted in Figure 1, each task will
compose a task-specific representation by choosing one mod-
ule from each layer. We refer to each sequence of L modules
as a pathway. Let A = [K1] X - - - x[K 1] be the set of all path-
way choices obeying |A| = HeL:1 K. Let oy, € A denote
the pathway associated with task ¢ € [T'] where oy [(] € [K/]
denotes the selected module index from layer ¢. We remark
that results can be extended to more general pathway sets as
discussed in Section 3.1.

As depicted in Figure 1, let ¥, be the hypothesis set of
modules in ¢, layer and wé? € WU, denote the ky module
function in the ¢y, layer, referred to as (¢, k)’th module. Let
h: € H be the prediction head of task ¢ where all tasks use
the same hypothesis set H for prediction. Let us denote the
combined hypothesis

h=[hy,...,hy] € HT,
a=la,...,ar] € AT,
Yo = [U),. .., b1 € U VL€ (L],
¢ :=[r,... e

where & = \Il{( XX \I!f * is the supernet hypothesis class
containing all modules/layers. Given a supernet ¢ € ¢ and
pathway «, ¢, = Y¢ o -+ 0 9{ denotes the representation
induced by pathway o where we use the convention 1)y :=

?[13}. Hence, ¢,, is the representation of task ¢. We would
like to solve for supernet weights ¢, pathways «, and heads h.
Thus, given a loss function £(4, y), Multipath MTL (M2TL)
solves the following empirical risk minimization problem
over Sy to optimize the combined hypothesis f = (h, &, ¢):

T
~ ~ 1 ~
— i = MZ2TL
f argerr;m Ls,(f) T ;:1 Li(ht o ¢a,) ( )

N
~ 1

where L:(f) = v ;Z(f(ivn%yn‘)
Fi=HT x AT x ®.

Here Et and Esa" are task-conditional and task-averaged
empirical risks. We are primarily interested in controlling

the task-averaged test risk L5 (f) = E[Ls,, ()] Let L=
minger L5(f), then the excess MTL risk is defined as

RMQTL(]E) = ﬁﬁ(f) - E%‘

Problem (2): Transfer Learning with Optimal Pathway
(TLOP). Suppose we have a novel target task with i.i.d. train-
ing dataset ST = {(x;,v;)}~, with M samples drawn from

2



distribution Dy. Given a pretrained supernet ¢ (e.g., fol-
lowing (M2TL)), we can search for a pathway « so that ¢,
becomes a suitable representation for Dy. Thus, for this new
task, we only need to optimize the path o € A and the pre-
diction head i € H 7 while reusing weights of ¢. This leads
to the following problem:

fo = argmin L7 (f) where f=ho¢, (TLOP)
heHr,acA
N 1 M
and L7 (f) = 57 > U(f().v0)-

=1

Here, f, reflects the fact that solution depends on the suit-
ability of pretrained supernet ¢. Let f3 be a population
minima of (TLOP) given supernet ¢ (as M — o0) and
define the population risk £7(f) = E[L7(f)]. (TLOP)
will be evaluated against the hindsight knowledge of op-
timal supernet for target: Define the optimal target risk
L% = minpen, ped L7(h o ¢o) which optimizes h, ¢
for the target task along the fixed pathway o = [1,...,1].
Here we can fix « since all pathways result in the same search
space. We define the excess transfer learning risk to be

Rrvor(fo) = L7(fo) — L
= L7(f¢) = L7(f3) + LT (f3)

variance

3)
— L5

supernet bias

The final line decomposes the overall risk into a variance
term and supernet bias . The former arises from the fact that
we solve the problem with finite training samples. This term
will vanish as M — oco. The latter term quantifies the bias
induced by the fact that (TLOP) uses the representation ¢
rather than the optimal representation. Finally, while supernet
¢ in (TLOP) is arbitrary, for end-to-end guarantees we will
set it to the solution (;AS of (M2TL). In this scenario, we will
refer to {D; }1_, as source tasks.

3 Main Results

We are ready to present our results that establish generaliza-
tion guarantees for multitask and transfer learning problems
over supernet pathways. Our results will be stated in terms
of Gaussian complexity which is introduced below.

Definition 1 (Gaussian Complexity) Ler Q be a set of hy-
potheses that map Z to R". Let (g;)"_1 (g; € R") be n
independent vectors each distributed as N (0, I,.) and let
Z = (z;)"_, € Z™ be a dataset of input features. Then, the
empirical Gaussian complexity is defined as

~ 1 &
Gz(Q) =Ly, lsgg n ;QIQ(ZJ] .

The worst-case Gaussian complexity is obtained by consider-
ing the supremum over Z € Z™ as follows

GZ(Q)

~

sup [Gz(Q)]-

ZecZn
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For cleaner notation, we drop the superscript Z from the
worst-case Gaussian complexity (using G,,(Q)) as its input
space will be clear from context. When Z = (z;)7 are
drawn i.i.d. from D, the (usual) Gaussian complexity is de-

fined by G, (Q) = Ez.p~[Gz(Q)]. Note that, we always
have G,,(Q) < G,(Q) assuming D is supported on Z. In our
setting, keeping track of distributions along exponentially
many pathways proves challenging, and we opt to use G,,(Q)
which leads to clean upper bounds. The supplementary ma-
terial! also derives tighter but more convoluted bounds in
terms of empirical complexity. Finally, it is well-known that
Gaussian/Rademacher complexities scale as y/comp(Q)/n
where comp(Q) is a set complexity such as VC-dimension,
which links to our informal statement (1).

We will first present our generalization bounds for the
Multipath MTL problem using empirical process theory ar-
guments. Our bounds will lead to meaningful guarantees
for specific MTL settings, including vanilla MTL where all
tasks share a single representation, as well as hierarchical
MTL depicted in Fig. 1b. We will next derive transfer learn-
ing guarantees in terms of supernet bias, which quantifies
the performance difference of a supernet from its optimum
for a target. To state our results, we introduce two standard
assumptions.

Assumption 1 Elements of hypothesis sets H and (V,)}_,
are U-Lipschitz functions with respect to Euclidean norm.

Assumption 2 Loss function £(-,y) : R x R — [0,1] is
I'-Lipschitz with respect to Euclidean norm.

3.1 Results for Multipath Multitask Learning

This section presents our task-averaged generalization bound
for Multipath MTL problem. Recall that f = (h, é&, @) is the
outcome of the ERM problem (M2TL). Observe that, if we
were solving the problem with only one task, the generaliza-
tion bound would depend on only one module per layer rather
than the overall size of the supernet. This is because each
task gets to select a single module through their pathway. In
light of this, we can quantify the utilization of supernet layers
as follows: Let &7y be the number of modules utilized by the
empirical solution f. Formally, K, = |{dy[(] for t € [T]}].
The following theorem provides our guarantee in terms of
Gaussian complexities of individual modules.

Theorem 1 Suppose Assumptions 1&2 hold. Let f be the
empirical solution of (M?TL). Then, with probability at least

A

1 — 0, the excess test risk in (2) obeys Ry (f)

log |A|
N

log(2/9)
NT

L
S On(H) + Z V KeGnr (W) +
=1

Here, the input spaces for H and ¥, are X3y = Vpo... U 0
X, Xy, =¥ q0... 010X forl > 1, and Xy, = X.

log | A

N
the pathway and Gy (H) quantifies the cost of learning the

In Theorem 1, quantifies the cost of learning

"All proofs and additional details are provided in the extended
technical report (Li and Oymak 2023)



prediction head for each task ¢ € [T]. log |.A| dependence

is standard for the discrete search space |A|. The Gnr(Py)
terms are more interesting and reflect the benefits of MTL.
The reason is that, these modules are essentially learned with
NT samples rather than N samples, thus cost of represen-

tation learning is shared across tasks. The \/Iz multiplier
highlights the fact that, we only need to worry about the
used modules rather than all possible K, modules we could
have used. In essence, ZzL=1 VEK.G ~1(U¢) summarizes the
Gaussian complexity of G(®yseq) Where Pgeq is the subnet-
work of the supernet utilized by the ERM solution f' . By
definition G(Pysea) < G(P). With all these in mind, Theo-
rem 1 formalizes our earlier statement (1).

A key challenge we address in Theorem 1 is decompos-
ing the complexity of the combined hypothesis class F in
(M2TL) into its building blocks A, H, (¥;)L_,. This is ac-
complished by developing Gaussian complexity chain rules
inspired from the influential work of (Tripuraneni, Jordan,
and Jin 2020; Maurer 2016). While this work focuses on
two layer composition (prediction heads composed with a
shared representation), we develop bounds to control arbi-
trarily long compositions of hypotheses. Accomplishing this
in our multipath setting presents additional technical chal-
lenges because each task gets to choose a unique pathway.
Thus, tasks don’t have to contribute to the learning process
of each module unlike the vanilla MTL with shared represen-
tation. Consequently, ERM solution is highly heterogeneous
and some modules and tasks will be learned better than the
others. Worst-case Gaussian complexity plays an important
role to establish clean upper bounds in the face of this het-
erogeneity. In fact, in supplementary material, we provide
tighter bounds in terms of empirical Gaussian complexity G,
however, they necessitate more convoluted definitions that
involve the number of tasks that choose a particular module.

Finally, we note that our bound has a natural interpreta-
tion for parametric classes whose log(e-covering number)
(i.e. metric entropy) grows with degrees of freedom as
DoF-log(1/¢). Then, Theorem 1 implies a risk bound propor-

T-(DoF(H)+log |A|)+Y ., K¢ DoF(¥,)
NT

net implementation, this means small risk as soon as total

sample size N'T' exceeds total number of weights.

We have a few more remarks in place, discussed below.

tional to . For a neural

e Dependencies. In Theorem 1, < suppresses dependencies
onlog(NT) and I'Y. The latter term arises from the exponen-
tially growing Lipschitz constant as we compose more/deeper
modules, however, it can be treated as a constant for fixed
depth L. We note that such exponential depth dependence is
frequent in existing generalization guarantees in deep learn-
ing literature (Golowich, Rakhlin, and Shamir 2018; Bartlett,
Foster, and Telgarsky 2017; Neyshabur et al. 2018, 2017).
In supplementary material, we prove that the exponential
dependence can be replaced with a much stronger bound of

/L by assuming parameterized hypothesis classes.

o Implications for Vanilla MTL. Observe that Vanilla MTL
with single shared representation corresponds to the setting

8704

L = 1and K; = 1. Also supernet is simply & = ¥; and
log |A| = 0. Applying Theorem 1 to this setting with T
tasks each with N samples, we obtain an excess risk upper

bound of O (5 N1 (®) + G, N(?—[)) where representation @

is trained with NT' samples with input space X, and task-
specific heads h; € H are trained with N samples with
input space ® o X'. This bound recovers earlier guarantees
by (Maurer, Pontil, and Romera-Paredes 2016; Tripuraneni,
Jordan, and Jin 2020).

e Unselected modules do not hurt performance. A useful
feature of our bound is its dependence on @4 (spanned by
empirical pathways) rather than full hypothesis class ®. This
feature arises from a uniform concentration argument where
we uniformly control the excess MTL risk over all potential
®seq choices. This uniform control ensures Gy (Pyseq) cost

for the actual solution f' and it only comes at the cost of an
additional 4/ % term which is free (up to constant)!

e Continuous pathways. This work focuses on relatively
simple pathways where tasks choose one module from each
layer. The results can be extended to other choices of pathway
sets A. First, note that, as long as A is a discrete set, we will

. . log |.A|
naturally end up with the excess risk dependence of 1/ gT.

However, one can also consider continuous «, for instance,
due to relaxation of the discrete set with a simplex constraint.
Such approaches are common in differentiable architecture
search methods (Liu, Simonyan, and Yang 2019). In this case,
each entry a[{] can be treated as a K, dimensional vector
that chooses a continuous superposition of £’th layer modules.
Thus, the overall « € A parameter would have comp(.A)

ZeL:1 K resulting in an excess risk term of 4/ Zle Ky/N.
Note that, these are high-level insights based on classical
generalization arguments. In practice, performance can be
much better than these uniform concentration based upper
bounds.

e No harm under overparameteration. A drawback of The-
orem 1 is that, it is an average-risk guarantee over 7' tasks.
In practice, it is possible that some tasks are hurt during
MTL because they are isolated or dissimilar to others (see
supplementary for examples). Below, we show that, if the
supernet achieves zero empirical risk, then, no task will be
worse than the scenario where they are individually trained
with N samples, i.e. Multipath MTL does not hurt any task.

Lemma 1 Recall f is the solution of (M?TL) and ft =
ht o @4, is the associated task-t hypothesis. Define the excess
risk of task t as Ri(f:) = Li(ft) — LF where Li(f)

Ep, [L:(f)] is the population risk of task t and L is the
optimal achievable test risk for task t over F. With probability

at least 1 — § — P(Ls,, (f) # 0), for all tasks t € [T),

Gn (W) + 7105;(?\?’/5) .

Here, P(Ls, (f) = 0) is the event of interpolation (zero
empirical risk) under which the guarantee holds. We call this



no harm because the bound is same as what one would get by
applying union bound over 7" empirical risk minimizations
where each task is optimized individually.

3.2 Transfer Learning with Optimal Pathway

Following Multipath MTL problem, in this section, we dis-
cuss guarantees for transfer learning on a supernet. Recall that
A is the set of pathways and our goal in (TLOP) is finding
the optimal pathway o € A and prediction head h € H 7 to
achieve small target risk. In order to quantify the bias arising
from the Multipath MTL phase, we introduce the following
definition.

Definition 2 (Supernet Bias) Recall the definitions D,
Hr, and L% stated in Section 2. Given a supernet ¢, we
define the supernet/representation bias of ¢ for a target T as
. . *
BiasT(¢) = peiin Lr(ho¢y)— L.

Definition 2 is a restatement of the supernet bias term
in (3). Importantly, it ensures that the optimal pathway-
representation over ¢ can not be worse than the optimal
performance by Biass(¢). Following this, we can state a gen-
eralization guarantee for transfer learning problem (TLOP).

Theorem 2 Suppose Assumptions 1&2 hold. Let supernet (;B
be the solution of (M?TL) and f b be the empirical minima

of (TLOP) with respect to supernet qg Then with probability

at least 1 — 6,
N N log(2|.Al|/d ~
RTLOP(fq?,) s BiaST(d)) + w + gAI(HT),

where input space of Gy (M) is given by {¢q 0 X ‘ a € A}

Theorem 2 highlights the sample efficiency of transfer
learning with optimal pathway. While the derivation is
straightforward relative to Theorem 1, the key consideration

is the supernet bias Bias7(¢). This term captures the excess

risk in (TLOP) introduced by using ¢. Let @™ be the popula-
tion minima of (M?TL). Then we can define the supernet dis-
tance of ¢ and ¢* by dT(tﬁ; ¢*) = Biasfr(cﬁ) — Bias7(¢*).
The distance measures how well the finite sample solution
¢3 from (M2TL) performs compared to the optimal MTL
solution ¢*. A plausible assumption is so-called fask di-
versity proposed by Chen et al. (2021); Tripuraneni, Jor-
dan, and Jin (2020); Xu and Tewari (2021). Here, the idea
(or assumption) is that, if a target task is similar to the
source tasks, the distance term for target can be controlled in

A

terms of the excess MTL risk Ry (f) (e.g. by assuming
dr(¢; %) < RMzTL(f) + ¢). Plugging in this assumption
would lead to end-to-end transfer guarantees by integrating
Theorems 1 and 2, and we extend the formal analysis to ap-
pendix. However, as discussed in Theorem 4, in multipath
setting, the problem is a lot more intricate because source
tasks can choose totally different task-specific representations
making such assumptions unrealistic. In contrast, Theorem 4
establishes concrete guarantees by probabilistically relating
target and source distributions. Finally, Biasy(¢*) term is un-
avoidable, however, similar to d7~(¢3; ¢*), it will be small as
long as source and target tasks benefit from a shared supernet
at the population level.
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4 Guarantees for Linear Representations

As a concrete instantiation of Multipath MTL, consider a
linear representation learning problem where each module
1/15 applies matrix multiplications parameterized by B f with
dimensions py X py—1: Y5 (x) = Bfx. Here py are module
dimensions with input dimension py = p and output dimen-
sion pr,. Given a path «, we obtain the linear representation

B, = HZLZIBEM] € RPL*P where py, is the number of rows

of the final module Bg[L]. When p;, < p, B, is a fat matrix
that projects © € RP onto a lower dimensional subspace.
This way, during few-shot adaptation, we only need to train
pr < p parameters with features B, . This is also the cen-
tral idea in several works on linear meta-learning (Kong et al.
2020a; Sun et al. 2021; Bouniot et al. 2020; Tripuraneni, Jin,
and Jordan 2021) which focus on a single linear representa-
tion. Our discussion within this section extends these results
to the Multipath MTL setting.

Denote £ = {((BE)/4)E ., (he,a0)T,} where hy €
RPL are linear prediction heads. Let F be the search space
associated with f. Follow the similar setting as in Section 2
and let ¥ C RP. Given dataset Sy = (S;)7_;, we study

1 T N
(f) = NT ; ;(ym —h) By, x1).
“4)

Let BP(r) C R? be the Euclidean ball of radius r. To proceed,
we make the following assumption for a constant C' > 1.

f = min Zg,
f f€.7: all

Assumption 3 For all ¢ € [L], U, is the set of matrices with
operator norm bounded by C and H = BPL (C).

The result below is a variation of Theorem 1 where the bound
is refined for linear representations (with finite parameters).

Theorem 3 Suppose Assumptions 2&3 hold, and input set
X C BP(R) for a constant R > 0. Then, with probability at
least 1 — 0,

R L - DoF(F)

log |A|
RM2TL(f) N NT

N

log(2/9)
NT

where DoF(F) =T - pr, + ZzL:1 Ky - pe - pe_1 is the total
number of trainable parameters in F.

We note that Theorem 3 can be stated more generally for
neural nets by placing ReLU activations between layers. Here
< subsumes the logarithmic dependencies, and the sample
complexity has linear dependence on L (rather than exponen-
tial dependence as in Thm 1). In essence, it implies small
task-averaged excess risk as soon as total sample size 2>
total number of weights.

While flexible, this result does not guarantee that f can
benefit transfer learning for a new task. To proceed, we intro-
duce additional assumptions under which we can guarantee
the success of (TLOP). The first assumption is a realizability
condition that guarantees tasks share same supernet represen-
tation (so that supernet bias is small).

Assumption 4 (A) Task datasets are generated from a
planted model (x,y;) ~ Dy where y; = a:;FOZ‘ + z; where



xt, 2 are zero mean, O (1)-subgaussian and E[z,x, | = I,.

(B) Task vectors are generated according to ground-truth

supernet = (B, (he, )] 1} so that 6 =
a2, he. f* is normalized so that | B || = ||h|| = L.

Our second assumption is a task diversity condition adapted
from (Tripuraneni, Jin, and Jordan 2021; Kong et al. 2020b)
that facilitates the identifiability of the ground truth supernet.

Assumption 5 (Diversity durlng MTL) Cluster the tasks
by their pathways via H, = {h; ‘ a; = a}. Define clus-
ter population v, = |H,|/pL and covariance X,
vt ZheHa hh'. For a proper constant ¢ > 0 and for
all pathways o we have 3, = cIj,, .

Verbally, this condition requires that, if a pathway is chosen
by a source task, that pathway should contain diverse tasks
so that (M2TL) phase can learn a good representation that
can benefit transfer learning. However, this definition is flex-
ible in the sense that pathways can still have sophisticated
interactions/intersections and we don’t assume anything for
the pathways that are not chosen by source. We also have
the challenge that, some pathways can be a lot more pop-
ulated than others and target task might suffer from poor
MTL representation quality over less populated pathways.
The following assumption is key to overcoming this issue by
enforcing a distributional prior on the target task pathway so
that its pathway is similar to the source tasks in average.

Assumption 6 (Distribution of target task) Draw o uni-
formly at random from source pathways (&)1, . Target task
is distributed as in Assumption 4(A) with pathway aT and
07 = BlThT with ||hr|| = 1.

With these assumptions, we have the following result that
guarantees end-to-end multipath learning ((M2TL) phase fol-
lowed by (TLOP) using MTL representation).

Theorem 4 Suppose Assumptions 3—6 hold and £(3,y) =
(y — 9)2. Additionally assume input set X C BP(R) for a
constant R > 0 and Hy C RPL. Solve MTL problem (MQTL)
with the knowledge of ground-truth pathways (@), to

obtain a supernet ¢ and NT 2, DoF(f) log(NT). Solve
transfer learnmg problem (TLOP) with d) to obtain a target
hypothesis f 2 Then, with probability at least 1 — 3e =M —§,

path-averaged excess target risk (3) obeys Eo. [Rrrop(f, ¢)]
L -DoF(F) +1og(8/8) pr log(8|.A|/9)
<pr NN Y i A
~ NT M M

L
Here DoF(F) =T -pr + >, 1 K¢ - pe - pe—1, and Eq.;
denotes the expectation over the random target pathways.

In words, this result controls the target risk in terms of the
sample size of the target task and sample size during multitask
representation learning, and provides a concrete instantiation
of discussion following Theorem 2. In appendix, we provide
a tighter bound for expected transfer risk when linear head
h is uniformly drawn from the unit sphere. The primary
challenge in our work compared to related vanilla MTL re-
sults by (Tripuraneni, Jin, and Jordan 2021; Du et al. 2020;
Kong et al. 2020b) is the fact that, we deal with exponentially
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many pathway representations many of which may be low
quality. Assumption 6 allows us to convert task-averaged
MTL risk into a transfer learning guarantee over a random
pathway. Finally, Theorem 4 assumes that source pathways
are known during MTL phase. In appendix, we show that this
assumptlon is indeed necessary: Otherwise, one can construct
scenarios where (M2TL) problem admits an alternative solu-
tion f with optimal MTL risk but the resulting supernet ¢
achieves poor target risk. Supplementary material discusses
this challenge and identifies additional conditions that make
ground-truth pathways uniquely identifiable when we solve
(M2TL).

5 Insights from Hierarchical Representations

We now discuss the special two-layer supernet structure de-
picted in Figure 1b. This setting groups tasks into K := Ko
clusters and first layer module is shared across all tasks
(K7 = 1). Ignoring first layer, pathway a; € [K] becomes
the clustering assignment for task ¢. Applying Theorem 1,
we obtain a generalization bound of

log K
N

Here, ¢; € W, is the shared first layer module, ¥§ € Uy
is the module assigned to cluster k € [K] that personalizes
its representation, and we have |.A| = K. To provide fur-
ther insights, let us focus on linear representations with the
notation of Section 4: v (z) = Bz, ¥5(z') = B5x', and
h¢(x") = h] =" with dimensions B; € RE*P, Bk € R™<F,
h; € R"and r < R < p. Our bound now takes the form

Ry () < G (V1) VKGN (Uo)+Gn (H)+

Rp+ KrR+T(r +log K)
RM2TL(f) S \/ NT )

where Rp and Kr R are the number of parameters in supernet
layers 1 and 2, and (r + log K')/N is the cost of learning
pathway and prediction head per task. Let us contrast this to
the shallow MTL approaches with 1-layer supernets.

e Vanilla MTL: Learn B; € R¥*? and learn larger predic-
tion heads h}" € RF (no clustering needed).

e Cluster MTL: Learn larger cluster modules BS™* € R"™*?,
and learn pathway «; and head h; € R” (no B; needed).

Experimental Insights. Before providing a theoretical com-
parison, let us discuss the experimental results where we
compare these three approaches in a realizable dataset gen-
erated according to Figure 1b. Specifically, we generate B
and { B5}X | with orthonormal rows uniformly at random
independently. We also generate h; uniformly at random over
the unit sphere independently. Let & be the cluster assign-
ment of task ¢ where each cluster has same size/number of
tasks with 7' = T/ K tasks. The distribution D; associated
with task ¢ is generated as

y==x'0; where 0f =(h/BS*B;)", x ~N(0,1I,),

without label noise. We evaluate and present results from
two scenarios where cluster assignment of each task a; is
known (Figure 2) or not (Figure 3). MTL, Cluster-MTL and
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Figure 2: We compare the sample complexity of MTL, Cluster-MTL and Multipath-MTL in a noiseless linear regression setting.
For each figure, we fix two of the configurations and vary the other one. We find that Multipath-MTL is superior to both baselines
of MTL and Cluster-MTL as predicted by our theory. The solid curves are the median risk and the shaded regions highlight the
first and third quantile risks. Each marker is obtained by averaging 20 independent realizations.

Multipath-MTL labels corresponds to our single representa-
tion, clustering and hierarchical MTL strategies respectively,
in the figures.

In Figure 2, we solve MTL problems with the knowl-
edge of clustering a;. We set ambient dimension p = 32,
shared embedding R = 8, and cluster embeddings » = 2.
We consider a base configuration of K 40 clusters,
T = T/K = 10 tasks per cluster and N = 10 samples
per task (see supplementary material for further details). Fig-
ure 2 compares the performance of three approaches for the
task-averaged MTL test risk and demonstrates consistent
benefits of Multipath MTL for varying K,7T', N.

We also consider the setting where &, ¢ € [T] are un-
known during training. Set p = 128, R = 32 and r = 2, and
fix number of clusters K = 50 and cluster size 7' = 10. In
this experiment, instead of using the ground truth clustering
ait, we also learn the clustering assignment &; for each task.
As we discussed and visualized in supplementary material, it
is not easy to cluster random tasks even with the hindsight
knowledge of task vectors 8;. To overcome this issue, we
add correlation between tasks in the same cluster. Specifi-
cally, generate the prediction head by h} = vh* + (1 —)h;

where h*, h, are random unit vectors corresponding to the
cluster & and task ¢ (assuming a; = k). To cluster tasks,
we first run vanilla MTL and learn the shared representa-

tion B1 and heads (hY)7_,. Next build task vector estimates

by 0, = BTh,Y ,and get T' x T task similarity matrix us-
ing Euclidean distance metric. Applying standard K -means
clustering to it provides a clustering assignment &;. In the ex-
periment, we set v = 0.6 to make sure hindsight knowledge
of 87 is sufficient to correctly cluster all tasks. Results are
presented in Figure 3, where solid curves are solving MTL
with ground truth &; while dashed curves are using &;. We
observe that when given enough samples (N > 60), all tasks
are grouped correctly even if the MTL risk is not zero. More
importantly, Multipath MTL does outperform both vanilla
MTL and cluster MTL even when the clustering is not fully
correct.
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Figure 3: We group the T' = 500 tasks into K = 50 clusters
and compare the sample complexity of different MTL strate-
gies. Given different sample size, we cluster tasks based on
the trained MTL model and solve Cluster-/Multipath-MTL
based on the assigned clusters. Solid curves are results using
ground truth cluster knowledge &; and dashed are using the
learned clustering &;. Experimental setting follows the same
setting as in Figure 2.

Understanding the benefits of Multipath MTL. Naturally,
superior numerical performance of Multipath MTL in Figure
2&3 partly stems from the hierarchical dataset model we
study. This model will also shed light on shortcomings of
1-layer supernets drawing from our theoretical predictions.
First, observe that all three baselines are exactly specified:
We use the smallest model sizes that capture the ground-
truth model so that they can achieve zero test risk as N, K, T'
grows. For instance, Vanilla MTL achieves zero risk by set-
ting B; = By, hYy = (BS! )T h; and cluster MTL achieves
zero risk by setting Bzc’k = BYB;,h; = hy. Thus, the
benefit of Multipath MTL arises from stronger weight shar-
ing across tasks that reduces test risk. In light of Sec. 4, the
generalization risks of these approaches can be bounded as



/DOF(F)/NT where Number-of-Parameters compare as
Vanilla: Rp + TR, Cluster: Krp + Tr, Multipath: Rp +
KrR + T'r. From this, it can be seen that Multipath is never
worse than the others as long as Kr > Rand T =T/K > r.
These conditions hold under the assumption that multipath
model is of minimal size: Otherwise, there would be a strictly
smaller zero-risk model by setting R <— Kr andr < T.
Conversely, Multipath shines in the regime Kr > R
orT" > r. As %, % — 00, Multipath strictly outper-
forms Cluster MTL. This arises from a cluster diversity phe-
nomenon that connects to the fask diversity notions of prior
art. In essence, since r-dimensional clusters lie on a shared R
dimensional space, as we add more clusters beyond Kr > R,
they will collaboratively estimate the shared subspace which
in turn helps estimating their local subspaces by projecting

them onto the shared one. As %7 % — 00, Multipath strictly

outperforms Vanilla MTL. % is needed to ensure that there is
enough task diversity within each cluster to estimate its local
subspace. Finally, % ratio is the few-shot learning benefit of
clustering over Vanilla MTL. The prediction heads of vanilla
MTL is larger which necessitates a larger IV, at the minimum
N > R. Whereas Multipath works with as little as N > r.
The same argument also implies that clustering/hierarchy
would also enable better transfer learning.

6 Related Work

Our work is related to a large body of literature spanning
efficient architectures and statistical guarantees for MTL, rep-
resentation learning, task similarity, and subspace clustering.

o Multitask Representation Learning. While MTL prob-
lems admit multiple approaches, an important idea is building
shared representations to embed tasks in a low-dimensional
space (Thrun and Pratt 2012; Baxter 2000). After identify-
ing this low-dimensional representation, new tasks can be
learned in a sample efficient fashion inline with the benefits
of deep representations in modern ML applications. While
most earlier works focus on linear models, (Maurer, Pontil,
and Romera-Paredes 2016) provides guarantees for general
hypothesis classes through empirical process theory improv-
ing over (Baxter 2000). More recently, there is a growing
line of work on multitask representations that spans tighter
sample complexity analysis (Garg and Liang 2020; Hanneke
and Kpotufe 2020; Du et al. 2020; Kong et al. 2020b; Xu
and Tewari 2021; Lu, Huang, and Du 2021), convergence
guarantees (Collins et al. 2022; Ji et al. 2020; Collins et al.
2021; Wu, Zhang, and Ré 2020), lifelong learning (Xu and
Tewari 2022; Li et al. 2022), and decision making problems
(Yang et al. 2020; Qin et al. 2022; Sodhani, Zhang, and
Pineau 2021). Closest to our work is (Tripuraneni, Jin, and
Jordan 2021) which provides tighter sample complexity guar-
antees compared to (Maurer, Pontil, and Romera-Paredes
2016). Our problem formulation generalizes prior work (that
is mostly limited to single shared representation) by allowing
deep compositional representations computed along supernet
pathways. To overcome the associated technical challenges,
we develop multilayer chain rules for Gaussian Complexity,
introduce new notions to assess the quality of supernet repre-
sentations, and develop new theory for linear representations.
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e ML Architectures and Systems. While traditional ML
models tend to be good at a handful of tasks, next-generation
of neural architectures are expected to excel at a diverse range
of tasks while allowing for multiple input modalities. To
this aim, task-specific representations can help address both
computational and data efficiency challenges. Recent works
(Shu et al. 2021; Fifty et al. 2021; Yao et al. 2019; Vuorio
et al. 2019; Mansour et al. 2020; Tan et al. 2022; Ghosh et al.
2020; Collins et al. 2021) propose hierarchical/clustering
approaches to group tasks in terms of their similarities, (Qin
et al. 2020; Ye, Zha, and Ren 2022; Gupta et al. 2022; Asai
et al. 2022; He et al. 2022) focus on training mixture-of-
experts (MoE) models, and similar to the pathways (Strezoski,
Noord, and Worring 2019; Rosenbaum, Klinger, and Riemer
2017; Chen, Gu, and Fu 2021; Ma et al. 2019) study on
task routing. In the context of lifelong learning, PathNet,
PackNet (Fernando et al. 2017; Mallya and Lazebnik 2018)
and many other existing methods (Parisi et al. 2019; Mallya,
Davis, and Lazebnik 2018; Hung et al. 2019; Wortsman et al.
2020; Cheung et al. 2019) propose to embed many tasks
into the same network to facilitate sample/compute efficiency.
PathNet as well as SNR (Ma et al. 2019) propose methods to
identify pathways/routes for individual tasks and efficiently
compute them over the conditional subnetwork. With the
advent of large language models, conditional computation
paradigm is witnessing a growing interest with architectural
innovations such as muNet, GShard, Pathways, and PaLM
(Gesmundo and Dean 2022a,b; Barham et al. 2022; Dean
2021; Lepikhin et al. 2020; Chowdhery et al. 2022; Driess
et al. 2023) and provide a strong motivation for theoretically-
grounded Multipath MTL methods.

7 Discussion

This work explored novel multitask learning problems which
allow for task-specific representations that are computed
along pathways of a large supernet. We established general-
ization bounds under a general setting which proved insight-
ful when specialized to linear or hierarchical representations.
We believe there are multiple exciting directions to explore.
First, it is desirable to develop a stronger control over the
generalization risk of specific groups of tasks. Our Lemma 1
is a step in this direction. Second, what are risk upper/lower
bounds for Multipath MTL as we vary the depth and width
of the supernet graph? Discussion in Section 5 falls under
this question where we demonstrate the sample complexity
benefits of Multipath MTL over traditional MTL approaches.
Finally, following experiments in Section 5, can we estab-
lish similar provable guarantees for computationally-efficient
algorithms (e.g. method of moments, gradient descent)?
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