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Abstract
Forecasting time series with extreme events has been a chal-
lenging and prevalent research topic, especially when the
time series data are affected by complicated uncertain fac-
tors, such as is the case in hydrologic prediction. Diverse tra-
ditional and deep learning models have been applied to dis-
cover the nonlinear relationships and recognize the complex
patterns in these types of data. However, existing methods
usually ignore the negative influence of imbalanced data, or
severe events, on model training. Moreover, methods are usu-
ally evaluated on a small number of generally well-behaved
time series, which does not show their ability to general-
ize. To tackle these issues, we propose a novel probability-
enhanced neural network model, called NEC+, which con-
currently learns extreme and normal prediction functions and
a way to choose among them via selective back propagation.
We evaluate the proposed model on the difficult 3-day ahead
hourly water level prediction task applied to 9 reservoirs in
California. Experimental results demonstrate that the pro-
posed model significantly outperforms state-of-the-art base-
lines and exhibits superior generalization ability on data with
diverse distributions.

Introduction
Time series forecasting is an important technique for many
domains in which most types of data are stored as time
sequences, including traffic (Hua, Kapoor, and Anastasiu
2018), weather forecasting (Hewage et al. 2021), biol-
ogy (Bose et al. 2022), stock price forecasting (Mohan et al.
2019), and water resource management (Zhang et al. 2021).
These data usually contain seasonality, long term trends, and
non-stationary characteristics which usually are taken into
account by traditional models during prediction. However,
in hydrologic prediction, the water level of dams and reser-
voirs are also affected by complicated uncertain factors like
weather, geography, and human activities, which makes the
task of precisely predicting them challenging. Most reser-
voirs are large hydraulic constructions that serve multiple
purposes, including power generation, flood control, irriga-
tion, and navigation, making them critical components in the
safety and quality of life of the general population. There-
fore, a large number of studies and architectures have ex-
plored the problem of reservoir water level prediction.
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For a long time, water level prediction was mainly based
on traditional machine learning and statistics-based mod-
els. However, methods such as Autoregressive Integrated
Moving Average (ARIMA) (Box and Jenkins 1976) seem
to adjust poorly to extreme changes in the water level val-
ues and cannot easily find the nonlinear relationships among
the data. Recently, deep neural networks (DNNs) have
shown their great advantages in various areas (Yang et al.
2019; Anastasiu et al. 2020; Pei et al. 2021). Both conven-
tional Neural Network (NN) and Recurrent Neural Network
(RNN) models have been used to overcome the disadvan-
tages of traditional methods for time series forecasting (Qi
et al. 2019), since they can map time series data into latent
representations by capturing the non-linear relationships of
data in sequences. In particular, Long Short-Term Memory
(LSTM) models generally outperform other models in long-
term predictions. However, imbalanced data or severe events
might hurt deep learning models when it comes to long-term
predictions. In the context of reservoir water level forecast-
ing, most of the works mentioned above falter when pre-
dicting extreme events. They also usually focus on predict-
ing only one or two sensors, putting in question the gener-
alizability of these models. To solve these two challenges,
we provide an extreme-adaptive solution for reservoir water
level prediction which we evaluate extensively on data from
9 different reservoirs across more than 30 years.

The fundamental contribution of this research is the pro-
posal of NEC+1, a probability-enhanced neural network
framework. We use clustering in NEC+ to dynamically pro-
duce distribution indicators, which improves the model’s
robustness to the occurrence of severe events. To improve
training performance, we present a selected backpropaga-
tion approach and a two-level sampling algorithm to accom-
modate imbalanced extreme data, along with a customizable
weighted loss function for implementing a binary classifier,
which is a crucial component of NEC+.

Related Work
Time series prediction has been studied extensively. Tra-
ditionally, there were several techniques used to effec-
tively forecast future values in the time series, including
univariate Autoregressive (AR), Moving Average (MA),

1https://github.com/davidanastasiu/NECPlus
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Simple Exponential Smoothing (SES), Extreme Learning
Machine (ELM) (Huang et al. 2012), and more notably
ARIMA (Box and Jenkins 1976) and its many variations.
In particular, the ARIMA model has demonstrated it can
outperform even deep learning models in predicting future
stock (Ariyo, Adewumi, and Ayo 2014) and dam reservoir
inflow levels (Valipour, Banihabib, and Behbahani 2013).
Prophet (Taylor and Letham 2018) is an additive model that
fits nonlinear trends with seasonal and holiday impacts at the
annual, weekly, and daily levels. A number of other classi-
cal machine learning models have been used for the task of
water level prediction. Due to lack of space, we details them
in the additional related work section in the appendix (which
can be found in (Li, Xu, and Anastasiu 2022)).

With the recent success of deep neural network (DNN)
models, hybrid models incorporating different prediction
methodologies were also used for water level prediction.
Zhang et al. (Zhang et al. 2021) designed CNNLSTM, a
deep learning hybrid model based on the Convolutional
Neural Network (CNN) and LSTM models, to predict down-
stream water levels. Du and Liang (Du and Liang 2021)
created an ensemble LSTM and Prophet model which was
shown to outperform any of the single models used in the
ensemble. Le et al. (Le et al. 2021) added an attention mech-
anism (Xu et al. 2015; Chorowski et al. 2015) to an encoder-
decoder architecture to solve the hydro prediction problem.
Ibañez et al. (Ibañez et al. 2022) examined two versions of
the LSTM based DNN model exactly for the reservoir wa-
ter level forecasting problem, a univariate encoder-decoder
model (DNN-U) and a multivariate version (DNN-M). Both
models used trigonometric time series encoding.

Statistical methods also provide promising solutions
when they are combined with DNN models, especially in
the field of sales forecasting. DeepAR (Salinas et al. 2020)
approximates the conditional distribution using a neural net-
work. Deep State Space Models (DeepState) (Rangapuram
et al. 2018) is a probabilistic forecasting model that fuses
state space models and deep neural networks. By choosing
the appropriate probability distribution, the bias in the ob-
jective function becomes further reduced and the prediction
accuracy can be improved. Tyralis and Papacharalampous
showed that the architecture can be simply calibrated us-
ing the quantile (Tyralis and Papacharalampous 2021) or the
expectile (Waltrup et al. 2015) loss functions for delivering
quantile or expectile hydrologic predictions and forecasts.
N-BEATS (Oreshkin et al. 2019), builds a pure deep learn-
ing solution which outperforms well-established statistical
approaches in more general time series problems. The N-
BEATS interpretable architecture is composed of 2 stacks,
namely a trend model and a seasonality model.

While many recent water level prediction methods
showed they can outperform traditional or simple DNN
models, none of them consider the imbalance of extreme vs.
normal events in the time series and hence ignore the neg-
ative influence of extreme values on model training. Gener-
ally, these extreme values could be deemed as outliers and
be recognized and even removed during data preprocess-
ing. However, in our problem, accurate prediction of extreme
events is generally even more important than the prediction

of normal ones. However, we focus on achieving the best
overall prediction performance, without sacrificing either
the quality of normal or of extreme predictions.

Preliminaries
Problem Statement
We take on a challenging univariate time series forecasting
problem, considering that the data contain a majority of nor-
mal values that significantly contribute to the overall predic-
tion performance, along with a minority of extreme values
that must be precisely forecasted to avoid disastrous events.

The problem can be described as,

[x1, x2, . . . , xT ] ∈ RT → [xT+1, . . . , xT+H ],∈ RH

which means predicting the vector of length-H horizon fu-
ture values, given a length-T observed series history, where
x1 to xT are inputs and xT+1 to xT+H are the outputs. Root
mean square error (RMSE) and mean absolute percentage
error (MAPE), as standard scale-free metrics, are used to
evaluate forecasting performance.

For our experiments, we obtained approximately 31 years
of hourly reservoir water level sensor data, along with rain
gauge data from a number of sensors in the same area.
The Santa Clara reservoirs were built for water conserva-
tion in the 1930s and 1950s in order to catch storm runoff
that would otherwise drain into the San Francisco Bay. The
reservoirs also provide flood protection by controlling runoff
early in the rainy season, recreational opportunities, and they
aid the ecology by storing water to keep rivers flowing.

Our models predict 72 (hours) future reservoir water level
values, i.e., 3 days ahead. Table 1in the appendix shows the
location and type of sensors used in this study. In the re-
mainder of the paper, we will refer to the sensors and theirs
associated time series by their given sensor ID in the table.

Extreme Events
Extreme Value Theory (EVT) tries to explain the stochastic
behavior of extreme events found in the tails of probability
distributions, which often follow a very different distribution
than “normal” values. Towards that end, the Generalized Ex-
treme Value (GEV) distribution is a continuous probability
distribution that generalizes extreme values that follow the
Gumbel (Type I), Fréchet (Type II), or Weibull (Type III)
distributions. Its cumulative distribution function (CDF) is
described as

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
, (1)

where µ ∈ R, σ > 0, and ξ are the location, scale, and shape
parameters, respectively, conditioned on 1+ξ(x−µ)/σ > 0.

Figure 1 shows water levels for five of our 9 sensors across
a period of 20 years. In order to understand whether extreme
events were present in these data, we fit GEV and Gaussian
probability density functions (pdf) to the water level val-
ues and found that the GEV distribution provides a better
fit. In particular, the RMSE of the Gaussian distribution fit
is 26.9%, 46.0%, and 37.2% higher than that of the GEV
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Figure 1: Water level values for 5 reservoirs across 20 years.

distribution fit for the 4001, 4003, and 4009 reservoirs, re-
spectively, which we also show graphically in the appendix.
However, our data has distinct seasonality (rain in winter
will increase water levels) and trends (reservoirs slowly de-
plete over the year). A time series with trends, or with sea-
sonality, is not stationary and will generally lead to infe-
rior predictions. Therefore, we follow a standard time series
analysis preprocessing approach and obtain a stationary time
series by applying first-order differencing and then standard-
izing the resulting time series values, x′t = xt − xt−1, and
x′ = x′−µ

σ , where µ and σ here are the mean (location
parameter) and standard deviation (scale parameter) of the
Gaussian distribution of the time series x′. After obtain-
ing predictions for a time series, we use the same location
and scale parameters to inverse the standardization, and the
last ground truth value in the time series to inverse the first-
order differencing, obtaining values in the same range as the
original time series. When the mean of the distribution is
0 (µ = 0) and its standard deviation is 1 (σ = 1), as is
the case in our standardized time series, 68% of the values
lie within 1 standard deviation, 95% within 2 standard de-
viations, and 99.7% within 3 standard deviations from the
mean. Yet our time series show values that are up to 100
standard deviations away from the mean in both directions.
In our work, we define normal values as those within ε×σ of
the mean of the preprocessed time series, in both directions,
where ε is a meta-parameter we tune for each time series,
i.e., x′n ∈ [−ε, ε], since σ = 1. The remaining values in the
time series are then labeled as extreme values.

Methods
NEC
We designed our NEC framework to account for the distri-
bution shift between normal and extreme values in the time
series. NEC is composed of three separate models, which
can be trained in parallel. The Normal (N) model is trained
to best fit normal values in the time series, the Extreme (E)
model is trained to best fit extreme time series values, and a
third Classifier (C) model is trained to detect when a certain
value may be categorized as normal or extreme. The frame-
work is flexible and may use any prediction models for the 3
components, yet in this work, given the evidence presented
in related work section, we focus on deep learning models
that use a fixed set of h consecutive past values as input to
predict the next f values in the time series. At prediction
time, the C model is used to decide, for each of the follow-
ing f time points, whether the value will be normal or ex-

treme, and the appropriate regression model is then applied
to obtain the prediction for those points.

The middle section of Figure 2 shows the configuration
for our chosen N, E, and C models. The N and E models
each have 4–6 LSTM layers followed by 3 fully connected
(FC) layers that consecutively reduce the width of the layer
down to f , which is 72 in our case (3 days). The number of
inputs was set to 15 days, i.e., h = 15 × 24 = 360. Since
there are much fewer extreme values in the data than normal
ones, we set the LSTM layer width to only 512 in the E
model, while we set it to 1024 in the N model. Finally, the
C model uses the same size LSTM layers as the N model,
followed by a 72 node FC layer with a Sigmoid activation
function.

GMM Indicator
A Gaussian mixture model (GMM) (Day 1969) can be de-
scribed by the equation,

p(x|λ) =
M∑
i=1

wi g(x|µi,Σi),

where x is a D-dimensional continuous-valued vector,
wi ∀i = 1, . . . ,M are the mixture weights, and g(x|µi,Σi),
are the component Gaussian densities. Each component den-
sity is a D-variate Gaussian function, and the overall GMM
model is a weighted sum of M component Gaussian densi-
ties,

g(x|µi,Σi) =
1

2π
D
2 |Σi|

1
2

exp

{
−1

2
(x− µi)

T Σ−1
i (x− µi)

}
,

where µi is the mean vector and Σi is the covariance matrix
of the ith component. The mixture weights are constrained
such that

∑M
i=1 wi = 1. The GMM’s capacity to produce

smooth approximations to arbitrarily shaped densities is one
of its most impressive features (Day 1969).

In our work, we use Expectation-Maximization to fit a
GMM model using the time series training data. Then, each
model component can generate a probability for each point
in the time series. Finally, for each value in the time series,
we compute an indicator feature as the weighted sum of all
component probabilities, given the weights learned when fit-
ting the GMM model. In our framework, the number of com-
ponentsM is a hyper-parameter which we tune for each time
series. As an illustration, Figure 3 shows the indicator val-
ues for GMM withM = 4 for Sensor 4009 and withM = 3
for the other 9 sensors. The x-axis in the figures represents
the preprocessed time series input, which we limited to the
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Figure 3: GMM indicator distribution.

[−10, 10] range for visibility, while the y-axis represents the
indicator values. It is easy to see that the learned normal and
extreme indicator bounds vary depending on the sensors. We
hypothesize that providing this indicator as an additional in-
put feature for our models will help differentiate between
normal and extreme values and minimize prediction errors.
Therefore, we extend our N, E, and C models by providing
both the water level and its associated GMM indicator as
input for each of the h input values.

Exogenous Variables

For some time series, we may provide additional exogenous
inputs which may help improve the overall prediction of
future values. For example, rain fall in the region around
the reservoir is not affected by the reservoir water level but,
when it is raining, it can be a strong indicator that the reser-
voir level may increase soon, as water drains into streams
and rivers that may flow into the reservoir. For a given re-
gion, a watershed is a land area that channels rainfall and
snowmelt to creeks, streams, and rivers, and eventually to
outflow points such as reservoirs, bays, and the ocean. In
our work, as shown in Table 1in the appendix, we define sev-
eral watersheds and use several rain gauge sensors in those
watersheds as exogenous variables to aid in the predictions
associated with several of the reservoirs, which were chosen
in consultation with domain experts. Namely, for reservoir
4005 we used rain sensor 6017, for 4010 we used 6135, and
for 4007 we used both 6044 and 6069.

NEC+
Our NEC+ framework is described in Figure 2. Unlike the
base NEC framework, which relies only on historical time
series values for future predictions, NEC+ adds GMM in-
dicator and watershed exogenous variables (when available)
to create multivariate regression N and E models. Given k
watershed variables, the NEC+ models will be k+ 2-variate
models, after adding the original input and the GMM indi-
cator. In addition, to account for the differences between the
distributions of the normal and extreme values during train-
ing, we define custom sampling policies, regression back-
propagation, and classification loss function.

Sampling Policies
Our models require h values from the time series to predict
the following f values, and h, f � |x|, the length of the
time series. Moreover, while the number of extreme values
differs based on the choice of ε, it is still quite small in com-
parison to the number of normal values. In our experiments,
h = 360, f = 72, |x| ∼ 276K, and extreme values ranged
from 0.08% to 4.08% of the time series values across our
9 sensors. Therefore, sampling plays a crucial role during
training. However, oversampling cannot be used to mitigate
this problem. In an experiment we detail in the appendix
(due to lack of space), we found that, while oversampling
extreme events improves predictions in that area, it leads to
worse overall predictions for the rest of the time series.

When training our NEC+ model, we apply a two-stage
sampling policy. First, given the high cardinality of our time
series, we randomly sample subsections of length h + f
from the series as samples to use in training our models,
while avoiding sections included in the test and validation
sets. Specifically, the validation and test sets each include
24 randomly chosen f -length sections from the years 2014
and 2016 for the validation and 2017 and 2018 for the test
set, respectively, and the training set includes all other values
in the time series. Second, we perform stratified sampling of
regions with and without extreme values, allowing the E and
C models to oversample up to OS% samples with at least 1
extreme value in the prediction zone.
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Selected Backpropagation in the N and E Models
In addition to a custom sampling policy, one important ap-
proach we use to ensure proper training of the N and E mod-
els is selected backpropagation, which we describe visually
in Figure 4. Each prediction sample in our data contains f
values, only a few of which may be extreme. The rarity of
extreme events would cause the E model to be unduly in-
fluenced by the loss on normal values, and vice-versa. As
a result, our backpropagation ignores predictions on normal
values in the E model and on extreme values in the N model,
forcing the model to only focus on the values important for
the given model. Specifically, when training the N model,
only normal values add to the loss, and when training the E
model, only extreme values add to the loss. This is equiva-
lent to perfect predictions (predicting the ground truth) for
normal values when training the E model, and perfect pre-
dictions for extreme values when training the N model. In
this way, only the positions and values of appropriate nor-
mal or extreme data will affect the hidden parameters in the
network during backpropagation when training the N and E
models.
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Loss Loss
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Figure 4: Computational graph for the N and E models. Blue
and orange inputs represent normal and extreme values, re-
spectively.

Parameterized Loss Function in the C Model
The Binary Cross Entropy (BCE) loss is usually the most ap-
propriate loss function for binary classification tasks. Based
on BCE, we propose a tunable loss function to accommo-
date the serious imbalance problem in the prediction of time
series with extreme events.

BCE loss compares the target, which in our case is
whether the value is normal (0) or extreme (1), with the pre-
diction, which takes values close to 0 or 1 after the trans-
formation of of the Sigmoid function. The loss increases ex-
ponentially when the difference between the prediction and
target increases linearly. It can be defined as

BCE(t, p) = −(t× log (p) + (1− t)× log (1− p)), (2)

where t and p are the target and predicted values, respec-
tively. However, for datasets with a high imbalance between

the two classes, such as our time series, BCE will favor the
prominent class. To solve this problem, we propose a param-
eterized tunable loss as follows,

L = β ×BCE(t, pα) + (1− β)×RMSE(t, p), (3)

where α and β are parameters that can be tuned. Values
α > 1 cause the model to predict p values that are higher
in general in order to minimize the distance between t and
pα. The BCE part of the loss can be thought of as a blunt
instrument that grossly exaggerates all miss-classifications
in order to more accurately predict the obscure class, while
the RMSE part allows for a more gentle penalty based on
the distance between t and p. In other words, the higher α is
set, the more extreme (class 1) predictions can be obtained.
The β meta-parameter controls the strength of the two com-
ponents of the loss. For time series that are more balanced,
β can be small, or even 0.

Evaluation
In this section, we present empirical results for our proposed
framework. We are interested in answering the following re-
search questions with regards to prediction effectiveness: (1)
What is the effect of adding the GMM indicator to a model?
(2) What is the effect of introducing exogenous features? (3)
How do the loss function parameters affect performance? (4)
How does NEC+ compare against state-of-the-art baselines?

Experimental Settings
Dataset Our dataset includes over 31 years of hourly wa-
ter level sensor readings for 9 reservoirs and 5 rain gauges
in Santa Clara County, CA, which are described in the ap-
pendix and listed there in Table 1.After reducing all time se-
ries to a common date range, each reservoir and rain sensor
time series has 276,226 values. When training all baseline
models and the N and C models in NEC+, at least 100,000
random samples were selected, with replacement, from the
training set. However, due to the sparsity of extreme events,
only 50,000 random samples were selected, with replace-
ment, when training the E model. The N model did not use
any oversampling (OS = 0), but we set OS = 1 for both
the E and C models, ensuring that all training samples had at
least 1 extreme event in the prediction section of the sample.

Model Parameters For reservoir 4009, we set M to 4 and
εto 1.8. For all other reservoirs, M = 3 and ε = 1.5. For
each reservoir, we tested models with 4 or 6 LSTM layers,
and 5 reservoirs use 6 LSTM layers while the rest use 4. We
also tested LSTM layer widths of 512 and 1024 nodes and
found 1024 node layers were better suited for the N and C
models, while E models performed better with 512 nodes
across all reservoirs. While f = 72 (3 days) was set by
our problem definition, we tested h ∈ 72, 168, 360, 720, i.e.,
3, 7, 15, 30 days, and found h = 360 to work the best for all
reservoirs.

All models were trained using PyTorch 1.9.1+cu102 on
a Linux server running CentOS 7.9.2009 equipped with 2x
20-core Intel(R) Xeon(R) Gold 6148 CPUs, 768 GB RAM,
and 3 NVIDIA V100 GPUs. Finally, the LSTM layers were
trained using an SGD optimizer with learning rate 1E-3,
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while the fully connected layers were trained using an Adam
optimizer with learning rate 5E-4.

Baseline Methods
We compared our proposed method, NEC+, against a wide
array of traditional and state-of-the-art time series and reser-
voir level prediction methods, which are introduced in the
related work section, including,
• ARIMA (Box and Jenkins 1976), a standard statistics-

based time series analysis method,
• Prophet (Taylor and Letham 2018), a powerful non-linear

regression technique which accounts for seasonality,
• LSTM, which is the standard LSTM (Hochreiter and

Schmidhuber 1997) recurrent neural network with the
same configuration as our normal model,

• DNN-U (Ibañez et al. 2022), a state-of-the-art univariate
LSTM-based encoder-decoder hydrologic model used to
predict reservoir lagged water levels,

• Attention-LSTM (Le et al. 2021), a state-of-the-art hy-
drologic model used to predict stream-flow, and

• N-BEATS (Oreshkin et al. 2019), a state-of-the-art time
series prediction method that outperformed all competi-
tors on the standard M3 (Makridakis and Hibon 2000),
M4 (Makridakis, Spiliotis, and Assimakopoulos 2018)
and TOURISM (Athanasopoulos et al. 2011) datasets.

Effect of Adding the GMM Indicator Variable
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Figure 5: Effectiveness comparison of NEC and LSTM vari-
ants with (LSTM+G and NEC+G) and without (LSTM and
NEC) GMM indicator variables across all 9 sensors.

In the methods section, we hypothesized that adding the
GMM indicator variable as an additional input to our model
would help the component N and E models better distin-
guish between normal and extreme values. In order to test
this hypothesis, we added GMM indicators to both the base-
line LSTM model and our basic NEC model, and compared
the test set effectiveness (RMSE). Figure 5 shows the result
of this experiment for our 9 sensors. In the figure, LSTM+G
and NEC+G are the LSTM and NEC models with GMM
indicator variables, respectively. Interestingly, adding the

GMM indicator seems detrimental for the baseline LSTM,
producing much worse RMSE scores for sensors 4009, and
more than 5% RMSE improvements only in sensors 4001,
4007, and 4010. The average RMSE improvement of the
LSTM model when adding the GMM indicator across the
9 sensors is only 4%. On the other hand, adding the GMM
indicator produces significantly better results in 8 of the 9
sensors for our NEC model, and only slightly worse results
for sensors 4010. The average RMSE improvement for NEC
is 18%, which is significantly better than the 4% average
RMSE improvement of the LSTM model. This shows that,
while the GMM indicator may provide some limited ben-
efit to a one-shot model like LSTM, it plays a much more
important role in the success of our NEC+ framework.

Effect of Adding Exogenous Variables
An additional benefit may be obtained in NEC+ by includ-
ing exogenous variables that may provide an additional sig-
nal that the model may use to learn the proper prediction
function. In our experiments, we used watershed rain gauge
time series data from the same times as our primary reser-
voir water level data to enhance models for reservoirs 4005,
4007, and 4010, as described in the methods section. We
compared our NEC+ model with (NEC+G+W) and without
(NEC+G) the watershed variables against variations of the
baseline LSTM model with (LSTM+W, LSTM+G+W) and
without (LSTM, LSTM+G) those same variables. The letter
G in all model names indicates the presence of the GMM
indicator variable.

Table 2 shows the results of our analysis. We use bold
to denote the best results. Interestingly, including the water-
shed variables in the baseline LSTM and LSTM+G models
leads to significantly worse results in most cases, but signif-
icantly better results (5%–28% lower RMSE) in the case of
the NEC+G model. Our model can benefit more by focusing
on normal or extreme prediction individually.

Effect of Loss Function Parameters
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Figure 6: Loss function parameter choices for sensor 4004.

8689



Model/Reservoir 4001 4003 4004 4005 4006 4007 4009 4010 4011
ARIMA 1016.32 1859.70 2501.97 9692.87 1039.38 5854.48 1060.05 3465.20 690.23
Prophet 8469.74 38827.22 95279.31 181607.50 20904.57 187603.80 28629.44 114115.4 2829.26
LSTM 1167.73 1514.90 2342.71 6730.93 959.05 5035.91 954.04 3734.53 662.48
DNN-U 1162.01 1597.72 3989.20 9878.41 983.27 4320.40 1411.63 4257.58 763.73
A-LSTM 878.71 1536.04 2548.56 8919.33 1638.65 13529.86 1064.15 2914.75 700.50
N-BEATS 937.24 1926.74 2280.83 7153.82 960.42 3153.76 1295.90 3162.17 514.30
NEC+ 740.19 1411.44 1783.92 4352.74 780.46 2092.73 703.93 2275.48 632.61

Table 1: Effectiveness Comparison (RMSE) of NEC+ Against Baselines for 9 Reservoirs

Model/Reservoir 4005 4007 4010
LSTM 6730.93 5035.91 3734.53
LSTM+W 7568.68 5728.30 4145.16
LSTM+G 6455.90 3545.19 3004.14
LSTM+G+W 9760.62 4128.37 2602.58
NEC+G 5114.49 2924.30 2385.77
NEC+G+W (NEC+) 4352.74 2092.73 2275.48

Table 2: Effectiveness With/Without Exogenous Variables

We proposed a parameterized loss function that we hy-
pothesized would help improve the ability of our C model to
pick out the rare extreme values and, as a result, lead to bet-
ter prediction of future values. As a way to see how the two
parameters of our loss function may affect the prediction, we
trained several models with different values of α (the BCE
power) while keeping β (BCE vs. RMSE strength) constant,
and several with varying β while keeping α constant, the
results of which can be seen in Figure 6. As expected, in-
creasing the α parameter (top figure) leads to more values
being classified as extreme, allowing the E model to play a
bigger role in the NEC+ model. When α if too large (bottom
figure), its effect can be dampened by decreasing the value
of β. Therefore, we suggest keeping β = 1 while tuning α
and then tuning β for the best found α.

Effectiveness of NEC+ Against Baselines
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Figure 7: Example 3 days ahead predictions for four sensors.

Our main evaluation question was whether our proposed
NEC+ model is an effective method for solving the 3-day
ahead prediction problem in time series with extreme events
such as our 9 reservoirs. To answer this question, we com-
pared NEC+ against a variety of traditional and state-of-the-
art methods and Table 1 presents the RMSE results of all

these models. Equivalent MAPE values are included in Ta-
ble 3in the appendix. Values in bold are the best (lowest)
RMSE for each sensor. Our model significantly outperforms
all traditional methods (ARIMA, Prophet, and LSTM) and
state-of-the-art methods DNN-U and A-LSTM for all 9 sen-
sors. However, the results for NEC+ are, on average, 37%
and 33% better than those of DNN-U and A-LSTM, respec-
tively, across all 9 sensors. Moreover, DNN-U and A-LSTM
were unable to outperform the traditional ARIMA or LSTM
baselines for 6 and 3 out of the 9 sensors, respectively, point-
ing to their overall instability. The N-BEATS model was the
most competitive, outperforming NEC+ on only one sensor,
4011. However, NEC+ results are significantly better than
those of N-BEATS (Wilcoxon T test s=1, p=0.0078).

Figure 7 shows some example 3-day predictions from our
test set for four of the sensors (due to lack of space). Pre-
dicted time series for other sensors are included in the tech-
nical appendix. We did not include Prophet in the results as
the model performed very poorly and would impede visu-
alizing the performance of the remaining models. Overall,
NEC+ is able to more closely predict the ground truth wa-
ter level values, both in the presence of extreme events and
during normal conditions. ARIMA often misses the mark
and DNN-U, LSTM, A-LSTM, and N-BEATS sometimes
follow the trend of the ground truth and sometimes do not.
Overall, NEC+ shows it can more closely account for ex-
treme changes in the time series.

Conclusion
In this work, we presented a novel composite framework and
model, NEC+, designed to better account for rare yet impor-
tant extreme events in long single- and multi-variate time
series. Our framework learns distinct regression models for
predicting extreme and normal values, along with a merging
classifier that is used to choose the appropriate model for
each future event prediction. NEC+ uses clustering to dy-
namically produce distribution indicators, which improves
the model’s robustness to the occurrence of severe events. In
addition, to improve training performance, our framework
uses selected backpropagation and a two-level sampling al-
gorithm to accommodate imbalanced extreme data. A pa-
rameterized loss function is also proposed to improve the
NEC+ classifier performance. Extensive experiments using
more than 31 years of reservoir water level data from Santa
Clara County, CA, showed that NEC+ provided significantly
better predictions than state-of-the-art baselines (Wilcoxon
T test p-values between 0.0039 and 0.0078).
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