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Abstract

Given a square matrix with noisy dissimilarity measures be-
tween pairs of data samples, the metric nearness model com-
putes the best approximation of the matrix from a set of
valid distance metrics. Despite its wide applications in ma-
chine learning and data processing tasks, the model faces
non-trivial computational requirements in seeking the solu-
tion due to the large number of metric constraints associated
with the feasible region. Our work designed a practical ap-
proach in two stages to tackle the challenge and improve the
model’s scalability and applicability. The first stage computes
a fast yet high-quality approximate solution from a set of iso-
metrically embeddable metrics, further improved by an effec-
tive heuristic. The second stage refines the approximate solu-
tion with the Halpern-Lions-Wittmann-Bauschke projection
algorithm, which converges quickly to the optimal solution.
In empirical evaluations, the proposed approach runs at least
an order of magnitude faster than the state-of-the-art solu-
tions, with significantly improved scalability, complete con-
formity to constraints, less memory consumption, and other
desirable features in real applications.

Introduction
A distance metric, or distance matrix, measures the pairwise
dissimilarity relationship between data samples. It is crucial
and lays a foundation for numerous data processing tasks
and machine learning models. For example, many super-
vised and unsupervised learning algorithms firmly reside on
distance metrics (Jain, Murty, and Flynn 1999; Hart, Stork,
and Duda 2000; Schölkopf et al. 2002; Xing et al. 2002).

Assumptions are often made about the characteristics that
a distance matrix needs to satisfy. Non-negativity, symmetry,
and a zero diagonal of the matrix entries are commonly con-
sidered under various scenarios (Boytsov and Naidan 2013;
Schleif and Tino 2015). For metric-based models (Brickell
et al. 2008; Gisbrecht and Schleif 2015), triangle inequalities
of the pairwise distances are further assumed. However, with
erroneous or missing measurements, an observed matrix of-
ten loses its conformity to such characteristics. In practice,
recovering an actual distance matrix’s characteristics can be
beneficial, which may lead to an improved estimate of the
unknown ground truth (Deutsch 2001).
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A series of work (Brickell et al. 2008; Duggal et al.
2013; Boytsov and Naidan 2013; Gilbert and Jain 2017; Fan,
Raichek, and Van Buskirk 2018; Gilbert and Sonthalia 2018;
Veldt et al. 2018; Ruggles, Veldt, and Gleich 2020) models
the scenario of repairing a metric under different settings,
among which we are interested in a specific metric nearness
model in this paper. For a set of input dissimilarity values be-
tween pairs of data samples, the model aims to output a set
of distances that satisfy the metric constraints while keeping
the output distances as near as possible to the input dissimi-
larity according to a certain measure of nearness.

Conceptually general and straightforward as it is, the met-
ric nearness model encounters significant computational dif-
ficulty. The number of constraints associated with a valid
metric rapidly grows when the problem size increases. De-
spite the recent trials devoted to the problem (Brickell et al.
2008; Sonthalia and Gilbert 2020; Pitis et al. 2020), the
proposed approaches still faced non-trivial challenges from
medium to large-sized applications with over a few thousand
samples on a common computing platform.

New optimization strategies have to be sought to ensure
scalability. We developed a dedicated approach that is very
different from existing ones to the metric nearness problem.
The approach first shrinks the scope of distance metrics to
isometrically embeddable matrices. Consequently, the num-
ber of constraints in the optimization problem is signifi-
cantly reduced, which admits a fast solution with high qual-
ity. Then, starting from the solution and refining it itera-
tively, the proposed approach is expected to converge faster
to the optimal solution to the original problem.

Evaluation results empirically justified our idea. The pro-
posed approach has a significantly faster running speed than
the state-of-the-art solutions. It consumes much less mem-
ory. The solution found by our approach completely con-
forms to the metric constraints. As a result, the application
scenarios of the metric nearness model are significantly ex-
panded toward a practical tool for large-scale tasks.

A note on notations. Throughout the paper, a capital let-
ter in calligraphic fonts, usually with a subscript, denotes a
set, such asMn. A capital letter in regular fonts denotes a
real matrix with each entry represented by a lower-case let-
ter with subscripts, such as X and xij . By default, the sizes
of the matrices are all assumed to be n × n, where n is a
given natural number.
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The rest of the paper is structured as follows. We first
introduce the basic metric nearness model and algorithms.
Then we present our algorithm and report the experimental
results, followed by concluding remarks.

Related Work
The Metric Nearness Problem
Problem Formulation: Denote by Mn a subset of n × n
real matrices, each satisfying the metric constraints. Specif-
ically, a matrix X ∈ Rn×n meets the metric conditions if
and only if it is a symmetric and non-negative matrix with
a zero diagonal and all its entries satisfying the triangle in-
equalities:

xii = 0, xij ≥ 0, xij = xji, and xij ≤ xik + xkj (1)
for all 1 ≤ i, j, k ≤ n. In this paper, we also call such a
matrix X a distance metric.

For n given samples, let Do ∈ Rn×n be an observed or
measured matrix with each entry quantifying a dissimilarity
value between two samples. Assume that Do = Dg + Θ
where Dg denotes the (unknown) ground truth of the pair-
wise distance matrix between these samples, and Θ denotes
the measurement noise. Due to the noise, Do may not satisfy
the metric constraints (i.e., Do /∈Mn) that the ground truth
conforms to.

The metric nearness model (Brickell et al. 2008) seeks a
valid metric X that is nearest to the observation Do by:

min
X∈Mn

∥X −Do∥2F (2)

where the nearness is measured by the squared Frobenius
norm of X −Do. It can be seen that the feasible regionMn

is a closed convex cone, and the problem defined in Eq. (2)
is a convex optimization problem with a unique minimizer.

Relationship with Best Approximations: One meaning-
ful application of the metric nearness model can be illus-
trated from the viewpoint of best approximations. Recall
a characterization of best approximations from convex sets
(Deutsch 2001).
Lemma 1 Let C be a convex subset of the inner product
space H. Let x0 ∈ H and x0

C ∈ C. Denote by PC(x0) the
projection of x0 onto C. Then x0

C = PC(x0) if and only if〈
x0 − x0

C , x− x0
C

〉
≤ 0, for all x ∈ C

The “=” holds if and only if x0 ∈ C.
The characterization leads to the following result:

Fact 1 Let Xo be an n × n observed distance matrix, and
letMn be the set of n × n matrices that satisfy the metric
conditions defined in Eq. (1). Let Xo

Mn
be the projection of

Xo ontoMn and let Xg ∈ Mn be the (unknown) ground
truth metric. Then∥∥Xo

Mn
−Xg

∥∥2
F
≤ ∥Xo −Xg∥2F

The “=” holds if and only if Xo ∈Mn.
This result presents a valuable property of the metric near-

ness model. Although the ground truth Xg is unknown, cali-
brating a noisy observation Xo to meet the metric conditions
produces a better estimate of the ground truth in terms of a
shorter distance derived from the Frobenius norm (Li 2015).

Existing Approaches
Existing approaches to solving the metric nearness problem
defined in Eq. (2) can be divided into three categories.

Off-the-Shelf Solvers: The problem defined in Eq. (2)
can be converted to a standard quadratic program (Boyd and
Vandenberghe 2004) and processed by mathematical solvers
such as CPLEX or MOSEK. Unfortunately, the O(n3) tri-
angle inequality constraints inherent in the feasible region
Mn significantly limit the solution’s scalability. Although
the solvers can be combined with active set methods (Boggs
and Tolle 1995), which may potentially reduce the number
of operational constraints, the intrinsic difficulty remains as
the number of constraints grows too fast with n.

Generic Optimization Techniques: Gradient-based ap-
proaches and variants (Beck and Teboulle 2009; Nedić
2011; Wang and Bertsekas 2015; Nesterov 2018) work ef-
ficiently on a broad range of optimization problems. Mean-
while, all these approaches encounter non-trivial difficul-
ties when being applied to metric-constrained problems.
With increased constraints, gradient-based approaches typi-
cally need more iterations to converge. Another classical ap-
proach, the Lagrangian-type method (Fletcher 2013), which
augments the objective by adding a term for each constraint,
suffers similarly from a large number of constraints, where
computing the gradient becomes intractable.

Dedicated Algorithms: Dedicated algorithms were de-
veloped to solve the metric nearness problem more effi-
ciently. The Triangle Fixing (TRF) algorithm (Brickell et al.
2008) iterates through the triangle inequalities based on a
primal-dual method, optimally enforces the unsatisfied in-
equality, and scales better than the generic optimization ap-
proaches. A more recent solution, the Project and Forget
(PAF) algorithm (Sonthalia and Gilbert 2020), examines
each constraint once, then introduces new constraints and
removes old constraints. In this way, the method reduces
the number of constraints and improves the scalability. Be-
sides, by further assuming that the distance metric is iso-
metrically embeddable, a more scalable solution is possible
which utilizes the metric’s relationship with positive semi-
definiteness (Schoenberg 1938; Li and Yu 2023).

In addition to the optimization techniques, a learning-
based approach was investigated. A neural network struc-
ture called “DeepNorm” (Pitis et al. 2020) is trained with a
noisy matrix (with violations of metric constraints) as input
and a distance matrix (without violations) as the output. The
learned network can be applied to future input matrices to
produce the outputs, aiming to remove the violations of the
metric constraints.

Despite the partial success that has been achieved, the
dedicated approaches still suffer heavily from the O(n3)
metric constraints, and the improvement seems limited.
More scalable solutions are expected to make the metric
nearness model practical in applications.

Model
Our work proposes a new solution to the metric nearness
problem defined in Eq. (2). The solution is comprised of two
stages. The initialization stage seeks a fast approximate so-
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lution inMn yet with high quality through embedding cal-
ibration and heuristic improvement (Li and Yu 2023). The
alternating projection stage iteratively refines the approxi-
mate solution to the optimal one.

Embedding Calibration
Seeking a solution to Eq. (2) inMn involves O(n3) metric
constraints defined in Eq. (1). To handle the computational
difficulty from so many constraints, we turn to a subset of
Mn, which avoids the explicit specification of so many con-
straints. Denote the region by In, including matrices that are
isometrically embeddable in the Euclidean space. We define:

Definition 1 A matrix X ∈ Rn×n is said to be isometri-
cally embeddable in the Euclidean space if there exists a
set of points p1, · · · , pn in the space and a distance func-
tion ρ defined on pairs of points, having the properties that
ρ(p, p′) = ρ(p′, p) ≥ 0 and ρ(p, p) = 0 for all p, p′ in the
space, such that

ρ(pi, pj) = xij

holds for all 1 ≤ i, j ≤ n.

Schoenberg’s classical result on isometrical embedding
(Schoenberg 1938; Wells and Williams 1975) provides a suf-
ficient and necessary condition for a matrix to be isometri-
cally embeddable.

Theorem 1 Given X ∈ Rn×n with xii = 0 and xij ≥ 0 for
all 1 ≤ i, j ≤ n, X ∈ In if and only if the quadratic form

n∑
i,j=1

exp (−γxij) ξiξj ≥ 0

holds for all choices of real numbers ξ1, · · · , ξn and γ →
0+ (γ tends to 0 from the right), i.e., the matrix E =
exp(−γX) = {exp(−γxij)} ⪰ 0.

The result establishes the relationship between isometri-
cally embeddable matrices and positive semi-definite matri-
ces. Based on the theoretical discovery, we can seek a fast
approximate solution to the metric nearness problem by con-
fining the solution within In instead ofMn:

min
X∈In

1

2

n∑
i,j=1

(
xij − doij

)2
(3)

Denote the optimal solution to Eq. (3) by Xc. Up to now,
obtaining Xc still seems not straightforward. To make it
clear, note that for a sufficiently small and positive value γ
1, exp(−γxij) = 1 − γxij + O(γ2x2

ij) and exp(−γdoij) =
1 − γdoij + O(γ2(doij)

2). Then we have
(
xij − doij

)2 ≈
1
γ2

[
exp(−γxij)− exp(−γdoij)

]2
. Thus, it is expected that

the optimal solution to Eq. (3), Xc, approximately solves:

min
X∈In

1

2γ2

n∑
i,j=1

[
exp(−γxij)− exp(−γdoij)

]2
(4)

1In this paper, we set γ = 0.02/max
{
doij

}
.

Denote E = {eij} = {exp(−γxij)}. Based on Theo-
rem 1, we reach a new optimization problem for Eq. (4):

min
E∈E

1

2γ2

∑
i<j

[
eij − exp(−γdoij)

]2
(5)

where

E =
{
X ∈ Rn×n|X ⪰ 0, xii = 1, 0 ≤ xij ≤ 1, ∀i, j

}
.

Denote the solution to Eq. (5) by E∗. Then we have Xc ≈
− 1

γ log(E∗).
Now the problem changes to solving E∗ in Eq. (5), which

is a well-studied problem in the optimization community.
The feasible region E is the intersection of a convex cone of
positive semi-definite matrices

S =
{
X ∈ Rn×n|X ⪰ 0

}
and the set of matrices with box constraints

T =
{
X ∈ Rn×n|xii = 1, 0 ≤ xij ≤ 1, ∀i, j

}
.

In literature, projecting a given matrix Eo = exp(−γDo) ={
exp(−γdoij)

}
in Rn×n onto S ∩ T can be solved by New-

ton’s method (Qi and Sun 2006), or by alternating projec-
tions such as Dykstra’s algorithm (Boyle and Dykstra 1986;
Higham 2002; Li 2015).

We chose Dykstra’s projection. Starting from E0, the al-
gorithm generates a sequence of iterates

{
Et
S , E

t
T

}
and in-

crements
{
ItS , I

t
T

}
, for t = 1, 2, · · · , by:

Et
S = PS

(
Et−1
T − It−1

S
)

(6)

ItS = Et
S −

(
Et−1
T − It−1

S
)

(7)

Et
T = PT

(
Et
S − It−1

T

)
(8)

ItT = Et
T −

(
Et
S − It−1

T

)
(9)

where E0
T = E0, I0S = 0, I0T = 0, 0 is an all-zero ma-

trix, and P denotes the projection operation onto a specified
closed convex subset. The sequences

{
Et
S
}

and {Et
T } con-

verge to the optimal solution as t→∞.
For the projection onto S and T , we have:

Fact 2 Let UΣU⊤ be the eigen-decomposition of X ∈
Rn×n with Σ = diag (λ1, · · · , λn). The projection of X
onto S is given by: XS = PS (X) = UΣ′U⊤ where
Σ′ = diag (λ′

1, · · · , λ′
n) and each λ′

i = max {λi, 0}.

Fact 3 The projection of X ∈ Rn×n onto T is given

by: XT = PT (X) =
{
(xT )ij

}n

i,j=1
where (xT )ij =

med {0, xij , 1}, i.e., the median of the three numbers.

Obtaining the accurate E∗ is actually unnecessary in our
problem. We just run Dykstra’s projection for a few itera-
tions, which has been empirically verified to be efficient in
obtaining a good approximation to the projection onto the
intersection of convex sets (Censor 2006).
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Heuristic Improvement
With E∗ and an approximation of Xc by − 1

γ log(E∗), we
further improve Xc with a heuristic. The basic idea is the
following. For each element xc

ij of Xc, we move it nearer
to doij as much as possible while keeping the improved Xc

within the feasible regionMn.
The heuristic works as follows. Suppose xc

ij is larger than
doij . In order to reduce the objective ∥X −Do∥2F , we need to
reduce xc

ij in the right side of doij while maintaining the tri-
angle inequalities involving xc

ij . The smallest possible value
of xc

ij to keep the triangle inequalities is determined by the

maximum value of all
∣∣∣doki − dokj

∣∣∣ (k ̸= i, j). On the other
hand, if xc

ij is smaller than doij , then we need to increase
the value of xc

ij in the left side of doij . This can be done by
setting it to the minimum value of doik + dokj (k ̸= i, j).

One by one, we refine the element of Xc and denote the
improved metric by X0. It is clear that, for Xc ∈ Mn,
the heuristic improvement guarantees that X0 ∈ Mn and∥∥X0 −Do

∥∥2
F
≤ ∥Xc −Do∥2F .

The HLWB Projection Algorithm
For 1 ≤ i ̸= j ̸= k ≤ n, let

Cijk =
{
X ∈ Rn×n|xij ≤ xik + xkj

}
.

Each Cijk denotes a half space defined on the entries of
X ∈ Rn×n. The region defined by the triangle inequalities
in Eq. (1) is the intersection of all Cijk’s. For simplicity of
discussion, here we ignore the constraints of symmetry, non-
negativity, and a zero diagonal on the matrix entries, which
are not crucial to the development of our optimization pro-
cedure but can be easily included back into the algorithm.

For the projection onto the intersection of multiple closed
convex sets, we have (Halpern 1967; Lions 1977; Wittmann
1992; Bauschke 1996):
Theorem 2 Let C1, · · · , Cm be a family of closed convex
subsets of the Euclidean space such thatMn = C1∩· · ·∩Cm
is not empty. Let Do ∈ Rn×n and X0 ∈ Rn×n. SetY t+1 =

1

t+ 2
Do +

t+ 1

t+ 2
Xt

Xt+1 = PC1 · · · PCm(Y t)

(10)

where t = 0, 1, · · · . Then Xt → PMn
(Do) and Y t →

PMn(D
o) as t→∞.

Theorem 2 provides an alternating procedure, called the
Halpern-Lions-Wittmann-Bauschke (HLWB) algorithm, to
sequentially project a given point Do in the Euclidean space
onto the intersection of multiple closed convex subsets. The
algorithm starts from a point X0 in the space, which can be
the same as or different from the given Do. Project the point
successively onto each subset. Then move the projection a
bit along the direction to Do. Adopting an appropriate step
size (e.g., 1

t+2 ) and repeating the projection and movement,
the procedure converges to the unique projection of Do onto
the intersection of the subsets.

Each convex set Cijk denotes a half-space specified by
xij − xik − xkj ≤ 0 and the projection onto the half-space
is a well-known result in literature (Bregman et al. 2003).

Fact 4 For any X ∈ Rn×n, its projection onto Cijk is given
by a matrix X

′ ∈ Rn×n where x′
ij = xij−δijk, x′

ik = xik+

δijk, x′
jk = xjk + δijk with δijk = max

{
xij−xik−xjk

3 , 0
}

and all the other elements of X
′

remain the same as X . Fur-
thermore, if X ∈Mn, then X

′ ∈Mn.

The sequential HLWB algorithm based on Theorem 2
projects a given point onto various half spaces Cijk one by
one. In addition, a parallel update scheme is feasible, which
projects the point onto the half spaces concurrently in each
iteration and then averages the projection results with a the-
oretical guarantee of convergence and optimality (Bauschke
and Combettes 2011). The scheme leads to a computing pro-
cedure suitable for parallel computing platforms, often at the
cost of more iterations to converge. Further details can be
found in (Censor 2006).

Algorithm Summary and Complexity Analysis

The proposed approach is summarized in Algorithm 1. Here
is an analysis of the algorithm’s complexity. Suppose the in-
put matrix is of size n × n. In the initialization stage (steps
1-2), decomposing the matrix Do (see Fact 2) typically has
a complexity of O(n3) (Pan and Chen 1999), so does the
heuristic improvement. In each iteration of the alternating
projection stage (steps 3-14), O(n3) triples of matrix el-
ements will be checked on the conformity to the triangle
inequalities. Only those triples that violate the constraints
will be updated, the number of which is usually far less than
O(n3).

The proposed algorithm must store and update the dis-
tance matrix in both stages, with a memory complexity of
O(n2). The requirement is far less than those of the TRF and
PAF algorithms, which are both O(n3) in the worst case. In
our evaluation, the results clearly demonstrated the benefit
of the reduced memory requirement.

Algorithm 1: The Proposed HLWB Algorithm

Input: Do,maxiter, ϵ
Output: Xt

1: Xc ← EmbeddingCalibration (Do)
2: X0 ← HeuristicImprovement (Xc)
3: for t← 1, · · · ,maxiter do
4: Xt ← 1

t+2 ×Do + t+1
t+2 ×Xt−1;

5: for i← 1, · · · , n do
6: for j ← 1, · · · , n do
7: for k ← 1, · · · , n do
8: δ ← Xt

ij−Xt
ik−Xt

kj

3 ;
9: if δ > 0 then ▷ violation found

10: Xt
ij ← Xt

ij − δ;
11: Xt

ik ← Xt
ik + δ;

12: Xt
kj ← Xt

kj + δ;
13: if

∥∥Xt −Xt−1
∥∥
F
< ϵ then

14: break;
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Algorithm CPLEX MOSEK TRF PAF DeepNorm HLWB

Largest Size (n) < 300 < 300 < 2, 000 ∼ 3, 000 < 1, 500 > 10, 000

Table 1: The size of the largest problem that each algorithm solved within 12 hours in the experiments.

Evaluation
The proposed algorithm was compared with existing ap-
proaches, including the Triangle Fixing (TRF) algorithm
(Brickell et al. 2008) 2, the Project and Forget (PAF) algo-
rithm (Sonthalia and Gilbert 2020) 3, and the DeepNorm al-
gorithm (Pitis et al. 2020) 4. As a baseline, two generic opti-
mization solvers CPLEX 5 and MOSEK 6 were also tested.
Most experiments were executed on a conventional server
with a single CPU (intel Xeon 8180) enabled, except the
DeepNorm algorithm that ran on a deep learning platform.

Artificial and real datasets were used in the evaluation.
Similar to the work of (Sonthalia and Gilbert 2020), two
sets of complete graphs with n = 100/500/1, 000/1, 500
nodes were artificially generated. On one set of graphs (ref.
Graph-t1), the weight of each edge was set to w ∼ U(0, 1), a
uniform distribution between 0 and 1. On the other set (ref.
Graph-t2), each weight was set to ⌈1000 × u × v2⌉ with
u ∼ U(0, 1) and v ∼ N(0, 1), a normal distribution. Then
the edge weights were used as the measurement matrix Do.

Besides, the real MNIST dataset (LeCun et al. 1998)7,
which consists of grayscale images of hand-written dig-
its, was used in the experiment. The pairwise distances
of the images were calculated as the ground-truth metric
Dg . The measurement matrix Do was formed by adding
random noise to the elements of Dg , with each doij =

max
{
0, dgij + ζ ×mean(Dg)× N(0, 1)

}
where ζ = 0.5

and 0.8 respectively and mean(Dg) denotes the mean value
of all entries of Dg .

Scalability
The algorithms exhibited very different scalability in prac-
tice. As shown in Table 1, the generic solvers, CPLEX and
MOSEK, ran out of memory when the sample size (n)
reached 300. The TRF algorithm encountered the same is-
sue with n = 2, 000. The PAF algorithm did not converge
with n = 3, 000 in 12 hours, and the DeepNorm algorithm
did not finish the training with n = 1, 500 samples within
the same time limit. Comparatively, the proposed HLWB al-
gorithm converged within the same period with n = 10, 000,
which scaled significantly better than the other approaches.

As the generic solvers’ scalability on the metric nearness
problem is too limited, we did not consider them in the fol-
lowing discussion. On the other hand, the DeepNorm algo-
rithm resides on supervised training to obtain a neural net-
work for repairing the metric and has to be evaluated un-

2https://optml.mit.edu/work/soft/metricn.html.
3https://github.com/rsonthal/ProjectAndForget.
4https://github.com/spitis/deepnorms.
5https://www.ibm.com/academic/topic/data-science.
6https://www.mosek.com/downloads/.
7http://yann.lecun.com/exdb/mnist/.

der a very different experimental setting from the other ap-
proaches, so we didn’t include its results in the sequel with-
out affecting the presentation of optimization qualities and
comparisons.

NMSE and CSR
We first compared the optimization quality of the TRF, PAF,
and HLWB algorithms on the datasets with sizes n varying
from 100 to 1, 500 under which all three algorithms con-
verged. Since all the algorithms update the metric entries
iteration by iteration to improve the nearness and increase
the conformity to the constraints, naturally, we present the
algorithms’ performances against the number of iterations.

Nearness was measured by the normalized mean squared
error (NMSE), which is defined by ∥X∗−Do∥2

F

∥Do∥2
F

where X∗ is
the projection of Do obtained by different algorithms. The
results were given in Fig. 1, where all algorithms converged
to similar NMSE values in less than 50 iterations, with opti-
mization objective differences less than 10−4.

The constraints satisfaction ratio (CSR) was used to quan-
tify the conformity to triangle inequalities, which is de-
fined as the number of triangle inequalities that are satisfied
divided by the total number of triangle inequalities. TRF
and PAF algorithms did not achieve complete conformity
(CSR = 1.0) in most experiments, falling into the range of
0.970 to 0.999, which resulted in many constraint violations.
Even if we increased the number of iterations to 500, the
CSR did not improve significantly 8. Comparatively, the pro-
posed HLWB algorithm consistently achieved CSR = 1.0
from all experiments’ first iteration.

Number of Updates and Running Time
We recorded the actual running time of all algorithms itera-
tion by iteration. On the MNIST dataset with n = 1, 500 and
ζ = 0.8, the TRF algorithm took around 34 seconds per iter-
ation and around 1, 700 seconds for 50 iterations, including
the algorithm’s initialization time. The PAF algorithm took
mostly around 18 seconds per iteration, except for the first
iteration, which took nearly 500 seconds, causing around
1, 600 seconds in total for 50 iterations. Comparatively, the
HLWB algorithm took around 0.96 seconds per iteration and
around 50 seconds for 50 iterations, including the initializa-
tion time. The proposed algorithm brought about more than
an order of magnitude improvement over the other two al-
gorithms to converge.

In addition to the running time, we recorded the number of
updates on the distance matrix entries iteration by iteration.

8On minor problems with n = 100/500, all constraint vio-
lations diminished after running TRF and PAF for a vast number
(10, 000) of iterations.
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NMSE-TRF NMSE-PAF NMSE-HLWB CSR-TRF CSR-PAF CSR-HLWB
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Figure 1: Comparison of NMSE and CSR versus Iterations. All algorithms reported similar NMSE values when converged. The
HLWB algorithm exhibited complete conformity to the metric constraints.

On the MNIST dataset under the same setting, the TRF al-
gorithm updated 2.53×1011 times in 50 iterations. Compar-
atively, the HLWB algorithm updated 1.77× 109 times, and
the PAF algorithm updated 3.0 × 108 times only. Although
the PAF algorithm carried out fewer updates, it needed to
perform expensive operations other than the simple matrix
updates, such as calculating graph shortest paths, which are
significantly more time-consuming and make the PAF algo-
rithm much slower than the HLWB algorithm.

Memory Consumption
After evaluating the optimization quality and running speed,
we evaluate the memory requirements to execute the algo-
rithms. Fig. 3 compares the empirical memory consump-
tion by different algorithms on the MNIST dataset with
n = 1, 500 samples. The TRF and the PAF algorithms
needed more than 3GB memory, while the HLWB algorithm
only consumed less than 0.1GB memory. With n = 10, 000
samples, TRF reported memory overflow, and PAF needed
around 30GB memory. Comparatively, HLWB only con-
sumed around 3GB memory.

The empirical results justified the theoretical advantage of
the proposed algorithm in memory consumption. The mem-
ory complexity of O(n2) by the HLWB algorithm signif-
icantly improves the memory complexity of O(n3) by the
TRF algorithm and the PAF algorithm.

Conclusion
The metric nearness problem is fundamental and commonly
found in data processing tasks. In practice, heavy computa-
tional requirements and memory consumption significantly
limit its application scenarios. Our work developed a novel
approach to tackle the challenge. An isometrically embed-
dable metric (Schoenberg 1938; Hayden and Wells 1988),
which lies in a subset of all feasible metrics, is first ob-
tained efficiently based on existing procedures (Qi and Yuan
2014; Li and Yu 2023). The HLWB algorithm is then ap-
plied to refine the metric to the optimum with a theoreti-
cal guarantee. Empirically, the proposed approach exhibited
significantly improved running speed, complete conformity
to metric constraints, and less memory consumption.

8653



Updates-TRF        Updates-PAF       Updates-HLWB       Time-TRF        Time-PAF        Time-HLWB

1 20 40 60 80 100
Iterations

104
105
106
107
108

U
pd

at
es

0.0
0.5
1.0
1.5
2.0
2.5

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.5, n = 100

1 20 40 60 80 100
Iterations

105

107

109

1011

U
pd

at
es

0

50

100

150

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.5, n = 500

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

500

1000

1500

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.5, n = 1000

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

1000

2000

3000

4000

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.5, n = 1500

1 20 40 60 80 100
Iterations

104
105
106
107
108

U
pd

at
es

0

1

2

3

4
Ti

m
e 

(s
ec

)
MNIST: 1 = 0.8, n = 100

1 20 40 60 80 100
Iterations

105

107

109

1011

U
pd

at
es

0

50

100

150

200

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.8, n = 500

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

500

1000

1500

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.8, n = 1000

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

1000

2000

3000

4000

Ti
m

e 
(s

ec
)

MNIST: 1 = 0.8, n = 1500

1 20 40 60 80 100
Iterations

104
105
106
107
108

U
pd

at
es

0

1

2

3

4

Ti
m

e 
(s

ec
)

Graph-t1: n = 100

1 20 40 60 80 100
Iterations

105

107

109

1011

U
pd

at
es

0

50

100

150

200

Ti
m

e 
(s

ec
)

Graph-t1: n = 500

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

500

1000

1500

Ti
m

e 
(s

ec
)

Graph-t1: n = 1000

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

1500

3000

4500

6000

Ti
m

e 
(s

ec
)

Graph-t1: n = 1500

1 20 40 60 80 100
Iterations

104
105
106
107
108

U
pd

at
es

0

1

2

3

4

Ti
m

e 
(s

ec
)

Graph-t2: n = 100

1 20 40 60 80 100
Iterations

105

107

109

1011

U
pd

at
es

0

50

100

150

200

Ti
m

e 
(s

ec
)

Graph-t2: n = 500

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

500

1000

1500

Ti
m

e 
(s

ec
)

Graph-t2: n = 1000

1 20 40 60 80 100
Iterations

106

108

1010

1012

U
pd

at
es

0

1000

2000

3000

4000

Ti
m

e 
(s

ec
)

Graph-t2: n = 1500

Figure 2: Comparison of Updates and Running Time versus Iterations on the MNIST Dataset. The PAF algorithm and the
HLWB algorithm made much fewer updates on matrix entries. The HLWB algorithm ran an order of magnitude faster.
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Figure 3: Comparison of Memory Usage vs. Problem Size
on the MNIST Dataset. Note: On n = 5, 000/10, 000, TRF
reported memory overflow, and PAF didn’t converge in 12
hours. The captured usage during the time limit likely under-
estimated PAF’s memory requirements.

Despite the progress, much work can be done and de-
serves our attention. One line is on a parallel implementation
of the proposed approach to ensure even better scalability,
which will surely benefit from the development of parallel
matrix decomposition methods (Berry et al. 2005) and the
development of parallel projection procedures (Bauschke
and Combettes 2011; Li 2020). Another meaningful line is
on a comparative study of existing distance repairing ap-
proaches for metric and non-metric models (Boytsov and
Naidan 2013; Schleif and Tino 2015). Both directions can be
of considerable value and interest to researchers and practi-
tioners.
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