
Towards Fine-Grained Explainability for Heterogeneous Graph Neural Network

Tong Li1, Jiale Deng1, Yanyan Shen1*, Luyu Qiu2, Yongxiang Huang2, Caleb Chen Cao2

1 Shanghai Jiao Tong University
2 Huawei Research Hong Kong

{2017lt, jialedeng, shenyy}@sjtu.edu.cn, {qiuluyu, huang.yongxiang2, caleb.cao}@huawei.com

Abstract

Heterogeneous graph neural networks (HGNs) are promi-
nent approaches to node classification tasks on heterogeneous
graphs. Despite the superior performance, insights about the
predictions made from HGNs are obscure to humans. Exist-
ing explainability techniques are mainly proposed for GNNs
on homogeneous graphs. They focus on highlighting salient
graph objects to the predictions whereas the problem of how
these objects affect the predictions remains unsolved. Given
heterogeneous graphs with complex structures and rich se-
mantics, it is imperative that salient objects can be accom-
panied with their influence paths to the predictions, unveil-
ing the reasoning process of HGNs. In this paper, we develop
xPath, a new framework that provides fine-grained explana-
tions for black-box HGNs specifying a cause node with its
influence path to the target node. In xPath, we differentiate
the influence of a node on the prediction w.r.t. every individ-
ual influence path, and measure the influence by perturbing
graph structure via a novel graph rewiring algorithm. Further-
more, we introduce a greedy search algorithm to find the most
influential fine-grained explanations efficiently. Empirical re-
sults on various HGNs and heterogeneous graphs show that
xPath yields faithful explanations efficiently, outperforming
the adaptations of advanced GNN explanation approaches.

Introduction
Real-world graphs often come with nodes and edges in mul-
tiple types, which are known as heterogeneous graphs. Re-
cently, heterogeneous graph neural networks (HGNs) have
become one of the standard paradigms for modeling rich
semantics of heterogeneous graphs in various application
domains such as e-commerce, finance, and healthcare (Lv
et al. 2021; Wang et al. 2022). In parallel with the pro-
liferation of HGNs, understanding the reasons behind the
predictions from HGNs is urgently demanded in order to
build trust and confidence in the models for both users and
stakeholders. For example, a customer would be satisfied if
an HGN-based recommender system accompanies recom-
mended items with explanations; a bank manager may want
to know why an HGN flagged an account as fraudulent.

To equip HGNs with the capability of providing expla-
nations, some researches focus on developing interpretable

*corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Author: a2

Author: a3Paper Paper

PaperPaper Conference

Author: a1

Figure 1: An explainer identifies author a2 as the explanation
for the prediction of author a1. There are two semantically
different paths showing how a2 affects the prediction of a1.

models that use model parameters (Li et al. 2021), gra-
dients (Pope et al. 2019; Baldassarre and Azizpour 2019;
Schnake et al. 2021) or attention scores (Hu et al. 2020; Yang
et al. 2021) to find salient information for the predictions.
Unfortunately, they are model-specific and fall short when
accesses to the architecture or parameters of an HGN are
unauthorized, especially under confidentiality and security
concerns (Dou et al. 2020; Liu et al. 2021).

Alternatively, we can adapt advanced model-agnostic ex-
planation methods (Yuan et al. 2020) proposed for GNNs
(on homogeneous graphs) to HGNs. These methods at-
tribute model predictions to graph objects, such as nodes (Vu
and Thai 2020), edges (Ying et al. 2019; Luo et al. 2020;
Schlichtkrull, De Cao, and Titov 2020; Wang et al. 2021b;
Lin, Lan, and Li 2021) and subgraphs (Yuan et al. 2021).
Their goal is to learn or search for optimal graph objects that
maximize mutual information with the predictions. While
such explanations answer the question “what is salient to
the prediction”, they fail to unveil “how the salient objects
affect the prediction”. In particular, there may exist multiple
paths in the graph to propagate the information of the salient
objects to the target object and affect its prediction. Without
distinguishing these different influential paths, the answer to
the “how” question remains unclear, which could compro-
mise the utility of the explanation. This issue becomes more
prominent when it comes to explaining HGNs due to the
complex semantics of heterogeneous graphs.

Example 1 Consider an HGN that performs node classifi-
cation on a heterogeneous academic graph with three types
of nodes, Author(A), Paper(P), Conference(C), as shown
in Figure 1. The model classifies the research area of au-
thor a1 as “AI”. An explainer identified author a2 as the

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8640

explanation for the prediction of a1. To explore how a2 af-
fects the prediction, we notice there are two simple paths
P1, P2 in the graph that relate a2 to a1. P1 indicates a1, a2
have co-authored with a3 individually and P2 shows a1, a2
have published papers in the same conference c. Assume the
HGN can propagate a2’s information to a1 along both paths
to affect the prediction. The two paths carry different se-
mantic meanings following APAPA and APCPA at the meta
level respectively. They thus provide semantically different
answers to the question “how a2 affects the prediction of
a1 by the HGN”. Without distinguishing the influence paths
from a2 (cause) to a1 (effect), it is difficult to understand the
reasoning process of the model (the “how” question).

The goal of this paper is to provide explanations for black-
box HGNs that can answer “what” and “how” questions on
node classification tasks. Consider a heterogeneous graph G
with node set V and edge set E and an HGN MG that pre-
dicts the label of a target node vt ∈ V to be MG(vt). To
achieve the goal, we propose to explain MG(vt) with fine-
grained explanations in the form of (v, P), where v ∈ V
is the cause of the prediction and P is a simple path in the
graph connecting v to vt that unveils how v affects the pre-
diction. In Example 1, both (a2, P1) and (a2, P2) are fine-
grained explanations for MG(a1), corresponding to two dif-
ferent ways that a2 affects the prediction of a1. Particularly,
fine-grained explanations allow us to drill down the influ-
ence of a node on the prediction with respect to each indi-
vidual influence path, and the node and path in such an ex-
planation answer “what” and “how” questions respectively.

To find fine-grained explanations that are faithful to
MG(vt), there are two challenging issues to be tackled. First,
we need to measure the influence of any node v on the pre-
dictionMG(vt) with respect to a simple path P from v to vt.
A typical way is to perturb (v, P) and measure the change in
the model prediction. However, traditional perturbations on
graph data (Ying et al. 2019; Vu and Thai 2020) like mask-
ing nodes or edges are inapplicable to our setting because
multiple fine-grained explanations for MG(vt) may share
the same perturbed graph object and the prediction change
caused by the perturbation is not specific to any of the ex-
planations. In Example 1 , masking a2 perturbs the influ-
ences of (a2, P1) and (a2, P2) on MG(a1) simultaneously.
To address the issue, our idea is to perturb all the walks that
participate in propagating the information of v to vt with re-
spect to P , where a walk corresponds to the trajectory of a
possible information flow in the HGN. We develop a novel
graph rewiring algorithm such that all the walks facilitating
the information of v to flow to vt along P are blocked and
the other walks are not affected.

Second, we are interested in highly influential fine-
grained explanations on MG(vt), i.e., the salient part for
the prediction. However, a full enumeration of possible fine-
grained explanations for MG(vt) can be prohibitively ex-
pensive or unaffordable as the number of simple paths is
exponential to the number of edges. We design an efficient
search algorithm to explore the space of fine-grained expla-
nations in a greedy manner. It generally follows the breadth-
first search process but expands a small number of explana-

tions with highest influence scores in each layer. The exper-
iments show the search is able to find faithful fine-grained
explanations with high efficiency.

To summarize, this paper introduces an efficient fine-
grained explanation framework named xPath for black-box
HGNs on node classification tasks. The major contributions
are as follows. (1) We propose a new fine-grained explana-
tion scheme to explain black-box HGNs on node classifi-
cation tasks. Each explanation involves a cause node to the
prediction and a path specifies how the node affects the pre-
diction. (2) We develop a novel graph rewiring algorithm to
perturb the walks associated with the path in a fine-grained
explanation and quantify the influence of a node on the pre-
diction w.r.t. each individual path to the target node. (3)
We design a greedy search algorithm to find top-K most
influential fine-grained explanations efficiently. (4) Exten-
sive experiments on various HGNs and real-world heteroge-
neous graphs demonstrate xPath can find explanations that
are faithful to HGNs and outperform the adaptations of the
state-of-the-art GNN explanation methods.1 To the best of
our knowledge, this work is the first explanation approach
for black-box HGNs. The proposed fine-grained explana-
tions distinguish influence paths with different semantics,
allowing practitioners to understand the reasoning process
of HGNs on complex heterogeneous graphs.

Preliminaries
Definition 1 (Heterogeneous Graph G) A heterogeneous
graph G = (V,E, ϕ, ψ) consists of a node set V and a
directed edge set E, where ϕ : V → T is the node type
mapping function and ψ : E → S is the edge type mapping
function. T and S denote the respective sets of predefined
node types and edge types, where |T |+ |S| > 2.

Definition 2 (Heterogeneous GNN (HGN) MG) LetMG :
V → C be a trained heterogeneous graph neural network
model that performs node classification on the heteroge-
neous graph G, where C is the label set. For any node
vt ∈ V , MG(vt) is the model prediction.

In this paper, we assume MG performs message passing
along the directed edges in G, which holds for most existing
HGNs (Schlichtkrull et al. 2018; Fu et al. 2020; Hu et al.
2020; Lv et al. 2021). Apart from this assumption, we treat
HGN as a black-box model without requiring the detailed
model architecture and parameters.

Definition 3 (Fine-Grained Explanation XG) To explain
a model prediction MG(vt), we propose a fine-grained ex-
planation XG(vt) in the form of (v, P) where v ∈ V \{vt}
is regarded as the cause for the prediction and P =
⟨v, · · · , vt⟩ is a directed simple (acyclic) path connecting
v with vt (according to the edge set E) indicating the way in
which v affects MG(vt).

Let PG(vt) denote all the simple paths in the graph ended
with vt. We can obtain the set of all the possible fine-grained
explanations for MG(vt) as: XG(vt) = {XG(vt) = (v, P) |

1Source code at https://github.com/LITONG99/xPath.

8641

A

B

C D

E

(a)

A

B

C D

EB'

C'

(b)

Figure 2: (a) Illustration of the fine-grained explanation (v =
D, P = ⟨D,C,B,A⟩) for the prediction of A in graph G.
(b) The rewired graph GP

R with B′, C ′ as proxies.

P = ⟨v, · · · , vt⟩ ∈ PG(vt)}. Among all the fine-grained ex-
planations in XG(vt), we are interested in the most influen-
tial ones. We denote by IF(XG(vt)) the influence of node v
on the prediction MG(vt) w.r.t. path P , which is also called
the influence score of XG(vt) for simplicity.

Problem Formulation. For each prediction made by a
black-box HGN, the goal of this paper is to find K fine-
grained explanations with the highest influence scores.

Methodology
In this section, we first introduce the notion of walk per-
turbation which is crucial for computing the IF(XG(vt)).
We then present a novel graph rewiring algorithm for walk
perturbation and discuss its properties. Finally, we describe
our explanation framework xPath that can find top-K fine-
grained explanations for each prediction efficiently.

Walk Perturbation
We now consider a fine-grained explanation XG(vt) and
want to measure IF(XG(vt)). As described before, tradi-
tional perturbation techniques such as node masking and
edge dropping fail to untangle the influences of multiple
fine-grained explanations that have overlapping nodes.

Our key insight is that the HGN model performs actual
information propagation from v to vt w.r.t. P via walks
on the graph. Each walk is an ordered node sequence con-
nected by edges in the graph showing the trajectory of a spe-
cific information flow. In Figure 2a, two walks ⟨D,C,B,A⟩
and ⟨D,C,B,C,B,A⟩ indeed participates in propagating
the information of D to A w.r.t. the path ⟨D,C,B,A⟩. On
the contrary, the walk ⟨D,C,A⟩ does not follow the path
to propagate information of D to A. Intuitively, if we can
identify all the walks associated with P and block them to
prevent the information of v from flowing to vt w.r.t. P , the
observed prediction change will imply the IF(XG(vt)).

We next formally define walks and specify the walks that
are associated with a simple path P .

Definition 4 (Walk WG) Given a heterogeneous graph G,
a walkWG is an ordered node sequence ⟨v1, · · · , vL⟩ where
⟨vi, vi+1⟩ ∈ E for any i ∈ [1, L − 1] and L ≥ 2. Note that
different from simple paths, a walk can involve (self-)loops.

Definition 5 (WalkWP
G Associated With P) Given a fine-

grained explanation XG(vt) = (v, P) for the prediction

MG(vt), a walk WG = ⟨v1, · · · , vL⟩ is associated with P
iff it includes a suffix ⟨vl, · · · , vL⟩ satisfying the following
three conditions:
(i) vl = v ∧ vL = vt ∧ ∀l ≤ i < L, vi ̸= vt;
(ii) for all i ∈ [l, L − 1], we have vi = vi+1 or exactly one
of the two edges ⟨vi, vi+1⟩, ⟨vi+1, vi⟩ exists in the path P ;
(iii) after erasing all the loops in the suffix, we obtain exactly
the same path as P .

We denote byWP
G the set of all the walks associated with

P and have the following theorem.

Theorem 1 Given two different fine-grained explanations
XG,1(vt) = (v1, P1) and XG,2(vt) = (v2, P2) where
P1 ̸= P2 for the prediction MG(vt), we haveWP1

G ̸=W
P2

G .

Based on Theorem 1, we can distinguish the influence of
v w.r.t. different simple paths connecting v to vt, and mea-
sure the influence of v on the prediction MG(vt) w.r.t. P
by perturbing all the walks inWP

G . Henceforth, we may use
XP

G to denote a fine-grained explanation where v and vt are
the start and end nodes in P .

Graph Rewiring for Walk Perturbation
To perturb WP

G for a fine-grained explanation XG(vt) =
(v, P), we introduce a novel graph rewiring algorithm. The
algorithm takes G and P as inputs and produces a rewired
graph GP

R which guarantees the walks in WP
G are blocked

on GP
R and the other walks are reserved.

Let P=⟨v(v0), v1, · · · , vL, vt(vL+1)⟩, L ≥ 0. The graph
rewiring algorithm involves the following two steps.
• Step 1: creating proxy nodes. It first creates a proxy node

proxy(vi) for every node vi (i ∈ [1, L]) in P . The feature
vector and the type of each proxy node are the same as those
of the original node. For ease of presentation, we let v =
proxy(v) and vt = proxy(vt) though v and vt do not have
actual proxy nodes in the graph.
• Step 2: establishing edges. The algorithm then estab-

lishes edges for the L proxy nodes. For vi (i ∈ [1, L]),
we denote by InE(vi) and OutE(vi) the original sets of in-
edges and out-edges of vi in G, respectively. For ⟨u, vi⟩ ∈
InE(vi), if (i) it is a self-loop or (ii) exactly one of the two
edges ⟨u, vi⟩, ⟨vi, u⟩ exists in P , we add a new edge from
proxy(u) to proxy(vi). For ⟨vi, u⟩ ∈ OutE(vi), if (i) it is
not a self-loop and (ii) both ⟨vi, u⟩ and ⟨u, vi⟩ are not con-
tained in P , we add a new edge from proxy(vi) to u. Each
newly added edge shares the same feature vector and the
type of the original edge. Finally, we remove the first edge
⟨v, v1⟩ in P from the graph.

The resultant graph is the rewired graph GP
R. The overall

process is formalized in Algorithm 1.

Correctness Guarantee. We first use an example to show
intuitions on why GP

R is able to blockWP
G without interfer-

ing with other walks. Without loss of generality, we assume
every node and edge inG has a distinct type. Informally, two
walks are said to be equivalent if their corresponding nodes
and edges share the same feature vector and type.

Example 2 Figure 2a shows a path P = ⟨D,C,B,A⟩ in
graph G. The rewired graph GP

R in Figure 2b blocks P by

8642

Algorithm 1: Rewiring algorithm
Input:G, P = ⟨v, v1, · · · , vL, vt⟩

1: V ← V ∪
⋃L

i=1{proxy(vi)}
2: for i ∈ [1, L] do
3: for ⟨u, vi⟩ ∈ InE(vi) do
4: if u = vi ∨ ⟨u, vi⟩ ∈ P ∨ ⟨vi, u⟩ ∈ P then
5: E ← E ∪ {⟨proxy(u), proxy(vi)⟩};
6: end if
7: end for
8: for ⟨vi, u⟩ ∈ OutE(vi) do
9: if vi ̸= u ∧ ⟨u, vi⟩ /∈ P ∧ ⟨vi, u⟩ /∈ P then

10: E ← E ∪ {⟨proxy(vi), u⟩};
11: end if
12: end for
13: end for
14: E ← E\{⟨v, v1⟩};
15: Return G;

deleting ⟨D,C⟩ and disconnects proxy(B) from A. Con-
sider a walk W1 = ⟨D,C,B,C,B,A⟩ ∈ WP

G . To mimic
W1 on GP

R, we go from D to proxy(C) but after that we can
only walk between proxy nodes without having a chance to
transit to A. This implies W1 is blocked on GP

R.
Consider two walks W2 = ⟨E,B,A⟩ and W3 =
⟨D,C,A⟩ which are not associated with P . It is clear that
W2 does not contain ⟨D,C⟩ and it still exists in GP

R. For
W3, it contains an edge e = ⟨C,A⟩ after ⟨D,C⟩ which sat-
isfies (i) e is not a self-loop and (ii) both e and its reverse
edge are not contained in P . Hence, we can find a walk on
GP

R that transits from D to proxy(C) and goes back to A,
i.e., ⟨D, proxy(C), A⟩, which is equivalent to W3.

Definition 6 (Equivalent Walks) Let W = ⟨v1, · · · , vL⟩
be a walk on G and W ′ = ⟨v′1, · · · , v′L⟩ be a walk on GP

R.
W,W ′ are equivalent iff (i) for any i ∈ [1, L], vi, v′i have
the same feature vector and the node type, and (ii) for any
i ∈ [1, L − 1], ⟨vi, vi+1⟩, ⟨v′i, v′i+1⟩ share the same feature
vector and the edge type. We denote as W =W ′.

Let Wvt

G denote the set of all the walks on G which end
with node vt. We have the following theorem.

Theorem 2 For any fine-grained explanation XG(vt) =
(v, P) for the prediction MG(vt), Algorithm 1 produces a
rewired graph GP

R that satisfies: (i) WP
G ∩ W

vt

GP
R

= ∅; and

(ii)WP
G ∪W

vt

GP
R

=Wvt

G .

The above theorem conveys the correctness of our
rewiring algorithm in two aspects. First, all the walks that
are associated with P in G are blocked on GP

R. Second, for
any walk onG which ends with vt and is not associated with
P , we can find an equivalent walk on GP

R.

Fine-Grained Explainability for HGNs
Before introducing our explanation framework, we first for-
mulate the notion of influence score of a fine-grained ex-
planation. Given a fine-grained explanation XP

G for the pre-
diction MG(vt), we use the rewired graph GP

R produced by

Algorithm 2: Finding top-K fine-grained explanations
Input: vt, MG, maximum iteration Lmax, sample size m,
candidate size b

1: B ← {⟨vt⟩}; U ← ∅; i← 0;
2: while B ̸= U and i < Lmax do
3: B ← U ; U ← ∅; i← i+ 1;
4: for P ∈ B and |P | = i do
5: Randomly samplem one-step extended paths from

P and add them to U ;
6: end for
7: U ← b paths in B ∪ U with highest influence scores;
8: end while
9: Return top-K fine-grained explanations based on B;

Algorithm 1 to perturb all the walks inWP
G . We compute the

model predictions on vt given G and GP
R, i.e., MG(vt) and

MGP
R
(vt). The influence score of XP

G is measured based on
the significance of the prediction change.
Definition 7 (Influence Score of XP

G) Let MG(vt) and
MGP

R
(vt) denote the model predictions on vt given G and

GP
R, respectively. The influence score of XP

G is defined as:

IF(XP
G) = (−1)1y=y′ + (MG(vt)[y]−MGP

R
(vt)[y]), (1)

where y = argmaxcMG(vt) and y′ = argmaxcMGP
R
(vt).

The first term in Eq. (1) measures the change in the pre-
dicted label and the second term focuses on the change
in the probability of the predicted label. A higher IF(XP

G)
means blocking all the walks in WP

G will change the pre-
diction more significantly, indicating XP

G is more critical to
the prediction. Moreover, if blocking the walks inWP

G does
not change the prediction label (i.e., y equals y′), we have
IF(XP

G) ∈ [−2, 0]. Otherwise, we have IF(XP
G) ∈ [0, 2].

Note that IF(XP
G) < −1 means blocking all the walks asso-

ciated with P actually increases the probability of the pre-
dicted label. We regard such explanations as invalid.

Given a prediction MG(vt), our explanation framework
aims to find K fine-grained explanations with the highest
influence scores. While each fine-grained explanation is ex-
clusively specified by its simple path, i.e., the start node of
the path is the cause for the prediction, it is intractable to
enumerate all the simple paths ending with vt and compute
their influence scores. To avoid exhaustive search, we de-
velop a greedy search algorithm, which is summarized in
Algorithm 2. The core idea is to explore simple paths in or-
der of their lengths. We maintain a set B of at most b simple
paths. B is initialized by a trivial path ⟨vt⟩ of length zero,
which only used to aid the algorithm but not considered as
a real simple path. At the i-th iteration (i ∈ [0, Lmax)), for
each path of length i in B, we randomly extend it by one-
step m times (based on the edges in G) and obtain m paths
of length i+1. We use U to maintain all the newly explored
paths of length i+ 1. We then find at most b paths in B ∪ U
with the highest influence scores and update B accordingly.
The iteration is repeated until all the paths in B have been
extended or the maximum iteration Lmax is reached, where

8643

Lmax can be set as the number of model layers. Finally, we
use the reverse of K most-influential paths to form the top-
K fine-grained explanations.

Time Complexity Analysis. Algorithm 2 computes influ-
ence scores for at most bmLmax fine-grained explanations.
The time cost of graph rewiring is O(pd), where p is the
maximum length of paths in explanations and d is the max-
imum node’s degree in G. The time cost of computing pre-
diction change is O(|MG|), where |MG| denotes the number
of model parameters. Hence, the total time complexity of Al-
gorithm 1 is O(bmLmax(pd+|MG|)). In practice, the values
of b,m,Lmax, p are small constant numbers and p ≤ Lmax.
The empirical time cost of finding top-K fine-grained expla-
nations is linearly proportional to the model inference time.

Experiments
Experimental Settings
Datasets. We conduct experiments using three public het-
erogeneous graph datasets for node classification tasks. (1)
ACM (Wang et al. 2021a) is an academic network with node
types: paper (P), author (A) and subject (S). The task is
to classify papers into three topics. (2) DBLP (Wang et al.
2021a) is a bibliography graph with node types: author (A),
paper (P), conference (C) and term (T). The task is to clas-
sify authors into four research areas. (3) IMDB2 is a movie
graph with node types: movie (M), director (D), and actor
(A). The statistics of the datasets are in Table 1.

HGN Models and Training Details. We evaluate the per-
formance of explanation methods on three advanced HGNs:
a 2-layer SimpleHGN (Lv et al. 2021), a 3-layer Simple-
HGN and a 2-layer HGT (Hu et al. 2020), which are ab-
breviated as SIM2, SIM3 and HGT. The node embedding
size is set to 32 in all the models. To train these models,
we split each dataset into training/validation/test sets and
we randomly reserve 1000/1000 samples for validation/test.
Note that HGT contains more parameters and needs more
training samples to reach good performance. While Sim-
pleHGN is parameter-efficient, its performance increases in-
significantly with more training samples. We train HGT with
2000 samples and train SimpleHGN with 60 samples per la-
bel for training efficiency. Table 1 provides the test accuracy.

Compared Explanation Methods. Existing explainabil-
ity techniques are proposed for GNNs and there is no off-
the-self ground-truth explanations for the predictions from
HGNs. Hence, we implement two basic explanation meth-
ods and adapt four state-of-the-art model-agnostic GNN
explanation approaches as comparison methods. (1) Local
only considers graph structure and selects nodes with the
shortest distances to the target node. It is task-agnostic and
generates the same explanation for all the HGNs. (2) Atten-
tion utilizes the attention scores computed by HGNs during
message aggregation. For a node, we consider all the paths
to the target node. We multiply the attention scores of the
edges in each path, and add them up as node importance to

2https://www.kaggle.com/carolzhangdc/imdb-5000-movie-
dataset

Dataset #nodes #node
types #edges #edge

types SIM2 SIM3 HGT

ACM 11246 3 46098 7 90.4 91.3 89.7
DBLP 26128 4 265694 10 95.8 95.5 87.3
IMDB 11616 3 45828 7 61.6 61.1 72.4

Table 1: The statistics of the datasets and the test accu-
racy(%) of the HGNs.

the prediction. It is a model-specific explanation method. (3)
PGM-Explainer (Vu and Thai 2020) perturbs node features
to construct a dataset characterizing local data distribution
and generates node-level explanations in form of PGMs. To
adapt it to HGNs, we perturb a node by replacing its feature
vector with the average feature vector of the nodes with the
same type. (4) ReFine (Wang et al. 2021b) is a learning-
based method which provides edge-level explanations. It
uses a graph encoder followed by an MLP layer to pro-
duce the probability of an edge in the explanation, and trains
the model using fidelity loss and contrastive loss. We use
HGNs to instantiate the graph encoder. (5) Gem (Lin, Lan,
and Li 2021) provides edge-level explanations. It involves
a distillation process to obtain ground-truth explanations in
advance and trains a model that predicts the probabilities
of edges in the explanations. We use HGNs to implement
the node embedding module. (6) SubgraphX (Yuan et al.
2021) provides subgraph-level explanations. It performs the
Monte Carlo tree search to explore different subgraphs and
measures their importance. To adapt it to HGNs, we simply
ignore all the type information during the search process.

Evaluation Metrics. A faithful explanation should in-
volve graph objects (e.g., nodes, edges, subgraphs) that are
necessary and sufficient to recover the original prediction.
Without ground-truth explanations, we follow the previous
work (Yuan et al. 2020) and measure faithfulness by two fi-
delity metrics: the accuracy fidelity F acc measures the pre-
diction change and the probability fidelity F prob studies the
probability change on the original predicted label. Specifi-
cally, let T denote test samples correctly predicted by the
model. For a test sample (vt, y), we induce a graph G̃ based
on all the involving graph objects in its explanation. We then
compute the prediction MG̃(vt) and the predicted label ỹ
based on G̃. Formally, we compute metrics by:

F acc =
1

|T |
∑

(vt,y)∈T

(1− 1y=ỹ), (2)

F prob =
1

|T |
∑

(vt,y)∈T

(MG(vt)[y]−MG̃(vt)[y]). (3)

Remark. xPath focuses on evaluating the influence of a node
on the prediction w.r.t. a specific path. It is unreasonable to
regard the reported top-K fine-grained explanations with the
highest influence scores as a subgraph composed ofK paths.
This is because our rewiring algorithm only perturbs the
walks that are associated with the path in a fine-grained ex-
planation, rather than treating the path as a subgraph and ex-
cluding all the involving graph objects from the graph. How-
ever, the two fidelity metrics actually treat our top-K fine-
grained explanations as a subgraph explanation and measure

8644

Dataset Metric Model Local Attention PGM-Explainer ReFine GEM SubgraphX xPath

ACM

F acc
SIM2 2.7 4.2 18.1±0.31 17.2±1.25 4.2±0.00 3.8±0.49 0.2∗±0.09
SIM3 5.4 6.5 31.7±0.34 26.0±0.14 26.9±0.01 4.6±0.20 4.1±0.23
HGT 0.7 0.2 46.7±0.52 4.2±1.67 1.9±0.00 1.4±0.33 5.5±0.19

F prob
SIM2 0.7 1.2 6.8±0.08 6.2±0.31 1.2±0.00 0.6±1.23 -0.9∗±0.02
SIM3 5.4 2.4 11.4±0.02 10.9±0.05 11.3±0.00 1.5±0.31 0.7∗ ±0.09
HGT 0.6 0.003 35.2±0.34 3.3±0.99 1.6±0.00 1.0±0.07 1.9±0.30

DBLP

F acc
SIM2 12.1 6.8 2.3±0.15 4.7±0.10 11.4±0.15 0.7±0.57 0.6±0.09
SIM3 7.0 4.9 31.9±0.26 14.5±0.75 32.1±0.00 5.9±0.05 0.3∗±0.05
HGT 3.0 2.5 6.2±0.24 7.7±1.12 6.1±0.00 0.8±0.06 0.3∗±0.00

F prob
SIM2 4.2 2.2 0.8±0.05 0.9±0.10 3.8±0.00 -0.8±3.43 -0.5±0.01
SIM3 2.7 1.7 11.3±0.03 5.3±0.67 11.4±0.01 2.1±0.31 -0.4∗ ±0.01
HGT 3.9 3.5 5.9±0.22 6.2±0.68 6.3±0.00 -2.3±0.07 -1.0±0.03

IMDB

F acc
SIM2 6.3 6.3 6.0±0.93 13.4±0.81 18.8±8.49 2.4±0.38 0.9∗±0.08
SIM3 10.1 10.1 9.4±1.15 16.8±0.82 17.1±1.20 2.8±0.05 2.5±0.00
HGT 0.1 0.1 3.4±0.68 4.9±0.66 13.5±2.20 1.4±0.02 0.0±0.00

F prob
SIM2 1.3 1.3 1.0±0.20 3.1±0.15 5.1±2.68 -1.7±2.31 -2.8±0.01
SIM3 2.3 2.3 2.0±0.57 4.8±0.45 5.1±0.20 -1.6±0.51 -2.0∗±0.01
HGT 0.02 0.02 4.8±0.22 4.0±0.24 13.3±2.57 0.1±0.14 -2.8∗±0.00

Table 2: Comparison results on fidelity metrics(%). The best results are in bold and the second-best results are underlined. And
∗ denotes statistically significant improvement (measured by t-test with p-value < 0.01) over all baselines.

the effectiveness of the subgraph induced by the paths. In
this regard, the two metrics do not act fairly to xPath.

Implementation Details. We implemented xPath with Py-
Torch. For the four advanced explanation approaches, we
used their original source codes and incorporated simple
adaptations as described before to make them fit hetero-
geneous graphs. For xPath, we tune the hyperparameters
(b,m) of ACM to (5, 5), DBLP with SIM2 to (10, 10), and
others to (2, 10). Since explanation sparsity is highly related
to fidelity scores, we control the number of nodes involved in
the explanations. As suggested by the previous work (Ying
et al. 2019), we set the node number to 5 to avoid over-
whelming users. As the comparison methods may not find
explanations involving exactly 5 nodes, we tune their hyper-
parameters to find explanations with roughly 5 nodes that
achieve the best fidelity. We conducted all the experiments
on a server equipped with Intel(R) Xeon(R) Silver 4110
CPU, 128GB Memory, and a Nvidia GeForce RTX 2080
Ti GPU (12GB Memory). Each experiment was repeated 5
times and the average performance was reported.

Evaluation of Effectiveness
Comparison Results. Table 2 shows the fidelity perfor-
mance of all the comparison methods. On IMDB, Local and
Attention have the same results because these basic meth-
ods give the same explanations. For both metrics, lower fi-
delity scores indicate the graph objects in the explanations
are more useful to retain the original predictions, and hence
the explanations are more faithful to the model. We have the
following key observations. First, xPath achieves the lowest
fidelity scores in most cases, demonstrating its effectiveness
in identifying explanations that are faithful to the models.
Interestingly, xPath reports negative probability fidelity val-
ues in some cases, which indicates xPath is capable of filter-
ing out noisy information and identifying information flows
that are critical to the predictions. When explaining HGT on

ACM dataset, xPath performs worse than Attention. We in-
vestigate the test samples in ACM where the explanations
from xPath fail to provide the original predictions, and find
that the paths in these explanations do not contain nodes of
the author type. This is because the subject nodes have much
larger degrees than the author nodes and the paths follow-
ing paper-subject-paper dominate all the paths ending with
a target paper. If many of these paths are indeed influen-
tial to HGT, they will occupy the top-K position, making
top-K explanations lack author type information. To ver-
ify our claim, for each test sample in ACM, we look up
paths examined during the search process for those follow-
ing author-paper and paper-author-paper, and use the one
with the highest influence score to replace the K-th path
identified by xPath. This simple strategy achieves better re-
sults (F acc=0.0% and F prob=-2.0%) than Attention. This in-
dicates xPath is extensible to explore the correlations among
explanations towards better fidelity. On probability fidelity,
xPath performs slightly worse than SubgraphX on DBLP.
This is because the influence score is defined to be less sen-
sitive to the change in probabilities and xPath pays more at-
tention to avoiding label change, i.e., better accuracy fidelity
than SubgraphX. Second, among the adaptations of four ad-
vanced explanation methods, SubgraphX is superior in all
cases. This is consistent with the intuition that high-order ex-
planations(e.g., subgraphs) are more expressive and power-
ful than low-order ones(e.g., nodes, edges). PGM-Explainer
is sensitive to graph data. Its fidelity scores increase sharply
on ACM and DBLP than IMDB because the node neigh-
borhoods in ACM and DBLP is larger, which increases the
difficulty of obtaining accurate local data distributions via
sampling-based perturbations. GEM and ReFine fail to find
good explanations, which suggests that edge-based explana-
tions are insufficient to retain the rich semantics that are use-
ful to the HGN predictions. We also notice that Attention is
a strong baseline thanks to the knowledge of model details.

8645

pace(%)

30

20

10

匕二］Glow

SIM2 SIM3 HGT SIM2 SIM3 HGT SIM2 SIM3 HGT

ACM DBLP IMDB

(a) Accuracy fidelity

pprob(%)

10

5

。

匕二］Glow

SIM2 SIM3 HGT SIM2 SIM3 HGT SIM2 SIM3 HGT

ACM DBLP IMDB

(b) Probability fidelity

Figure 3: Effectiveness of influence scores in differentiating
faithful explanations from unfaithful ones.

Local provides task-agnostic explanations and its perfor-
mance is unstable over different model architectures. Third,
xPath performs steadily on different HGNs and tasks. On
DBLP, the four existing explanation methods report much
higher accuracy fidelity on SIM3 than on SIM2. We notice
that SIM3 involves larger computation graphs than SIM2
(about two orders of magnitude in the number of nodes), and
existing explanation methods fall short in the presence of in-
tricate graph structures. xPath achieves best fidelity when
explaining SIM3 on all three tasks, showing the potential of
applying xPath on complex HGNs and large graphs.

Effectiveness of Influence Scores. We study whether pro-
posed influence score (Eq. 1) can differentiate faithful expla-
nations from unfaithful ones. We consider all the paths ex-
amined during the search process and induce another graph
G̃low based on the K paths with the lowest influence scores.
Figure 3 provides the fidelity scores computed based on G̃
and G̃low. In all the cases, G̃low consistently result in poor
fidelity. The performance gap between two groups confirms
the effectiveness of the influence score function in distin-
guishing different fine-grained explanations.

Evaluation of Efficiency
We report the running time in computing explanations for
all the test samples in Table 3. xPath is much more efficient
than the existing explanation methods, thanks to the greedy
search algorithm. The sampling process in PGM-Explainer
and the Monte Carlo search in SubgraphX incur high time
costs when the target node has a large neighborhood, e.g.,
SIM3 on DBLP. GEM is efficient in many cases but also suf-
fers in explaining SIM3 due to large node neighborhood, be-
cause it calculates the probability of edges between pairwise
nodes in the neighborhood. ReFine generally runs faster than
PGM-Explainer and SubgraphX. Note that the time cost of
the learning-based methods GEM and ReFine mainly comes
from training the explanation generators and the time for
finding explanations for test samples can be amortized.

Case Study
We conduct two case studies to provide intuitions on how
xPath answers the “what” and “how” questions via fine-
grained explanations. As shown in Figure 4a, when explain-
ing the prediction of paper-2177, xPath identifies two in-
fluential fine-grained explanations with paths ⟨paper-3953,

Dataset Model PGM-
Explainer ReFine GEM Sub-

graphX xPath

ACM
SIM2 19.6 4.6 2.6 3.5 0.2
SIM3 18.6 5.8 45.5 13.5 0.6
HGT 16.7 3.6 2.6 3.9 0.2

DBLP
SIM2 12.4 5.9 9.7 7.5 0.6
SIM3 46.0 11.0 84.5 27.9 1.2
HGT 11.3 4.7 3.3 8.0 0.2

IMDB
SIM2 3.1 3.0 1.5 2.6 0.1
SIM3 10.2 4.8 22.6 9.0 0.1
HGT 5.5 3.5 3.0 5.2 0.1

Table 3: The time of computing explanations (in hours).

author-1971

subject-36

paper-3953 paper-2177

(a)

paper-9926

paper-6207

author-1208

term-185

conference-15

(b)

Figure 4: Case studies: (a) explaining SIM3 on paper-2177
in ACM; (b) explaining SIM3 on author-1208 in DBLP.

author-1971, paper-2177⟩ and ⟨paper-3953, subject-36, pa-
per-2177⟩, whose influence scores are 1.04 and -1.00,
respectively. This means the model made the prediction
mainly because paper-2177, paper-3953 are written by the
same author. Figure 4b shows the neighborhood of the target
node author-1208 in DBLP. xPath finds two nodes confer-
ence-15 and term-185 that are important for the prediction.
The most influential path for conference-15 is ⟨conference-
15, paper-9926, author-1208⟩, while that for term-185 is
⟨term-185, paper-6207, author-1208⟩. xPath highlights two
cause nodes and their influential paths, indicating the model
made the prediction of author-1208 because the author has
written paper-9926 in conference-15 and published paper-
6207 involving term-185. Arguably, xPath can provide ex-
planations with legible semantics, which is a desirable prop-
erty in explaining HGNs on complex heterogeneous graphs.

Conclusion
In this paper, we study the problem of explaining black-box
HGNs on node classification tasks. We propose a new expla-
nation framework named xPath which provides fine-grained
explanations in the form of a node associated with its influ-
ence path to the target node. The node tells what is impor-
tant to the prediction and the influence path indicates how
the prediction is affected by the node. In xPath, we develop a
novel graph rewiring algorithm to perform walk-level pertur-
bation and measure the influence score of any fine-grained
explanation without the knowledge of model details. We fur-
ther introduce a greedy search algorithm to find top-K most
influential explanations efficiently. Extensive experimental
results show that xPath can provide explanations that are
faithful to various HGNs with high efficiency, outperform-
ing the adaptations of known explainability techniques.

8646

Acknowledgements
The authors would like to thank the anonymous reviewers
for their insightful reviews and the deep learning comput-
ing framework MindSpore3 for the support on this work.
This work is supported by the National Key Research
and Development Program of China (2022YFE0200500),
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102) and SJTU Global Strategic Partner-
ship Fund (2021 SJTU-HKUST).

References
Baldassarre, F.; and Azizpour, H. 2019. Explainability
Techniques for Graph Convolutional Networks. In Interna-
tional Conference on Machine Learning (ICML) Workshops,
2019 Workshop on Learning and Reasoning with Graph-
Structured Representations.
Dou, Y.; Liu, Z.; Sun, L.; Deng, Y.; Peng, H.; and Yu, P. S.
2020. Enhancing graph neural network-based fraud de-
tectors against camouflaged fraudsters. In Proceedings of
the 29th ACM International Conference on Information &
Knowledge Management, 315–324.
Fu, X.; Zhang, J.; Meng, Z.; and King, I. 2020. Magnn:
Metapath aggregated graph neural network for heteroge-
neous graph embedding. In Proceedings of The Web Con-
ference 2020, 2331–2341.
Hu, Z.; Dong, Y.; Wang, K.; and Sun, Y. 2020. Heteroge-
neous graph transformer. In Proceedings of The Web Con-
ference 2020, 2704–2710.
Li, J.; Peng, H.; Cao, Y.; Dou, Y.; Zhang, H.; Yu, P.; and He,
L. 2021. Higher-order attribute-enhancing heterogeneous
graph neural networks. IEEE Transactions on Knowledge
and Data Engineering.
Lin, W.; Lan, H.; and Li, B. 2021. Generative causal expla-
nations for graph neural networks. In International Confer-
ence on Machine Learning, 6666–6679. PMLR.
Liu, Y.; Ao, X.; Qin, Z.; Chi, J.; Feng, J.; Yang, H.; and
He, Q. 2021. Pick and choose: a GNN-based imbalanced
learning approach for fraud detection. In Proceedings of the
Web Conference 2021, 3168–3177.
Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.;
and Zhang, X. 2020. Parameterized explainer for graph neu-
ral network. Advances in neural information processing sys-
tems, 33: 19620–19631.
Lv, Q.; Ding, M.; Liu, Q.; Chen, Y.; Feng, W.; He, S.; Zhou,
C.; Jiang, J.; Dong, Y.; and Tang, J. 2021. Are we really
making much progress? Revisiting, benchmarking and refin-
ing heterogeneous graph neural networks. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, 1150–1160.
Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E.; and
Hoffmann, H. 2019. Explainability methods for graph con-
volutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
10772–10781.

3https://www.mindspore.cn/

Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European semantic
web conference, 593–607. Springer.
Schlichtkrull, M. S.; De Cao, N.; and Titov, I. 2020. Inter-
preting Graph Neural Networks for NLP With Differentiable
Edge Masking. In International Conference on Learning
Representations.
Schnake, T.; Eberle, O.; Lederer, J.; Nakajima, S.; Schutt,
K. T.; Mueller, K.-R.; and Montavon, G. 2021. Higher-Order
Explanations of Graph Neural Networks via Relevant Walks.
IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, (01): 1–1.
Vu, M.; and Thai, M. T. 2020. Pgm-explainer: Proba-
bilistic graphical model explanations for graph neural net-
works. Advances in neural information processing systems,
33: 12225–12235.
Wang, X.; Bo, D.; Shi, C.; Fan, S.; Ye, Y.; and Philip, S. Y.
2022. A survey on heterogeneous graph embedding: meth-
ods, techniques, applications and sources. IEEE Transac-
tions on Big Data.
Wang, X.; Liu, N.; Han, H.; and Shi, C. 2021a. Self-
supervised heterogeneous graph neural network with co-
contrastive learning. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 1726–1736.
Wang, X.; Wu, Y.; Zhang, A.; He, X.; and Chua, T.-S. 2021b.
Towards multi-grained explainability for graph neural net-
works. Advances in Neural Information Processing Systems,
34: 18446–18458.
Yang, Y.; Guan, Z.; Li, J.; Zhao, W.; Cui, J.; and Wang, Q.
2021. Interpretable and efficient heterogeneous graph con-
volutional network. IEEE Transactions on Knowledge and
Data Engineering.
Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. Advances in neural information processing
systems, 32.
Yuan, H.; Yu, H.; Gui, S.; and Ji, S. 2020. Explainability in
graph neural networks: A taxonomic survey. arXiv preprint
arXiv:2012.15445.
Yuan, H.; Yu, H.; Wang, J.; Li, K.; and Ji, S. 2021. On ex-
plainability of graph neural networks via subgraph explo-
rations. In International Conference on Machine Learning,
12241–12252. PMLR.

8647

