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Abstract

We propose causal recurrent variational autoencoder (CR-
VAE), a novel generative model that is able to learn a Granger
causal graph from a multivariate time series x and incorpo-
rates the underlying causal mechanism into its data gener-
ation process. Distinct to the classical recurrent VAEs, our
CR-VAE uses a multi-head decoder, in which the p-th head
is responsible for generating the p-th dimension of x (i.e.,
xp). By imposing a sparsity-inducing penalty on the weights
(of the decoder) and encouraging specific sets of weights
to be zero, our CR-VAE learns a sparse adjacency matrix
that encodes causal relations between all pairs of variables.
Thanks to this causal matrix, our decoder strictly obeys the
underlying principles of Granger causality, thereby making
the data generating process transparent. We develop a two-
stage approach to train the overall objective. Empirically,
we evaluate the behavior of our model in synthetic data and
two real-world human brain datasets involving, respectively,
the electroencephalography (EEG) signals and the functional
magnetic resonance imaging (fMRI) data. Our model con-
sistently outperforms state-of-the-art time series generative
models both qualitatively and quantitatively. Moreover, it also
discovers a faithful causal graph with similar or improved
accuracy over existing Granger causality-based causal in-
ference methods. Code of CR-VAE is publicly available at
https://github.com/hongmingli1995/CR-VAE.

Introduction
Multivariate time series data are ubiquitous in numer-
ous real-world applications. e.g., the electroencephalogram
(EEG) signals (Isaksson, Wennberg, and Zetterberg 1981),
the climate records (Runge et al. 2019), and the stel-
lar light curves in astronomy (Huijse et al. 2012). Tradi-
tional machine learning tasks on time series data include
anomaly detection, segmentation, forecasting, classification,
etc. Among them, the time series forecasting or prediction,
which uses past or historical observations to predict future
values, is perhaps the most popular one.

In recent years, the design of generative models for time
series data emerged as a challenge. One reason is that most
of existing machine learning models, especially deep neu-
ral networks, are data-hungry, which means that a sufficient
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number of (labeled) samples are required during training
before their practical deployment. Unfortunately, in some
sensitive applications, especially those involving medical
and healthcare domains, collecting and exchanging real data
from patients requires a long administrative process or is
even prohibited. This in turn may inhibit research progress
on model comparison and reproducibility.

A good generative model for time series is expected to
model both the joint distribution p(x1:T ) and the transition
dynamics p(xt|x1:t−1) for any t. Although most of popular
predictive models, such as autoregressive integrated mov-
ing average (ARIMA), kernel adaptive filters (KAF) (Liu,
Pokharel, and Principe 2008) and deep state-space models
(SSMs) (Rangapuram et al. 2018), provide different ways
to capture p(xt|x1:t−1) or p(xt|xt−τ :t−1) in the window of
length τ , they are deterministic mappers, rather than gener-
ative. In other words, these models are incapable of infer-
ring unobserved latent factors (such as trend and seasonal-
ity) from observational data, and generating new time series
values by sampling from a tractable latent distribution.

On the other hand, causal inference from time series data
has also attracted increasing attention. Taking the functional
magnetic resonance imaging (fMRI) data as an example, it
is of paramount importance to identify causal influences be-
tween brain activated regions (Deshpande et al. 2009). This
causal graph may also provide insights into brain network-
based psychiatric disorder diagnosis (Wang et al. 2020).

Given the urgent need for a reliable time series generative
model and the modern trend of causal inference, one ques-
tion arises naturally: can we develop a new generative model
for time series such that it can also be used for causal discov-
ery? In this paper, we give an explicit answer to this ques-
tion. To this end, we develop causal recurrent variational
autoencoder (CR-VAE), which, to the best of our knowl-
edge, is the first endeavor to integrate the concept of Granger
causality within a recurrent VAE framework. Specifically,
given a M -variate time series x = (x1,x2, · · · ,xM ), our
CR-VAE consists of an encoder and a multi-head decoder,
in which the p-th head is responsible for generating the p-
th dimension of x (i.e., xp). We impose a sparsity penalty
on the weight matrix that connects input and hidden state
(in the decoder), thereby encouraging the model to learn a
sparse matrix A ∈ RM×M to encode the Granger causality
between pairwise dimensions of x. Such design also makes
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the generation process compatible with the underlying prin-
ciples of Granger causality (i.e., causes appear prior to ef-
fects). Additionally, we also propose an error-compensation
module to take into account the instantaneous influence εt
excluding the past of one process.

We conduct extensive experiments on synthetic sequences
and real-world medical time series. In terms of time series
generation, we evaluate the closeness between real data dis-
tribution and synthetic data distribution both qualitatively
and quantitatively. In terms of causal discovery, we compare
our discovered causal graph with state-of-the-art (SOTA) ap-
proaches that also aim to identify the Granger causality. Our
model achieves competitive performance in both tasks.

Background Knowledge

The proposed work lies at the intersection of multiple
strands of research, combining themes from autoregressive
models for temporal dynamics, Granger causality for causal
discovery, and VAE-based time series models.

Time Series Generative Models

A deep generative model gθ is trained to map samples from
a simple and tractable distribution p(z) to a more compli-
cated distribution p(gθ(z)), which is similar to the true dis-
tribution p(x). For time series data, one can simply gen-
erate synthetic time series under a Generative Adversarial
Network (GAN) (Goodfellow et al. 2014) framework, by
making use recurrent neural networks in both the genera-
tor and the discriminator (Mogren 2016; Esteban, Hyland,
and Rätsch 2017; Takahashi, Chen, and Tanaka-Ishii 2019).
However, these GAN-based approaches only model the joint
distribution p(x1:T ), but fails to take the transaction dynam-
ics p(xt|x1:t−1) into account. TimeGAN (Yoon, Jarrett, and
Van der Schaar 2019) addresses this issue by estimating and
training this conditional density in an internal latent space.

Apart from a few early efforts (e.g., (Fabius and
Van Amersfoort 2014)), the VAE-based time series gen-
erator is less investigated. Some of them, such as Z-
forcing (Goyal et al. 2017)), even encode the future infor-
mation in the autoregressive structure, thereby violating the
underlying principles of Granger causality (Granger 1969)
that cause happens prior to its effect. The recently devel-
oped TimeVAE (Desai et al. 2021) uses convolutional neu-
ral networks in both encoder and decoder, and adds a few
parallel blocks in the decoder where each block accounts for
a specific temporal property such as trend and seasonality.
However, the building blocks introduce a set of new hyper-
parameters which are hard to determine in practice.

In this work, we also develop a new VAE-based time se-
ries generative model. Compared to the above mentioned ap-
proaches, our distinct properties include: 1) the ability to dis-
cover Granger causality, which makes the model itself more
transparent than other baselines; 2) the ability to explicitly
model conditional density p(xt|x1:t−1); and 3) a rigorous
guarantee on the generation process to obey the underlying
principles of Granger causality.

Causal Discovery of Time Series
Substantial efforts have been made on the causal discovery
of aM -variate time series x = (x1,x2, · · · ,xM ), where the
goal is to discover, from the observational data, the causal
relations between different dimensions of data in different
time instants, e.g., if xp causes xq in time t with a lag τ?

Different types of causal graphs can be considered for
time series (Assaad, Devijver, and Gaussier 2022). Here, we
consider recovery of a Granger causal graph, which sepa-
rates past observations and present values of each variable
and aims to discover all possible causations from past to
present. Formally, the Graph causal graph is defined as:

Definition (Granger Causal Graph). Let x =
(x1,x2, · · · ,xM ) be a M -dimensional time series of
length T , where, for time instant t, each xt is a vector
xt = [x1

t ,x
2
t , · · · ,xMt ] in which xpt represents a measure-

ment of the p-th time series at time t. Let G = (V,E) the
associated Granger causal graph with V representing the
set of nodes and E the set of edges. The set V consists of the
set of M dependent time series x1,x2, · · · ,xM . There is an
edge connects node xp to xq if: 1) for p ̸= q, the past values
of xp (denoted xpt−) provide unique, statistically significant
information about the prediction of xqt ; and 2) for p = q,
xqt− causes xqt (i.e., self-cause).

Note that, the Granger causal graph may have self-loops
as the past observations of one time series always cause its
own present value. Hence, it does not need to be acyclic.

The approaches on causal discovery of time series are di-
verse. Interested readers can refer to (Assaad, Devijver, and
Gaussier 2022) for a comprehensive survey. In the follow-
ing, we briefly introduce the basic idea of Granger causal-
ity (Granger 1969) and its recent advances.

Wiener was the first mathematician to introduce the no-
tion of “causation” in time series (Wiener 1956). Accord-
ing to Wiener, the time series or variable x causes an-
other variable y if, in a statistical sense, the prediction of
y is improved by incorporating information about x. How-
ever, Wiener’s idea was not fully developed until 1969 by
Granger (Granger 1969), who defined the causality in the
context of linear multivariate auto-regression (MVAR) by
comparing the variances of the residual errors with and
without considering x in the prediction of y. Not surpris-
ingly, the basic idea of Granger causality can be extended
to non-linear scenario by the kernel trick (Marinazzo, Pel-
licoro, and Stramaglia 2008) or by fitting locally linear mod-
els in the reconstructed phase space (Chen et al. 2004). The
deep neural networks have been leveraged recently to iden-
tify Granger causality. Neural Granger causality (Tank et al.
2021) is the first method that learns the causal graph by in-
troducing sparsity constraints on the weights of autoregres-
sive networks. The Temporal Causal Discovery Framework
(TCDF) (Nauta, Bucur, and Seifert 2019) uses an attention
mechanism within dilated depthwise convolutional networks
to learn complex non-linear causal relations and, in special
cases, hidden common causes.

Information-theoretic measures, such as directed infor-
mation (Massey 1990) and transfer entropy (TE) (Schreiber
2000), provide an alternative model-free approach to quan-
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tify the directed information flow among stochastic pro-
cesses. Specifically, TE is defined as the conditional mu-
tual information I(yt;xt−|yt−). However, TE is incapable
to quantify instantaneous causality (Amblard and Michel
2012) and notoriously hard to estimate, especially in high-
dimensional space. Recently, (De La Pava Panche, Alvarez-
Meza, and Orozco-Gutierrez 2019) relies on the matrix-
based Rényi’s α-order entropy (Giraldo, Rao, and Principe
2014) to estimate TE and achieves compelling perfor-
mances. Interestingly, TE is equivalent to Granger causal-
ity in MVAR for Gaussian variables (Barnett, Barrett, and
Seth 2009). Essentially, both definitions can be regarded as
comparing the model with and without considering the in-
tervening variable y (Chen, Feng, and Lu 2021).

We provide in the supplementary material a table of other
related works with additional details. Note, however, that
none of the mentioned causal inference approaches can be
used for time series generation.

Causal Recurrent Variational Autoencoder
Problem Formulation and Objectives
Our high-level objective is to learn a distribution p̂(x1:T )
that matches well the true joint distribution p(x1:T ). From
a generative model perspective, this is achieved by sam-
pling from a simple and tractable distribution p(z) and then
map to a more complicated distribution p̂(x1:T ). Usually,
it is difficult to model p(x1:T ) depending on its dimen-
sion M , length T and possibly non-stationary nature. To
this end, we can apply the autoregressive decomposition
p(x1:T ) =

∏T
t=1 p(xt | x1:t−1) to infer the sequence it-

eratively (West and Harrison 2006). The objective reduces
to learn a conditional density p̂(xt | x1:t−1) that equals to
the true density p(xt | x1:t−1). Hence, our first objective is:

min
p̂

D(p(xt | x1:t−1)||p̂(xt | x1:t−1)), (1)

for any t, where D is the divergence between distributions.
Our second objective is straightforward. Suppose

x1,x2, · · · ,xM are intrinsically correlated by a Granger
causal graph G = (V,E), we can characterize G by its
(unweighted) adjacency matrix A, whose (u, v)-th entry is
defined as:

Au,v =

{
1 xvt− causes xut ; i.e., edge (u, v) ∈ E

0 otherwise.
(2)

Now, let PA(xp) denote the set of parents (or causes)
of xp in G (i.e., the non-zero elements in the p-th row of
A), motivated by the additive noise model with nonlinear
functions (Hoyer et al. 2008; Chu, Glymour, and Ridgeway
2008), we can represent xpt as follows:

xpt = fp
(
xpt−, PA(xp)t−

)
+ εpt , (3)

in which xpt− denotes past observations of xpt , PA(xp)t−
denotes past observations of cause variables of xp, εpt are
jointly independent over p and t and, for each p, i.i.d., in t.

Therefore, our second objective is to learn fp for each xp

and infer the matrix A.

Methodology
Both encoder and decoder of our causal recurrent variational
autoencoder (CR-VAE) consist of recurrent neural networks
such that the hidden state is calculated based on the previous
state and the observation at the current time instant. A CR-
VAE model with time lag τ can be written as:

x̂t−τ :t = Dθ(xt−τ :t−1, Eϕ(xt−2τ−1:t−τ−1)) + εt, (4)

where Dθ, Eϕ represent decoder and encoder, which are pa-
rameterized by θ and ϕ, respectively; εt is the additive inno-
vation term that has no specific distributional assumption.

Our CR-VAE takes as input the segment xt−2τ−1:t−τ−1,
and aims to predict or reconstruct the segment xt−τ :t step-
wisely. In this way, we obey the principle of Granger causal-
ity by preventing encoding future information before de-
coding. By contrast, other popular recurrent VAEs, such as
VRAE (Fabius and Van Amersfoort 2014), SRNN (Fraccaro
et al. 2016), Z-forcing (Goyal et al. 2017), use the same
time segment in both encoder and decoder, thereby encod-
ing future information in the recurrent structure. Our training
model is in fact motivated by T-forcing (Williams and Zipser
1989) and other predictive autoregressive models (e.g., (Lit-
terman 1986; Bengio et al. 2015)) that use the real past ob-
servations to predict the current value in the sequence.

Another distinction between CR-VAE and other popular
recurrent VAEs (Fabius and Van Amersfoort 2014; Chung
et al. 2015; Goyal et al. 2017) is that our decoder has mul-
tiple heads, in which the p-th head is used to approximate
fp

(
xpt−, PA(xpt )t−

)
in Eq. (3). Then, the full vector x̂t is

constructed by stacking the output of all M heads. In short,
the term Dθ(xt−τ :t−1, Eϕ(xt−2τ−1:t−τ−1)) learns to esti-
mate a collection of {fp(·)|p = 1, 2...M}.

Fig. 1(left) shows the structure of our encoder. Let h be
hidden states in our encoder, our encoder can be written as:

ht = tanh(Winxt +Whht−1 + b),

µ =Wµht−τ−1 + bµ,

log(σ) =Wσht−τ−1 + bσ,

(5)

where {Win,Wh,Wµ,Wσ} ⊆ θ. Win and Wh are the
weight matrix for inputs and hidden states, respectively;Wµ

and Wσ are the weights to compute mean and standard de-
viation of the learned Gaussian distribution, respectively; b
denotes the bias.

Fig. 1(middle) shows the structure of the 1-st head of
our decoder, in which we use a 5-variate time series as
an example. The collection of all heads explicitly models
p(xt|x1:t−1). Let s be the hidden state in our decoder. The
initial state of decoder is sampled from the Gaussian distri-
bution parameterized by µ and σ. More formally, we have:

st−τ = tanh((Ure(µ+ σz) + bre),

z ∼ N(0, I),

spt = tanh(Upinxt−1 + Uphs
p
t−1 + bp),

Âp = Upin,

x̂pt = Upouts
p
t + bpout,

(6)

where {Upin, Ure, U
p
h , U

p
out} ⊆ ϕ.Upin andUph denote weight

matrix for inputs and hidden states of the p-th head in the
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Figure 1: (left) The CR-VAE encoder approximates the intractable posterior p(z|x). We extract a time segment xt−2τ−1:t as our
training data, and and use the first half clip xt−2τ−1:t−τ−1 as the input to encoder. (middle) The first head of the decoder, which
predicts the 1-st dimension of x. The second half of the time clip is used as the decoder inputs. RNN inputs are determined
by the estimated causal relations Â1 (the first row of Â). (right) The pipeline of CR-VAE. The multi-head decoder predicts 5
variables separately in training; The compensation network approximates εt in Eq. (3). The adjacency matrix Â of Granger
causal graph Â can be obtained by stacking, i.e., Â = {Â1; Â2; Â3; Â4; Â5}.

decoder. Similarly, Ure and Upout denote weights for repa-
rameterization and output layers; Âp is the p-th row of
the estimated adjacency matrix Â of the Granger causal
graph, which includes all cause variables of the p-th vari-
able. Note that, we use a single-layer vanilla RNN as an
example for simplicity. In practice, we use gated recurrent
units (GRUs) (Cho et al. 2014) to improve modeling ability.

Fig. 1(right) shows the pipeline of full model. An error
compensation network is applied to model an additive inno-
vation term εt in Eq. (4), thus further improving sequence
generation performance. We assume εt is not predictable or
inferable by the information of the past. To compensate for
it, another recurrent VAE parameterized by {ψ, ω}, is uti-
lized to estimate the additive noise εt−τ :t. Here, we use the
same sequence as inputs for both encoder and decode, since
it does not disentangle the obtained causal graph Â.

CR-VAE Loss Function In order to estimate A in the
process of learning, we invoke a sparsification trick which
is first shown in neural Granger causality (NCG) (Tank
et al. 2021) and has also been used in recent causal dis-
covery literature (Marcinkevičs and Vogt 2021; Liu et al.
2020). The essential sparsification trick is simple. It as-
sumes that the causal matrixA is sparse and applies sparsity-
inducing penalty to Â. It shares the theme with the tradi-

tional prediction-based Granger causality – the causes help
predict the effects. Therefore, we train CR-VAE by minimiz-
ing the following penalized loss function with the stochastic
gradient descent (SGD) and proximal gradients:

L(θ, ϕ) =
M∑
p=1

[
Eqϕ(z|xt−2τ−1:t−τ−1)[logpθ(x

p
t−τ :t|xt−τ :t−1, z)]

]
−DKL(qϕ(z|xt−2τ−1:t−τ−1)||p(z)) + λR(Â),

(7)

where p(z) is a standard Normal distribution. The loss func-
tion includes three terms: (1) the mean squared error (MSE)
loss pushes the model towards high fidelity to sample space;
(2) the KL divergence term ensures that the latent space be-
haves as a Gaussian emission; and (3) a sparsity-inducing
penalty term R(·) on Â with a hyper-parameter λ. The first
two terms correspond to our multi-head recurrent VAE.

Meanwhile, the additional ε compensation network of
CR-VAE is trained by minimizing:

L(ψ, ω) = Eqω(zε|εt−τ:t)logpψ(εt−τ :t|zε)
−DKL(qω(zε|εt−τ :t)||p(zε)).

(8)

This is a standard VAE objective function, and its update
does not affect the result of Â.
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CR-VAE Learning and Optimization The ideal choice
of R(·) is the ℓ0 norm which represents the number of non-
zero elements, but the optimization of ℓ0 norm in neural net-
work is still challenging. Hence we apply ℓ1 norm, and the
Eq. (7) becomes a typical lasso problem. Proximal gradient
descent is the most popular method for non-convex lasso ob-
jective optimization. In practice, we use iterative shrinkage-
thresholding algorithms (ISTA) (Daubechies, Defrise, and
De Mol 2004; Chambolle et al. 1998) with fixed step size.
The feature of thresholding leads to exact zero solutions in
Upin. More formally, we start to update weights Upin itera-
tively from Upin(0):

Upin(i+ 1) = proxγ(U
p
in(i)− γ∇Lc(Upin(i))), (9)

where proxγ denotes the proximal operator with step size
γ; Lc denotes the convex part of the loss function that is
the first and second term in Eq. (7). During training, two
separate optimization methods are implemented: proximal
gradient on the weights of input layers Upin, and stochastic
gradient descent (SGD) on all other parameters.

It performs well in causal discovery, but reduces the gen-
eration performance since we invoke ℓ1 norm as our spar-
sity penalty. To solve this problem, we propose a two-stage
training strategy inspired by network pruning (Liang et al.
2021), as summarized in Algorithm 1. In line 1-8, we train
the CR-VAE with both proximal gradient and SGD to obtain
the sparse causal graph (Phase I); In line 9, we fix the zero
elements; In line 10-13, we continue training CR-VAE with
SGD to improve generation performance (Phase II).

Once the CR-VAE has been trained, we can obtain the
estimated causal matrix by stacking Upin, and it can also
be used for synthetic sequence generation. During sequence
generation, we independently sample two sets of noise z and
zε, and then feed them to the decoders to iteratively generate
a time series of arbitrary length.

Experiments
We first evaluate CR-VAE on a synthetic linear autore-
gressive process to illustrate the importance of each mod-
ule. We then compare CR-VAE with several state-of-the-art
(SOTA) approaches on four benchmark time series datasets
to demonstrate its advantages in both causal discovery and
synthetic time series generation.

Linear Autoregressive Process
CR-VAE features a few special designs over the traditional
RVAE, such as the multi-head decoder, the unidirectional in-
puts and the error-compensation module. To illustrate the
importance of each component to the performance gain, we
first test CR-VAE on a synthetic linear multivariate autore-
gressive process with 10 dimensions and maximum lag of 3.
More formally:

xt = a1xt−1 + a2xt−2 + a3xt−3 + εt, (10)

where εt ∼ N(0, I); the true causal matrix G can be repre-
sented by all non-zeros elements of the a1 + a2 + a3.

Algorithm 1: Training pipeline of CR-VAE
Require: The multivariate time sequence {xt}Tt=1 with M
dimensions; model lag τ ; step size γ for ISTA; initialize
{θ, ϕ, ψ, ω}
Output: Estimated adjacency matrix Â of Granger causal
graph, the trained {θ, ϕ, ψ, ω}.

1: while not stop criteria or converge do
2: Sample a batch of xt−2τ−1:t from {xt}Tt=1.
3: Compute the gradients of Lc, i.e, convex terms in

Eq. (7).
4: Update θ, ϕ except Uin using SGD.
5: Update Uin using proximal gradient descent in

Eq. (9).
6: Update ψ, ω by minimizing Eq. (8).
7: end while
8: Stack Uin to obtain the M ×M estimated causal matrix
Â.

9: Prune out all zeros edges in Uin based on Â.
10: while not or converge do
11: Compute the gradients of Lc.
12: Update θ, ϕ using SGD.
13: Update ψ, ω by minimizing Eq.‘(8).
14: end while
15: return Ĝ, trained {θ, ϕ, ψ, ω}.

Unidirectional Inputs: Don’t Peep on the Future. The
original VRAE and its recent variants (Goyal et al. 2017;
Fabius and Van Amersfoort 2014) use xt−τ :t−1 as the in-
put of both encoder and decoder. This way, information of
the entire sequence is encoded before decoding. Those ap-
proaches estimate p(xt|x1:T ), rather than p(xt|x1:t−1), i.e.,
the future input values at time t cannot be used in the con-
ditional variable. This is called causal conditioning as pro-
posed by Massey and Kramer (Kramer 1998). From a causal
discovery perspective, it violates the underlying principles
of Granger causality by “peeping on the future” and hence
can never identify causality in the sense of Granger.

To support our argument, we take xt−τ :t−1 as the input of
encoder (rather than xt−2τ−1:t−τ−1). We term this modifi-
cation the non-unidirectional CR-VAE. As shown in Fig. 2,
CR-VAE identifies majority of true causal relations, whereas
its non-unidirectional baseline, whose encoder peeps on fu-
ture values, fails to discover causal directions between most
pairs of time series.

Error-Compensation Network. We then validate the in-
dispensability of error-compensation network. We compare
the time series generation results of the original CR-VAE
and its degraded version without error-compensation. We
use t-SNE (Van der Maaten and Hinton 2008) to visual-
ize the generated samples. A good generative model should
lead to similar synthetic distribution to real data distribu-
tion. As shown in Fig. 3, the error-compensation network
leads to a significant performance gain. In fact, samples
generated by CR-VAE without error-compensation converge
quickly to values nearly zero. This makes sense for a lin-
ear AR process, because it can only diverge to ∞ or con-
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Figure 2: (left) shows the true adjacency matrix A of
Granger causal graph; (middle) and (right) show the recov-
ered adjacency matrix Â by non-unidirectional CR-VAE and
our CR-VAE. False causal relations are highlighted by red
rectangles.

verge to nearly zero if we omit εt in Eq. 10. In our case,
we tune values of {a1, a2, a3} to avoid divergence, and the
true xt = a1xt−1 + a2xt−2 + a3xt−3 did converge. In
other words, the degraded CR-VAE captures the dynamics
p(xt | x1:t−1), but ignores εt.

Experiments on Different Data
We then systematically evaluate the performances of CR-
VAE in causal discovery and time series generation on four
widely used time series data.

• Hénon maps: We select 6 coupled Hénon chaotic maps
(Kugiumtzis 2013), whose true causal relation is xi−1 →
xi. We generate 2, 048 samples to constitute our training
data. Equations can be found in supplementary material.

• Lorenz-96 model: It is a nonlinear model formulated
by Edward Lorenz in 1996 to simulate climate dynam-
ics (Lorenz 1996). The p-dimensional Lorenz-96 model
is defined as: The forcing constant is set to be 10. We take
p = 10 and generate 2, 048 samples as training data.

• fMRI: It is a benchmark for causal discovery, which
consists of realistic simulations of blood-oxygen-level-
dependent (BOLD) time series (Smith et al. 2011) gener-
ated using the dynamic causal modelling functional mag-
netic resonance imaging (fMRI) forward model1. Here,
we select simulation no. 3 of the original dataset. It has
10 variables, and we randomly select 2, 048 observations.

• EEG: It is a dataset of real intracranial EEG recordings
from a patient with drug-resistant epilepsy2 (Kramer, Ko-
laczyk, and Kirsch 2008). We select 12 EEG time series
from 76 contacts since they are recorded at deeper brain
structures than cortical level. Note, however, that there is
no ground truth of causal relation in this dataset.

Causal Discovery Evaluations We compare CR-VAE
with 4 popular Granger causal discovery approaches. They
are: kernel Granger causality (KGC) (Marinazzo, Pellicoro,
and Stramaglia 2008) that uses kernel trick to extend
linear Granger causality to non-linear scenario; transfer
entropy (TE) (Schreiber 2000) estimated by the matrix-
based Rényi’s α-order entropy functional (Giraldo, Rao,

1https://www.fmrib.ox.ac.uk/datasets/netsim/
2http://math.bu.edu/people/kolaczyk/datasets.html
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Figure 3: t-SNE visualization on the illustrative linear sys-
tem: red samples correspond to real time series, whereas
blue samples correspond to synthetic time series.

and Principe 2014); Temporal Causal Discovery Framework
(TCDF) (Nauta, Bucur, and Seifert 2019) which integrates
attention mechanism into a neural network; Neural Granger
causality (NGC) (Tank et al. 2021), which is the first neural
network-based approach for Granger causal discovery.

KGC and TE rely on information-theoretic measures
(on independence or conditional independence) and post-
processing (e.g., hypothesis test), whereas TCDF, NGC and
our CR-VAE are neural network-based approaches that ob-
tain causal relations actively and automatically in a learning
process. All methods are trained only on one sequence that
is stochastically sampled based on lag. We use true lag for
KGC and TE and set it to be 10 for TCDF, NGC and CR-
VAE. For each approach, we compare the estimated causal
adjacency matrices with respect to the ground-truth and ap-
ply areas under receiver operating characteristic curves (AU-
ROC) as a quantitative metric. For neural network-based ap-
proaches, we select the estimated causal matrices by search-
ing smallest convex loss. Relevant hyper-parameters of all
learnable models are tuned to minimize the loss function.
Details can be found in supplementary material.

Table 1 summarizes the quantitative comparison results.
The neural network-based approaches outperform tradi-
tional KGC and TE by a considerable margin. This is be-
cause traditional approaches are incapable of detecting self-
causes. Our CR-VAE outperforms TCDF in all datasets and
achieves similar performance to NGC. This can be expected.
Note that, both CR-VAE and NGC apply ℓ1 sparsity penalty
on network weights to discover causal relations.

Although the ground-truth causal relation of EEG data is
not available, we compare the estimated causal matrices by
our method and KGC in Fig. 4. We observed that most of
causal relations in our estimation are concentrated on the
last six sequences, whereas the causal elements found by
KGC distribute more evenly. Our results make more sense
because doctors often perform anterior jaw lobectomy for
patients with epilepsy by resecting the last six contact ar-
eas (Stramaglia, Cortes, and Marinazzo 2014; Kramer, Ko-
laczyk, and Kirsch 2008). KGC fails to capture this.

Time Series Generation Evaluation In time series
generation, we compare CR-VAE with 3 baselines:
Time-series generative adversarial network (TimeGAN or
TGAN) (Yoon, Jarrett, and Van der Schaar 2019) that
takes transition dynamics into account under the framework
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Figure 4: Estimated causal adjacency matrix of KGC and
CR-VAE on EEG data. Our causal elements concentrate in
the last six sequence (red blocks).

Methods KGC TE TCDF NGC Ours
Hénon 0.465 0.465 0.911 0.960 0.960
Lorenz 0.631 0.408 0.871 0.980 0.954
fMRI 0.379 0.380 0.881 0.950 0.957

Table 1: Comparison of causal discovery using AUROC on
Hénon, Lorenz-96 and fMRI. The best performance is in
bold. The second-best performance is underlined.

of GAN; the popular variational RNN (VRNN) (Chung
et al. 2015); and the variational recurrent autoencoder
(VRAE) (Kingma and Welling 2013) which is the backbone
of our approach.

We first qualitatively evaluate the quality of generated
time series by projecting both real and synthetic ones into a
2-dimensional space with t-SNE. A good generative model
is expected to encourage close distributions for real and syn-
thetic data. As can be seen from Fig. 5, CR-VAE demon-
strates markedly better overlap with the original data than
TimeGAN and performs slightly better than VRAE. On
fMRI data, it is almost impossible to distinguish our gen-
erated samples with respect to real ones. This result fur-
ther demonstrate the great potential of our CR-VAE in other
medical applications.

Next, we adopt the maximum mean discrepancy (MMD)
(Gretton et al. 2006) and the “train on synthetic and test on
real” (TSTR) strategy to further evaluate the performances
of different methods quantitatively. Specifically, MMD is
utilized to measure the distance between generated data and
real data. Same to (Goudet et al. 2018), we take account of a
bandwidth of kernel size [0.01, 0.1, 1, 10, 100]. For TSTR,
we use synthetic samples to train a sequential prediction
neural network with LSTM-RNN layers to predict next sam-
ples. Then we test the trained model on real time series.
Prediction performance is measured by root mean square
error (RMSE). Intuitively, if a generative model captures
well the underlying dynamics of a real time series (i.e.,
p(xt|x1:t−1)), it is expected to have low prediction error un-
der TSTR framework.

As shown in Table 2, CR-VAE consistently generates
higher-quality synthetic data in comparison to baselines. For
fMRI, our result is slightly outperformed by VRAE. This is
because CR-VAE fails to discover some causal relations.
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Figure 5: t-SNE visualization on Henon (1st row), Lorenz 96
(2nd row), fMRI (3rd row) and EEG (4th row). Red samples
correspond to real time series, whereas blue samples corre-
spond to synthetic time series.

Metric Methods Henon Lorenz fMRI EEG
TGAN 0.476 0.040 0.157 0.064

MMD VRNN 0.324 0.043 0.145 0.072
VRAE 0.125 0.010 0.011 0.107
Ours 0.118 0.015 0.010 0.050

TGAN 0.297 0.124 0.163 0.042
VRNN 0.185 0.131 0.233 0.054

TSTR VRAE 0.125 0.088 0.119 0.030
Ours 0.122 0.056 0.122 0.024
Real 0.024 0.017 0.107 0.010

Table 2: Quantitative comparison with MMD and TSTR.
The best performance is in bold. The second-best perfor-
mance is underlined. ’Real’ indicates TRTR.

Conclusion
We develop a unified model, termed causal recurrent vari-
ational autoencoder (CR-VAE), that integrates the concepts
of Granger causality into a recurrent VAE framework. CR-
VAE is able to discover Granger causality from past ob-
servations to present values between pairwise variables and
within a single variable. Such functionality makes the gen-
eration process of CR-VAE more transparent. We test CR-
VAE in two synthetic dynamic systems and two benchmark
medical datasets. Our CR-VAE always has smaller maxi-
mum mean discrepancy values and prediction mean square
errors using the “train on synthetic and test on real” strategy.

Future works are twofold. First, same to other Granger
causality approaches, our model assumes no unmeasured
confounders. Second, an isotropic Gaussian assumption for
latent factors limits our generative capability. We will con-
tinue the design of time series generative models to account
for latent confounders and more flexible latent distributions.
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