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Abstract

Although increasing model size can enhance the adversarial
robustness of deep neural networks, in resource-constrained
environments, there exist critical sparsity constraints. While
the recent robust pruning technologies show promising di-
rection to obtain adversarially robust sparse networks, they
perform poorly with high sparsity. In this work, we bridge
this performance gap by reparameterizing network parame-
ters to simultaneously learn the sparse structure and the ro-
bustness. Specifically, we introduce Twin-Rep, which repa-
rameterizes original weights into the product of two factors
during training and performs pruning on the reparameterized
weights to satisfy the target sparsity constraint. Twin-Rep im-
plicitly adds the sparsity constraint without changing the ro-
bust training objective, thus can enhance robustness under
high sparsity. We also introduce another variant of weight
reparameterization for better channel pruning. When infer-
ring, we restore the original weight structure to obtain com-
pact and robust networks. Extensive experiments on diverse
datasets demonstrate that our method achieves state-of-the-
art results, outperforming the current sparse robust training
method and robustness-aware pruning method. Our code is
available at https://github.com/UCAS-LCH/Twin-Rep.

Introduction
Deep neural networks (DNNs) have achieved extraordi-
nary performance in various tasks. However, they are
highly vulnerable to adversarial examples crafted by adding
well-designed perturbations to natural examples (Szegedy
et al. 2013; Goodfellow, Shlens, and Szegedy 2015). Such
fragility becomes an obstacle to using DNNs in safety-
critical environments such as face recognition (Deng et al.
2019) and autonomous driving (Bojarski et al. 2016). Nu-
merous studies have proposed various adversarial defense
techniques for such threats. To date, adversarial training that
relies on training the network with adversarial examples has
been found to be the most effective (Goodfellow, Shlens, and
Szegedy 2015; Madry et al. 2018; Zhang et al. 2019; Wang
et al. 2019).

While adversarial training can significantly improve the
adversarial robustness of neural networks, it requires a larger
network capacity to achieve high robustness than that of
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natural training (Nakkiran 2019; Madry et al. 2018). The
required large network capacity limits the use in resource-
constrained environments, highlighting a need to consider
robustness under sparsity constraints. Unfortunately, despite
a plethora of work on compressed model performance on
clean data, there have been only a few studies on the robust-
ness of compressed models under adversarial attacks.

Some early works have tried to generate both sparse and
robust networks (Rakin et al. 2019; Ye et al. 2019; Gui et al.
2019) by directly combining network pruning and adversar-
ial training techniques. These works inherit heuristic prun-
ing algorithms developed for natural training (Han et al.
2015), which drops connections in neural networks with the
lowest weight. However, these pruning methods incur poor
performance under adversarial scenarios when a relatively
high ratio is set. Specifically, since adversarially trained net-
works generally demand more non-zero parameters than nat-
urally trained networks (Rakin et al. 2019; Ye et al. 2019),
the traditional penalty-based paradigm suffers from a contra-
diction between robustness and sparsity. For example, train-
ing with a strong penalty achieves high sparsity but hurts
robustness as the parameters deviate from the optima, while
a weak penalty maintains the performance but results in a
denser network, hence great pruning damage.

In this paper, we propose to address the above contradic-
tion by decoupling network architecture between training
and inference. Specifically, we construct the training-time
structure by decomposing the original weights into two ma-
trices/tensors, which are merged by element-wise multipli-
cation during inference. Since the magnitude of the two fac-
tors is small, the trained network will have enough sparsity
to achieve low pruning damage when merging. At the same
time, we increase the trainable parameters, which helps to
improve robustness under high sparsity. Note that we opti-
mize the parameters together with the robust objective, and
thus it is the same efficiency as the traditional training man-
ner. The parameters are restored to the original structure dur-
ing inference, so the model size and computational effort do
not increase.

In short, our proposed technique overcomes the con-
tradiction between robustness and sparsity that the tradi-
tional penalty-based paradigm suffers. On the one hand, the
multiplication of two factors implicitly increases network
sparsity, thus reducing pruning damage under high prun-
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ing ratios. On the other hand, the doubled parameters are
only learned by adversarial loss during training, which has
enough ability to achieve high robustness.

Contributions of our work are summarized as follows:
• We develop a novel weight reparameterization technique,

which implicitly adds the sparse limit, by reparameter-
izing original parameters into two element-wise multi-
plied factors. We also introduce a variant of the proposed
weight reparameterization approach for channel sparsity,
which shows a promising direction to develop more repa-
rameterization methods for better robustness under dif-
ferent sparsity constraints.

• We combine network pruning with weight reparameter-
ization during adversarial training, achieving both ultra-
high compression ratio and robustness to perturbed im-
ages. Moreover, we show that our method is compatible
with both unstructured and structured pruning.

• We conduct extensive experiments on both white-box
and black-box attacks, of which the results show that
our approach achieves state-of-the-art performance. No-
tably, at a very high pruning ratio of 99%, the proposed
method achieves significant gains up to 4.9% and 4.7%
on CIFAR-10 with VGG-16 models, compared to the two
strongest baselines, respectively.

Related Work
Adversarial Robustness
Over the past decade, a large number of defenses have been
proposed to mitigate the effect of adversarial examples. To
date, adversarial training that relies on harnessing adversar-
ial examples has been demonstrated to be the most effective
(Athalye, Carlini, and Wagner 2018). Madry et al. (2018)
proposed a min-max formulation for training adversarially
robust models using empirical risk minimization. They gen-
erated adversarial examples via projected gradient descent
(PGD) to sufficiently approximate the inner maximization
step so that the subsequent adversarial training yielded ro-
bust models. Following this, Zhang et al. (2019) quantified
the trade-off between accuracy and robustness and proposed
TRADES loss to achieve better robustness:

LTRADES = LCE(θ, x, y) + βDKL(p(y|x, θ)||p(y|x̃,θ)),
(1)

where β is the robustness-accuracy trade-off parameter and
x̃ is obtained by maximizing the Kullback-Leibler (KL)
Divergence DKL(p(y|x, θ)||p(y|x̃,θ)). Later Wang et al.
(2019) investigated the distinctive influence of misclassified
and correctly classified examples on the robustness of adver-
sarial training. They proposed MART loss, which explicitly
differentiates misclassified examples during training. More-
over, Carmon et al. (2019) proposed a robust self-training
(RST) scheme to train robust models with pseudo-labeled
additional data samples. They revealed that adversarial ro-
bustness could significantly benefit from additional data in-
formation, even without precise labels.

While adversarial training improves network robustness
to adversarial examples, it requires a significantly larger net-
work capacity to obtain strong adversarial robustness than

correctly classifying natural examples only (Madry et al.
2018). The need for a larger network capacity makes it chal-
lenging to achieve robustness and sparsity simultaneously.

Neural Network Pruning
Sparsification of neural networks is becoming increasingly
important under the requirement to deploy such models to
resource-limited devices. Pruning is widely used to elimi-
nate the weight redundancy in over-parameterized DNNs by
removing weights with less importance (Collins and Kohli
2014; Han et al. 2015; Louizos, Welling, and Kingma 2018).
One such highly successful approach uses an iterative prun-
ing and retraining pipeline to reduce the damage from prun-
ing (Han et al. 2015; Guo, Yao, and Chen 2016). In ad-
dition to this pipeline, network pruning can be performed
with training (Bellec et al. 2018; Lin et al. 2017) or before
training (Frankle and Carbin 2019; Lee, Ajanthan, and Torr
2019). Such network pruning methods are mainly designed
for natural training to obtain storage and computational sav-
ings with almost undamaged performance.

More closely related to our work is a recently emerging
method to train compressed neural networks with reparam-
eterized structures (Ding et al. 2021). They inserted a com-
pactor after the original convolution layer, and equivalently
merged them after training and pruning. By only adding
penalty gradients to compactors, their approach avoided the
confrontation between the objective function and penalty
loss. Despite the standard natural training effectiveness, this
work did not consider robust-training objectives.

Adversarial Robustness and Sparsity
Recent studies grew interested in exploring adversarial ro-
bustness under sparsity constraints. Guo et al. (2018) theo-
retically and experimentally demonstrated that adversarial
robustness can be improved with an appropriate sparsity,
whereas a very large sparsity tends to be harmful. Wang et al.
(2018) derived similar conclusions that adversarial robust-
ness decreases with high model sparsity. Instead of training
robust and sparse networks, these works mainly explored the
relationship between robustness and sparsity. Subsequently,
several studies tried to compress robust networks using a
magnitude-based pruning heuristic. Ye et al. (2019) and Gui
et al. (2019) proposed a concurrent adversarial training and
weight pruning scheme by solving a constrained optimiza-
tion problem with an alternating direction method of multi-
pliers (ADMM). While ADMM-based pruning techniques
are successful in natural training, they incur a significant
performance drop when combined with adversarial training.
Rakin et al. (2019) applied the l1 weight penalty in adversar-
ial training to produce robust sparse models. However, their
approach does not generalize to very sparse models. From an
adversarial defense perspective, Madaan, Shin, and Hwang
(2020) proposed a Bayesian framework to prune highly vul-
nerable features for better robustness. Chen et al. (2022) in-
troduced static and dynamic sparsity in robust training to
mitigate the robust generalization gap. Nevertheless, these
approaches do not aim to obtain competitive robustness at
high pruning ratios.
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Recent two works constitute state-of-the-art methods for
achieving robust networks at high sparsity. Sehwag et al.
(2020) introduced HYDRA, where a robustness-aware mask
was learned based on a robustly pre-trained network. HY-
DRA exploited the mask learning approach by Ramanujan
et al. (2020) to search robust sub-networks in a pre-trained
robust, dense network. While their approach can achieve
very high model compression when integrated with various
robust training objectives, necessitating a pre-trained dense,
robust network and the fine-tuning step introduces an addi-
tional computational overload. Later, Özdenizci and Legen-
stein (2021) proposed a robust sparse training method that
trained a robust network under strict sparse connectivity
constraints throughout training. This dynamic sparsity ap-
proach achieves similar performance to HYDRA and costs
less training time. However, it is inapplicable for structure
pruning.

Methodology
In this section, we discuss details of the proposed weight
reparameterization method, named Twin-Rep, which dou-
bles the trainable parameters while implicitly introducing
sparsity conditions. Then we introduce a variant of the pro-
posed weight reparameterization approach for better robust-
ness under channel sparsity constraints. Finally, we combine
them with a heuristic pruning algorithm to achieve compact
and robust networks.

Problem Formulation
We first formalize the problem for concurrent adversarial
training and model compression. To make robust networks
compact, we can state the problem as:

min
θ

E(x,y)∼D

[
max

x̃∈B(x,ϵ)
L(θ, x̃, y)

]
s.t.||θ||0 ≤ k, (2)

where adversarial examples x̃ are defined within
the l∞-norm ball around samples x: B(x, ϵ) :=
{x̃ : ||x̃− x||∞ ≤ ϵ}, with a perturbation strength of
ϵ > 0. The optimization for robustness is composed of
inner maximization and outer minimization problems. We
acquire the adversarial data x̃ in inner maximization while
improving the robustness of models in outer minimization.
We can use cross-entropy loss or other robust training
objectives as loss function. k defines the sparsity constraint
on the network parameters.

Weight Reparameterization
In natural training with only benign examples, long-standing
standard pruning methods use heuristic algorithms that
prune connections with the lowest weight magnitude (Han
et al. 2015). These methods use sparsity-inducing regular-
ization to force some weights to converge close to zero, thus
reducing damage from pruning. However, these methods
perform poorly when integrated with robust training tech-
niques. Since adversarially trained networks generally de-
mand more non-zero parameters (See Figure 1) (Rakin et al.
2019; Ye et al. 2019), the traditional penalty-based paradigm
faces a dilemma: a strong regularization hurts the training
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Figure 1: Weight distribution of ResNet-18 models trained
with (a) Original weights with natural training and adver-
sarial training (b) Reparameterized weights with adversarial
training (merged).

performance while a mild regularization cannot achieve high
pruning ratios.

Instead of explicitly applying a strong weight penalty, we
implicitly add a sparsity constraint through weight reparam-
eterization. Specifically, we perform a simple mapping on
learnable network parameters θ. We reparametrize network
parameters to the element-wise product of two matrices/ten-
sors. During the training process, we use the parameters as
follow:

θ = W1 ⊙W2, (3)

where W1 and W2 have the same shape as original parame-
ters and are both used to fit the objective function. Notably, a
mild regularization may bring positive effects and the state-
of-the-art image classification considers DNNs trained with
weight decay, we also apply weight decay on both of the
reparametrized weights:

(W1 − λW1)⊙ (W2 − λW2)

= W1 ⊙W2 − 2λW1 ⊙W2 + λ2W1 ⊙W2

= θ − 2λθ + λ2θ, (4)

The third term on the right side of the equation can be ig-
nored as the weight decay factor λ is small (Such as 2e−4).
Therefore, it is equivalent to adding weight decay to the orig-
inal weights, which usually brings positive effects on perfor-
mance and generalization.

Considering the empirical observation that weights are
distributed over a small range, most products of the repa-
rameterized weights will be very small. Therefore, our
weight reparameterization method implicitly increases net-
work sparsity. Figure 1 shows the weight distributions,
where Twin-Rep leads to a significantly sparse model. Such
sparse weights lead to little damage from pruning, even at
high pruning ratios.

Additional sparsity constraints inevitably affect model
performance in the training process, especially with such
high sparsity. However, our approach doubles the train-
able parameters, which helps reach higher robustness, thus
achieving robust models at high compression rates.
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Channel-Rep: Another Form of Weight
Reparameterization
We also design another form of weight reparemeterization
for better channel sparsity, named Channel-Rep. Let D be
the number of output channels. Channel-Rep adds a D ×D
matrix and fuses the two weights using matrix multiplica-
tion:

θ = W1W2, (5)
where W1 ∈ RD×D and W2 has the same shape as original
parameters. Channel-Rep will not cause an extremely sparse
weight distribution like Twin-Rep does. Note that the lin-
ear combination of convolution weights is equivalent to the
linear combination of pre-activation output features. There-
fore, the matrix multiplication weight fusion operation ag-
gregates the information of all channels. This property al-
lows the remaining channels to contain more information,
thus Channel-Rep can still extract sufficient features after
pruning most output channels (or filters).

Weight Reparameterization Based Adversarial
Training and Pruning
For obtaining robust networks, we minimize the adversarial
loss without adding any term to the objective function (For
the convenience of description, we take Twin-Rep as an ex-
ample):

min
W1⊙W2

E(x,y)∼D

[
max

x̃∈B(x,ϵ)
L(W1 ⊙W2, x̃, y)

]
, (6)

The inner maximization is solved by projected gradient de-
scent (PGD) (Madry et al. 2018), which presents a powerful
adversarial attack as follows:

x̃t+1 = Π
B(x,ϵ)

(x̃t+α · sign(∇x̃tLPGD(W1⊙W2, x̃
t, y))),

(7)
where α is the step size, sign(·) returns the sign of the vec-
tor, Π is the projection operator on l∞ norm-ball B(x, ϵ)
around x with radius ϵ for each example, and x̃t denotes the
adversarial example at the t-th PGD step.

We optimize reparameterized weights using SGD just like
the traditional training process. Then we perform network
pruning after several training epochs, as important connec-
tions have been highlighted in this period (You et al. 2019).
For unstructured pruning, we select top-k weights with the
highest absolute values of W1 ⊙W2 and set others to zero.
And for structured pruning, we measure the importance of
output channels using the l2 norm. The metric values of con-
volution layers are defined as follows:

||θi:||2 =

√√√√ C∑
c=1

K∑
p=1

K∑
q=1

θ2
i,c,p,q, ∀1 ≤ i ≤ D, (8)

where C and D are the number of input and output chan-
nels, K is the kernel size. The metric for linear layers can be
computed similarly. We calculate the metric values for every
output channel and sort them in ascending order. We select
channels with the highest top-k values and zero out others.
For the rest training phase, we only update selected weights

Algorithm 1: Pipeline of adversarial network pruning

Input: Dataset D, neural network fθ with reparameter-
ized weights W1 and W2, PGD iterations K, perturbation
strength ϵ and step size α, learning rate η, weight decay
λ, pruning ratio p%, total iterations T , pruning time τ .
Output: a pruned robust network fθ
for t = 1 to T do

Sample a mini-batch (x,y) ⊂ D
for k = 1 to K do

Generate adversarial samples using PGD:
x̃k+1 = Πϵ(x̃

k + α · sign(∇x̃tLPGD(f, x̃
t,y)))

end for
Compute robust loss L on (x̃,y)
W1 ←W1 − η(∇W1

L(f, x̃,y) + λW1),
W2 ←W2 − η(∇W2

L(f, x̃,y) + λW2)
if t = τ then

Prune p% parameters with smallest magnitude or
prune p% output channels with smallest norm.

end if
end for
Merge parameters θ = W1 ⊙W2 and output network fθ

or channels. While predicting, the two factors are multiplied
together to restore the original parameters. The training and
pruning procedure is outlined in Algorithm 1.

Experiments
Experimental Setup
Datasets and Models. In our main evaluations, we evaluate
the robustness of VGG-16 (Simonyan and Zisserman 2015)
and Wide-ResNet-28-4 (Zagoruyko and Komodakis 2016)
networks on CIFAR-10 (Krizhevsky et al. 2009) and SVHN
(Netzer et al. 2011) image classification datasets as most of
the baseline works report their results under this setting. In
what follows, we also report robust accuracy with variants
of ResNet (He et al. 2016) models.

Baselines. We compare against following adversarial ro-
bustness and compression baselines:
• ADMM: The method combines adversarial training and

weight pruning by solving a constrained optimization
problem with ADMM. It prunes connections that have
the lowest weight magnitude (Ye et al. 2019).

• HYDRA: HYDRA performs an architecture search for
a robust network with the desired pruning ratio with the
least performance drop. It formulates pruning as an em-
pirical risk minimization problem and exploits a learn-
ing approach to discover efficient sub-networks (Sehwag
et al. 2020).

• BCS: It is an end-to-end robust sparse networks train-
ing method via Bayesian connectivity sampling. The ap-
proach trains a robust network under strict connectivity
constraints throughout training (Özdenizci and Legen-
stein 2021).

Adversarial Training Settings: In our main comparisons
with current state-of-the-art methods, we train networks us-
ing the TRADES (Zhang et al. 2019) robust loss with the
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VGG-16 WideResNet-28-4

90% Sparsity 99% Sparsity 90% Sparsity 99% Sparsity

HYDRA BCS Ours HYDRA BCS Ours HYDRA BCS Ours HYDRA BCS Ours

C
IF

A
R

-1
0

Clean 80.5 80.9 81.4 73.2 74.0 77.8 83.7 84.8 83.7 75.6 76.9 75.9
FGSM 55.6 55.3 57.1 46.5 46.5 52.5 61.1 60.0 61.1 51.0 49.5 51.4
PGD50 50.0 49.6 51.4 41.9 42.3 46.8 55.6 54.0 55.7 47.4 45.1 47.6
PGD100 49.9 49.5 51.4 41.8 42.1 46.6 55.5 53.9 55.7 47.3 44.9 47.6
B&B∞ 48.1 47.7 49.6 39.1 40.0 44.3 53.8 52.2 53.9 45.2 42.9 45.3
AA∞ 45.5 45.0 47.1 37.2 37.4 42.1 51.7 49.8 51.7 42.8 40.2 42.9

SV
H

N

Clean 89.2 89.4 89.6 84.4 86.4 88.3 94.4 92.8 90.9 88.9 89.5 89.3
FGSM 63.1 64.5 63.5 57.1 58.4 61.5 88.8 70.0 72.9 74.3 63.1 69.4
PGD50 52.8 53.7 54.4 47.8 48.7 51.8 43.9 55.6 56.3 39.1 52.7 55.8
PGD100 52.4 53.3 54.3 47.5 48.3 51.7 38.3 55.1 56.0 36.5 52.4 54.9
B&B∞ 48.9 49.8 50.6 43.7 45.0 48.3 36.5 52.1 54.7 32.3 49.9 51.3
AA∞ 45.5 44.9 46.1 38.8 40.8 44.2 30.6 47.0 53.9 26.7 45.8 45.8

Table 1: Comparisons with HYDRA and BCS under white-box attacks. All models are trained with TRADES adversarial loss.
We also used pseudo-labeled additional data samples on CIFAR-10 dataset for consistency with the compared methods.

trade-off parameter β = 6, which is consistent with baseline
works. We implemente RST (Carmon et al. 2019) using the
500K pseudo-labeled data shared by the authors. We use the
PGD10 attack with random starts to craft adversarial exam-
ples in the training process, with a maximum perturbation
ϵ = 8/255 and a step size 2/255.

Attacking Manner: We evaluate the robustness on both
white-box attacks and black-box attacks.
• White-box Attacks: We follow the conventional settings

(Madry et al. 2018) for l∞-norm bounded white box ro-
bustness evaluations. Perturbation budget for all datasets
and adversarial attacks is ϵ = 8/255. We take eval-
uations with a wider range of attacks: fast gradient
sign method (FGSM) (Goodfellow, Shlens, and Szegedy
2015), PGD50, PGD100 (Madry et al. 2018), the Brendel
& Bethge attack (B&B∞) (Brendel et al. 2019) and the
AutoAttack benchmark (AA∞) (Croce and Hein 2020).

• Black-box Attacks: The model architecture and parame-
ters are unknown to the attacker in real scenarios. Hence
we consider black-box threats where the attacker only
has access to send limited queries to the model. We eval-
uate on Square Attack, which is a powerful query-based
black-box threat (Andriushchenko et al. 2020).

Implementation Details. Optimization for all models is
performed using SGD with momentum 0.9 and an initial
learning rate of 0.1, which is divided by 10 at the 70-th
and 85-th epoch. All models are trained for 100 epochs with
a batch size of 128, and we perform pruning at the 30-th
epoch. Network weights (W1 and W2) are initialized via
Kaiming initialization (He et al. 2015). Besides, the weight
decay factor is set to 2× 10−4.

Robustness Evaluation and Analysis
Comparisons with current state-of-the-art methods.
We compare our approach with current state-of-the-art
robustness-aware neural network pruning HYDRA and

Network ADMM HYDRA BCS Ours
VGG-16 34.1 37.9 42.1 46.3
ResNet-18 36.1 41.6 44.8 47.1
ResNet-34 41.5 44.4 44.7 48.8
ResNet-50 42.2 45.3 46.9 50.1
WRN-34-10 44.6 51.1 49.9 53.4

Table 2: Comparisons of robust accuracy on CIFAR-10 at
99% sparsity for standard adversarial training.

Bayesian-based sparse adversarial training method BCS. For
fair comparisons, we particularly report comparisons for
VGG-16 and WideResNet-28-4 models on CIFAR-10 and
SVHN datasets as indicated in their papers. In Table 1, we
evaluate the robustness of all models under several white-
box attacks, as well as the AutoAttack ensemble bench-
mark. Overall, our method achieves better robustness un-
der most settings and several consistent observations can be
drawn: (1) Our weight-reparameterization pruning method
performs much better when 99% of parameters are pruned,
achieving gains up to 4.5 and 3.4 percentage points in robust
accuracy under PGD100 attack with VGG-16, for CIFAR-
10 and SVHN datasets, respectively. (2) Compared with the
performance on clean samples, our method obtains more
consistent robust improvement. This phenomenon is con-
sistent with our claim that increasing the trainable parame-
ters benefits robustness under high sparsity. (3)Notably, our
method obtains state-of-the-art robustness scores under the
AutoAttack benchmark, indicating its stronger comprehen-
sive defense capability. As we adopted common adversarial
training hyperparameter settings on all models and datasets,
which may result in insignificant performance gains on some
models, such as WideResNet-28-4. Actually, setting the
weight decay to 5× 10−4 can obtain better performance.

Improved robustness across architectures. We further
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Figure 2: Black-box Square Attack evaluations with limited queries. We display robust accuracy with VGG-16 models on
CIFAR-10 and WideResNet-28-4 models on SVHN. Sub-labels indicate the architecture (sparsity) for each evaluation.

take comparison with more network structures. For com-
pleteness, we also compare with earlier ADMM-based ro-
bust pruning method (Ye et al. 2019). Since Ye et al. (2019)
focused on the standard adversarial training technique, we
performed evaluations with the same technique for a fair
comparison. Table 2 shows the robustness at 99% sparsity
along with five network architectures on CIFAR-10. Our ap-
proach achieves superior results across all of them, outper-
forming the three compared methods on all architectures.
The results show the scalability of our approach to differ-
ent architectures under high compression.

Evaluating black-box robustness. We evaluate block-
box robustness for Twin-Rep compared to HYDYA and
BCS. We test the query-based attack proposed by (An-
driushchenko et al. 2020), using l∞-norm perturbation lim-
ited with radius ϵ = 8/255. Figure 2 represents robust-
ness results, where the query access is limited to 5,000 for
CIFAR-10 and 1,000 for SVHN. Again, the proposed ap-
proach achieves better robustness than other baselines at
99% sparsity. Compared with the results at 90% sparsity, our
method achieves a larger gap with baselines at 99% sparsity.
One possible explanation for this phenomenon is that our ap-
proach has minimized adversarial loss on extremely sparse
weights, considering the weight distribution of the networks.

Comparison with robust pruning of original weights.
We further conduct comparisons with pruning on original
weights under two settings:

• Pruning with training: We perform pruning at the 30th
epoch in the total 100 epochs training process.

• Pruning after pre-training (PT): We pre-train networks
from scratch for 100 epochs and prune them without any
fine-tuning process.

Figure 3 shows that our weight-reparameterized networks
achieve stable robustness at high pruning ratios, while the
performance drops significantly with original weights. This
observation is consistent with our claim that our method can
implicitly increase model sparsity while training for robust-
ness, thus overcoming the contradiction between robustness
and sparsity that the traditional penalty-based paradigm suf-
fers. Notably, even without fine-tuning, our method main-
tains robustness when pruning 99% connections of a pre-
trained model, indicating it can train a network with both
robustness and sparsity.
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Figure 3: Comparison of robust accuracy with pruning on
original weights and Twin-Rep weights. We display results
with VGG-16 on CIFAR-10 under different pruning ratios.

Superior performance across datasets for both un-
structured pruning and structured pruning. We fur-
ther evaluate the performance of Twin-Rep and its variant
Channel-Rep on more complicated datasets. Table 3 dis-
plays that both Twin-Rep and Channel-Rep achieve better
robustness at high pruning ratios. We observe that Twin-
Rep achieves higher accuracy for unstructured pruning while
Channel-Rep performs better for structured pruning. Models
trained with Twin-Rep are extremely sparse and suffer less
damage from irregular pruning, thus perform much better at
99% sparsity. And Channel-Rep mixes information from all
output channels, thus the remaining filters can extract abun-
dant information.

Delving Deeper into Weight Reparameterization
Fusing weights before training. The weight distribution at
initialization will be sparser than regular initialization if we
fuse W1 and W2 in the Twin-Rep structure before training.
However, after adversarial training, the weight distribution
as well as performance becomes similar to networks with-
out reparameterization. This phenomenon highlights the im-
portance of the Twin-Rep structure for maintaining sparsity
during adversarial training. We present more detailed results
in Appendix C.
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Dataset Settings base unstructured pruning structured pruning

0% 70% 90% 99% 50% 60% 70%

CIFAR-10
Baseline 81.5/51.1 80.2/49.1 78.0/48.2 71.2/40.5 78.0/47.4 74.6/43.7 69.7/37.1

Channel-Rep 81.6/50.1 80.8/49.4 79.8/48.2 73.3/44.0 79.1/48.6 78.9/47.8 77.4/47.7
Twin-Rep 81.2/50.0 79.5/49.6 78.8/49.3 76.2/47.1 77.8/48.1 76.7/47.5 74.5/45.9

CIFAR-100
Baseline 52.0/27.2 51.3/26.5 48.8/25.6 41.2/20.6 50.1/24.9 46.5/22.5 37.3/18.5

Channel-Rep 51.3/26.7 51.0/26.4 49.3/25.7 43.4/21.2 50.6/25.2 49.6/24.4 47.7/23.5
Twin-Rep 51.8/27.0 51.9/26.9 51.3/26.7 49.3/24.9 51.0/25.2 48.2/23.8 38.3/20.6

Tiny-ImageNet
Baseline 45.6/21.4 44.1/20.8 42.5/19.4 28.0/12.6 42.4/19.7 38.9/17.5 25.1/12.0

Channel-Rep 45.0/20.9 44.2/20.6 43.4/19.9 33.4/14.8 44.6/20.4 43.3/19.6 35.2/15.6
Twin-Rep 45.5/21.3 44.9/21.0 44.5/20.8 38.5/17.6 44.3/20.1 42.5/18.9 27.2/13.1

Table 3: Comparisons with two variants on CIFAR-10/100 and Tiny-ImageNet with ResNet-18. We report clean/robust accuracy
for both unstructured pruning and structured pruning. Baseline is pruning on original weights.

Understanding the proposed weight reparameteriza-
tion. A key driver behind the success of Twin-Rep is that
most weights are very close to zero after merging W1 and
W2. Therefore, it can effectively alleviate the performance
degradation caused by the pruning operation. We wondered
why the two factors do not get larger with training, even-
tually resulting in a weight distribution similar to the orig-
inal structure. In Twin-Rep, the gradients are ∇θL ⊙W2

for W1 and ∇θL ⊙W1 for W2. Considering that W1 and
W2 are much less than 1, the gradients are also smaller than
original structure. The effect of weight decay is more signif-
icant, thus weights in Twin-Rep are not larger than weights
in the original structure. Figure 4 shows that the fifth and
ninth deciles of the absolute value of W1 first decrease and
then stabilize, but deciles of original weights has an increas-
ing process. This observation is consistent with our claim
that weight decay is more pronounced. And the smaller gra-
dients for Twin-Rep also support our analysis.

Why does weight reparameterization work well. Our
approach does not change the optimization objective. It adds
the desired property in the optimization process and does not
disturb the optimal solution of the adversarial training objec-
tive. Twin-Rep maintains extremely sparse network weights
during training that most element-wise products of W1 and
W2 are small enough to be safely removed. Therefore, it
achieves comparable robustness with 99% weights removed,
much higher than the performance of the original structure.
One concern may be whether the gradient will be too small
to hinder optimization. Figure 4 shows that smaller gradients
for reparameterized weights are expected, but still sufficient
for network optimization. Moreover, Channel-Rep aggre-
gates the information of all channels, thus achieving signifi-
cant improvement compared to the original structure, when
pruning a large number of channels.

Computational overhead and storage consumption.
Twin-Rep brings almost no additional Computational over-
head. The added element-wise product is insignificant com-
pared with the original calculations. Take a convolution
layer as an example, parameterized by θ ∈ RD×C×K×K .
Suppose the output feature map is A ∈ RD×H×W . The
computation of a single convolutional layer is H×W ×D×
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Figure 4: Weight quantiles and gradient norms of reparame-
terized weights W1 and original weights.

C×K×K. However, Twin-Rep only adds D×C×K×K
calculations. Considering the batch processing during train-
ing, the computational cost added by our method is neg-
ligible. Moreover, since intermediate features are the main
memory consumption during training, our method does not
bring much memory overhead. For instance, Twin-Rep con-
sumes 1.22 times more memory than the original structure
when the batch size is 128. More detailed results can be
found in Appendix C.

Conclusion
We propose a weight reparameterization approach to over-
come the limitations of the traditional heuristic pruning
strategy applied to adversarial training. We construct the
training-time structure by decomposing the original weights
into two tensors, which are merged by element-wise mul-
tiplication during inference. Our approach implicitly adds
the sparsity constraint while increasing trainable parame-
ters for better robustness under high sparsity. Experiments
demonstrate that the proposed Twin-Rep pruning method
out-performs recent state-of-the-art baselines across various
datasets and network architectures. Besides, we also design
a variant for better channel pruning robustness. An open
research question is to combine weight reparameterization
with advanced pruning methods to further improve the per-
formance of pruned networks.

8533



Acknowledgments
This work was sponsored by Beijing Nova Program un-
der Grant No.Z211100002121141, and supported by the In-
novation Funding of the Institute of Computing Technol-
ogy (ICT) of Chinese Academy of Sciences under Grant
No.E161040.

References
Andriushchenko, M.; Croce, F.; Flammarion, N.; and Hein,
M. 2020. Square Attack: A Query-Efficient Black-Box Ad-
versarial Attack via Random Search. In European Confer-
ence on Computer Vision, 484–501.
Athalye, A.; Carlini, N.; and Wagner, D. 2018. Obfuscated
gradients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International conference
on machine learning, 274–283. PMLR.
Bellec, G.; Kappel, D.; Maass, W.; and Legenstein, R. 2018.
Deep Rewiring: Training very sparse deep networks. In In-
ternational Conference on Learning Representations.
Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316.
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