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Abstract

We present regret minimization algorithms for stochastic
contextual MDPs under minimum reachability assumption,
using an access to an offline least square regression ora-
cle. We analyze three different settings: where the dynam-
ics is known, where the dynamics is unknown but inde-
pendent of the context and the most challenging setting
where the dynamics is unknown and context-dependent. For
the latter, our algorithm obtains regret bound of Õ((H +

1/pmin)H|S|3/2
√

|A|T log(max{|G|, |P|}/δ)) with prob-
ability 1 − δ, where P and G are finite and realizable
function classes used to approximate the dynamics and re-
wards respectively, pmin is the minimum reachability pa-
rameter, S is the set of states, A the set of actions, H
the horizon, and T the number of episodes. To our knowl-
edge, our approach is the first optimistic approach applied to
contextual MDPs with general function approximation (i.e.,
without additional knowledge regarding the function class,
such as it being linear and etc.). We present a lower bound
of Ω(

√
TH|S||A| ln(|G|)/ ln(|A|)), on the expected regret

which holds even in the case of known dynamics. Lastly, we
discuss an extension of our results to CMDPs without mini-
mum reachability, that obtains Õ(T 3/4) regret.

1 Introduction
Markov decision processes (MDPs) have been extensively
studied, and are commonly used to describe dynamic en-
vironments. MDPs characterize a variety of real-life tasks
and applications including: advertising, healthcare, games,
robotics and more, where at each episode an agent interacts
with the environment with the goal of maximizing her return.
(See, e.g., Sutton and Barto (2018); Mannor, Mansour, and
Tamar (2022).)

In many applications, in each episode, there are additional
external factors that affect the environment, which we refer
to as the context. One way to handle this is to extend the state
space to include the context. This approach has the disad-
vantage of greatly increasing the state space, and, as a result,
the complexity of learning and even the representation of a
policy. An alternative approach, is to keep a small state space,
and regard the context as an additional side-information. Con-
textual Markov Decision Process (CMDP) describes such a
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model, where for each context there is a potentially different
optimal policy (Hallak, Di Castro, and Mannor 2015).

CMDPs are useful to model many user-driven applications,
where the context is a user-related information which influ-
ences the optimal decision making. One natural application is
in recommendation systems, where two different users might
behave completely different from one another, hence, a single
MDP can not describe them both. In those systems, users
behavior can be described using a side information about
them, such as age, gender, interest fields and hobbies. This
information is referred to as the context which influences the
environment. CMDP defines a mapping from context to a
related MDP, and the optimal policy given a context is the
optimal policy in the related MDP.
Our contributions. We present regret minimization algo-
rithms for CMDP under three different settings: (1) known
dynamics, (2) unknown context-independent dynamics and
(3) unknown context-dependent dynamics, which is the
most challenging. In all settings we assume an access a
least square regression oracle, and finite function classes
G and P used to approximate the rewards and dynamics,
respectively. In addition, we assume minimum reachabil-
ity, where any policy for any context has a probability of
at least pmin to reach any state. For the known dynamics
setting we obtain Õ((H + 1/pmin) · |S|

√
T |A| log(|G|/δ))

regret. For the unknown context-independent dynamics
we obtain Õ

(
H1.5|S|

√
T |A| log(1/δ) + (H + 1/pmin) ·

|S|
√

|A|T log(|G|/δ)
)

regret. For the unknown context-

dependent dynamics we obtain regret of Õ((H + 1/pmin) ·
H|S|3/2

√
|A|T log(max{|G|, |P|}/δ)). All of the bounds

hold with high probability. We also show a lower bound
of Ω(

√
TH|S||A| ln(|G|)/ ln(|A|)) on the expected regret.

Lastly, we discuss an extension of our results to CMDP with-
out minimum reachability, that obtains Õ(T 3/4) regret, in
Section 7.

Our approach applies the “optimism in face of uncertainty”
principle to CMDPs and achieves a sub-linear regret. Our
algorithms and analysis were inspired by the optimistic ap-
proach of Xu and Zeevi (2020) for learning contextual multi
armed bandits using least square regression oracle. We ex-
tended their approach to handle CMDPs and even a context-
dependent dynamics.
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Related Work
Contextual Reinforcement Leaning. CMDP was first intro-
duce by Hallak, Di Castro, and Mannor (2015). Modi et al.
(2018) gives a general framework for deriving generalization
bounds for smooth CMDPs and finite contextual linear com-
bination of MDPs. Modi and Tewari (2020) gives a regret
bound of Õ(

√
T ) for Generalized Linear Models (GLMs).

Our regret function approximation framework is more gen-
eral than GLM.

Foster et al. (2021) present a new statistical complexity
measure for interactive decision making, and show an ap-
plication of it to obtain Õ(

√
T ) regret for Contextual RL.

They assume an access to an online estimation oracle with
regret guarantees, that maximizes over models and policies
together. It is unclear when is this oracle implementable in
polynomial time. In contrast, we make a significantly weaker
and standard assumption regarding an offline regression ora-
cle. Another difference is that we use an optimistic approach
while they use inverse gap weighting. (More details later.)

Jiang et al. (2017) present OLIVE which is sample efficient
for Contextual Decision Processes (CDP) with low Bellman
rank. We do not make any assumptions on the Bellman rank.

Levy and Mansour (2022a) consider the sample complex-
ity of learning CMDPs using function approximation. They
provide the first general and efficient reduction from CMDP
to offline supervised learning. Their sample complexity varies
from Õ(1/ϵ2) to Õ(1/ϵ8), depending on the setting. We, in
contrast, consider regret minimization and obtain Õ(

√
T )

regret under the minimum reachability assumption.
Contextual Bandits. Contextual bandits (CMAB) are a nat-
ural extension of the Multi-Arm Bandit (MAB), augmented
by a context which influences the rewards (Slivkins 2019;
Lattimore and Szepesvári 2020). Agarwal et al. (2014) use
efficiently an optimization oracle to derive an optimal re-
gret bound. Regression based approaches appear in Agarwal
et al. (2012); Foster et al. (2018); Foster and Rakhlin (2020);
Simchi-Levi and Xu (2021). We differ from CMAB, since
our main challenge is the dynamics, and the need to optimize
future rewards, which is the case in most RL settings.
Xu and Zeevi (2020) present the first optimistic algorithm for
CMAB. They assume an access to a least-square regression
oracle and achieve Õ(

√
T |A| log |F|) regret, where F is a

finite and realizable function class uses to approximate the
rewards. Our algorithms and analysis are inspired by their
optimistic approach and we extend it to CMDP.
Inverse Gap Weighting (IGW) technique. Foster and
Rakhlin (2020); Simchi-Levi and Xu (2021) apply the IGW
technique to CMAB and obtain Õ(

√
T |A| log |F|) regret,

assuming an access to a least square regression oracle. How-
ever, we do not see any straight-forward extension of their
approach to CMDP which is both computationally efficient
and has an optimal regret, under the same least-square oracle
assumption (even when the dynamics is known to the learner).
Foster et al. (2021) apply IGW to CMDP and obtain optimal
regret. However they use the much strong online estimation
oracle as discussed above.
Paper organization. Section 2 contains the notations we use,

and our assumptions. Sections 3 to 5 contain an outline of our
algorithms and regret analysis for each one of the settings.
Section 6 presents our lower bound and Section 7 sketches an
extension of our result to CMDPs without minimum reacha-
bility. We discuss our results in Section 8. The supplementary
material of this work can be found in Levy and Mansour
(2022b).

2 Preliminaries and Notations
Markov Decision Process (MDP) is a tuple
(S,A, P, r, s0, H), where (1) S is a finite state space,
(2) A is a finite action space, (3) s0 ∈ S is the unique
start state, (4) P (·|s, a) defines the transition probability
function, i.e., P (s′|s, a) is the probability that we reach
state s′ given that we are in state s and perform action a,
(5) R(s, a) ∈ [0, 1] is a random variable for the reward of
performing action a in state s, and r(s, a) is its expectation,
i.e., r(s, a) = E[R(s, a)|s, a], and (6) H is the finite horizon.

The state space is decomposed into H + 1 disjoint subsets
(layers) S0, S1, . . . , SH−1, SH such that transitions are only
possible between consecutive layers (i.e., loop-free). There
is a unique final state, i.e., SH = {sH}, with reward 0.
Policy. A stochastic policy π is a mapping from states to
distribution over actions, i.e., π : S → ∆(A). A deterministic
policy π is a mapping from states to actions, i.e., π : S → A.
Occupancy measure (see e.g., Puterman (2014); Zimin and
Neu (2013)). Let qh(s, a|π, P ) denote the probability of
reaching state s ∈ S and performing action a ∈ A at time
h ∈ [H] of an episode generated using policy π and dynamics
P . Let qh(s|π, P ) =

∑
a∈A qh(s, a|π, P ) be the probability

to visit state s ∈ S at time h.
Episode and trajectory. At the start of each episode we
select a policy π. The episode starts at the unique ini-
tial state s0. In state sh ∈ Sh, we play action ah ∼
π(·|sh), observe a reward rh ∼ R(sh, ah) and move to
sh+1 ∼ P (·|sh, ah). We generate a trajectory σH+1 =
(s0, a0, r0, s1, . . . , sH−1, aH−1, rH−1, sH) of length H + 1.
Value functions. Given a policy π and a MDP M =
(S,A, P, r, s0, H), the h ∈ [H − 1] stage value func-
tion of a state s ∈ Sh is defined as V π

M,h(s) =

Eπ,M [
∑H−1

k=h r(sk, π(sk))|sh = s] and for an action a ∈ A

we have Qπ
M,h(s, a) = Eπ,M [

∑H−1
k=h r(sk, π(sk))|sh =

s, ah = a]. When h = 0 we denote V π
M,0(s0) := V π

M (s0).
Optimal policy π⋆

M for MDPM satisfies, for every stage h ∈
[H−1] and a state s ∈ Sh, π⋆

M,h(s) ∈ argmaxπ{V π
M,h(s)},

and w.l.o.g it is deterministic.
Planning. Given an MDP M = (S,A, P, r, s0, H) the algo-
rithm Planning(M) returns an optimal policy π⋆

M and its
value V ⋆

M (s0) and runs in time O(|S|2 |A| H).
Contextual Markov Decision Process (CMDP) is a tuple
(C, S,A,M) where C ⊆ Rd′

is the context space, S the
state space and A the action space. The mapping M maps
a context c ∈ C to a MDP M(c) = (S,A, P c

⋆ , r
c
⋆, s0, H),

where rc⋆(s, a) = E[Rc
⋆(s, a)|c, s, a], Rc

⋆(s, a) ∼ Dc,s,a.
There is an unknown distribution D over the context space

C, and for each episode a context is sampled i.i.d. from D.
For mathematical convenience, we assume the context space
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is finite (but potentially huge). Our results naturally extend
to infinite contexts space.
Context-Independent and Context-Dependent dynamics.
A CMDP has a context-independent dynamics when the con-
text effects only the rewards function, while the dynamics
are identical for all contexts, i.e., P c

⋆ = P for any context
c. A context-dependent dynamics has a potentially different
dynamics P c

⋆ for each context c. Hence, the partition of the
states space into layers is also context-dependent. We denote
by Sc

h the h layer of context c.
Context-dependent policies. A stochastic context-dependent
policy π = (π(c; ·) : S → ∆(A))c∈C maps a context c ∈ C
to a stochastic policy π(c; ·) : S → ∆(A). A deterministic
context-dependent policy π = (π(c; ·) : S → A))c∈C maps
a context c ∈ C to a policy π(c; ·) : S → A. Let ΠC denote
the class of all deterministic context-dependent policies. A
context-dependent policy π⋆ ∈ ΠC is optimal if for all c ∈ C
it holds that π⋆(c; ·) ∈ argmaxπ V

π(c;·)
M(c) (s0)

1.
Minimum reachability. We assume that there exists pmin ∈
(0, 1] such that for every c ∈ C, h ∈ [H − 1] and
sh ∈ Sc

h, any context-dependent policy π ∈ ΠC satisfies
qh(sh|π(c; ·), P c

⋆ ) ≥ pmin. Let q(s|π(c; ·), P c
⋆ ) denote the

probability of visiting state s when playing π on the dy-
namics P c

⋆ . When the dynamics is layered and loop-free,
then q(s|π(c; ·), P c

⋆ ) = qh(s|π(c; ·), P c
⋆ ) ≥ pmin iff s ∈ Sc

h.
We remark that our minimum reachability assumption is
more refined than that usually used in RL literature, that
P c
⋆ (s

′|s, a) ≥ pmin (see, e.g., Wei et al. (2021)) for every
context c and (s, a, s′). Clearly, this requirement implies our
minimum reachability, but the other direction does not nec-
essarily hold. An example for a large class of (non-layered)
CMDPs that satisfies that assumption is as follows. (1) At the
initial step, for all c ∈ C, a ∈ A, s′ ∈ S : P c

⋆,0(s
′|s0, a) ≥

pmin. (2) For every step h > 0, the transition probability ma-
trix P c

⋆,h(·|·, a) is double stochastic for all c ∈ C and a ∈ A.
This guarantees that for any policy π, the occupancy measure
is at least pmin.
Interaction protocol. In each episode t = 1, 2, ..., T the
agent: (1) Observes context ct ∈ C. (2) Chooses a policy
πt (based on ct and the observed history). (3) Observes a
trajectory of πt in M(ct).
Trajectories and History. Each episode is of length H . A
trajectory σ = (c; s0, a0, r0, . . . , sh−1, ah−1, rh−1) is gener-
ated using the dynamics P c

⋆ and the played policy π(c; ·). We
denote the history up to time t−1 by Ht−1 = (σ1, . . . , σt−1)
where σi is the trajectory observed in time i ∈ [t − 1], i.e.,
σi = (ci, s

i
0, a

i
0, r

i
0, . . . , s

i
H−1, a

i
H−1, r

i
H−1, s

i
H).

Offline least square regression (LSR) oracle solves the
optimization problem f̂ ∈ argminf∈F

∑n
i=1(f(xi)− yi)

2,
given a data set D = {(xi, yi)}ni=1. We remark that there
exist function classes for them the LSR oracle can be imple-
mented efficiently. Clearly, this holds for linear functions.
Reward function approximation. We consider a finite
function class G ⊆ (C × A → [0, 1]) to approximate the
context-dependent rewards function of each state s ∈ S.

1As for non-contextual MDP, there always exists a deterministic
context-dependent policy that is optimal.

Many times it would be more convenient to consider a fi-
nite function class F = GS where f ∈ F are functions
of the form f(c, s, a) = gs(c, a) where gs ∈ G. Note that,
log(|F|) = |S| log(|G|). Our algorithms get as input the
finite function class F ⊆ (C × S ×A→ [0, 1]). Each func-
tion f ∈ F maps context c ∈ C, state s ∈ S and action
a ∈ A to a (approximate) reward r ∈ [0, 1]. We use F to
approximate the context-dependent rewards function using
the LSR oracle under the following realizability assumption.

Assumption 2.1 (rewards realizability). We assume that F
is realizable, meaning, there exists a function f⋆ ∈ F such
that f⋆(c, s, a) = rc⋆(s, a) = E[Rc

⋆(s, a)|c, s, a].
For mathematical convenience, we state our algorithms and

regret upper bounds in terms of the cardinality of |F|, and use
the cardinality of |G| = |S|−1 log |F| for our lower bound.
We present a comparison between the bounds in Section 8.
Dynamics function approximation. For the unknown
context-independent dynamics case we simply use a tabular
approximation (see Section 4). For the unknown context-
dependent case, our algorithm gets as input a finite function
class P ⊆ (S × (S × A × C) → [0, 1]), where every func-
tion P ∈ P satisfies

∑
s′∈S P (s

′|s, a, c) = 1 for all c ∈ C
and (s, a) ∈ S × A. We use P to approximate the context-
dependent dynamics using LSR oracle under the following re-
alizability assumption. We denote P c(s′|s, a) = P (s′|s, a, c)
for all P ∈ P .

Assumption 2.2 (dynamics realizability). We assume that P
is realizable, meaning, there exists a function P⋆ ∈ P which
is the true context-dependent dynamics.

Learning goal. Our goal is to minimize the regret, relative
to the optimal context-dependent policy π⋆, which defined as
RegretT :=

∑T
t=1 V

π⋆(ct;·)
M(ct)

(s0)− V
πt(ct;·)
M(ct)

(s0), where ct ∈
C, π⋆ is an optimal context-dependent policy and πt ∈ ΠC
are the context and the selected policy at round t. We denote
the expected regret as E.RegretT := E [RegretT ] where the
expectation is over the contexts, the randomization of the
algorithm and the history.

3 Known Context-Dependent Dynamics
In this section, we present a regret minimization algorithm for
contextual MDPs under the minimum reachability assump-
tion, where the context-dependent dynamics P c

⋆ is known
to the learner. We remark that the minimum reachability pa-
rameter pmin is unknown to the learner. This section sets the
main building blocks of our approach, which we will later
extend to handle the unknown dynamics cases.
Algorithm outline. For the first |A| rounds, in each round
i ∈ {1, 2, . . . , |A|} the agent plays the policy πi ∈ ΠC that
always selects action ai, regardless of the context and the
state. At every round t > |A| we approximate the context-
dependent rewards function using a least-square minimizer.
Using it, we build an “optimistic in expectation” rewards
function, and compute an optimal policy for that optimistic
model. We run it to generate a trajectory and update the
oracle. Here, we take an advantage of the ability to compute
the optimal policy πk(c; ·) for every context c ∈ C separately,
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for all k = |A|+1, . . . , t, to obtain computationally efficient
algorithm. (We discuss this challenge later.)

Algorithm 1: Regret Minimization for CMDP with Known
Dynamics (RM-KD)

1: inputs: MDP parameters: S, A, P⋆, s0, H . Confidence
δ > 0 and tuning parameters {βt}Tt=1.

2: initialization: in round i ≤ |A| run πi(c; s) := ai
3: for round t = |A|+ 1, . . . , T do
4: f̂t ∈ argminf∈F

∑t−1
i=1

∑H−1
h=0 (f(ci, s

i
h, a

i
h) − rih)

2

is being computed using the LSR oracle
5: observe a fresh context ct ∼ D
6: for k = |A|+ 1, |A|+ 2, . . . , t do
7: compute for all (s, a) ∈ S × A : r̂ctk (s, a) =

f̂k(ct, s, a) +
βk∑k−1

i=1 I[a=πi(ct;s)]q(s|πi(ct;·),P ct
⋆ )

8: define the optimistic approximated MDP
M̂k(ct) = (S,A, P ct

⋆ , r̂
ct
k , s0, H)

9: compute πk(ct; ·) ∈ argmaxπ∈S→A V
π
M̂k(ct)

(s0)

using a planning algorithm
10: end for
11: play πt(ct; ·) and update oracle using

σt = (ct, s
t
0, a

t
0, r

t
0, s

t
1, . . . , s

t
H−1, a

t
H−1, r

t
H−1, s

t
H)

12: end for

Remark 3.1. Since the CMDP is layered, for every con-
text c ∈ C, layer h ∈ [H] and state sh ∈ Sc

h we have
qh(sh|πi(c; ·), P c

⋆ ) = q(sh|πi(c; ·), P c
⋆ ). For convenience, in

Algorithm 1 we use q to compute the approximated rewards
function, but in the regret analysis we use qh.

Analysis outline. Our analysis consists of four main steps.
Step 1: establish uniform convergence bound over any t ≥ 2
and a fixed sequence of functions f2, f3, . . . ∈ F . Our bound
implies for the least square minimizers sequence {f̂t}Tt=|A|+1

and any δ ∈ (0, 1), that with probability at least 1− δ/2 for
all t ≥ 2 it holds that

t−1∑
i=1

H−1∑
h=0

E
ci,sih,a

i
h

[
(f̂t(ci, s

i
h, a

i
h)−f⋆(ci, sih, aih))2|Hi−1

]
≤ 68H log(4|F|t3/δ).

Step 2: construct a confidence bound over the value of any
given policy w.r.t the true rewards function f⋆ and the least
square minimizer at round t, f̂t. The confidence bound holds
with high probability, in expectation over the contexts (i.e.,
“optimism in expectation”). Formally, we show that with
probability at least 1 − δ/2 for all t > |A| and any policy
π ∈ ΠC it holds that

|Ec[V
π(c;·)
M(c) (s0)]− Ec[V

π(c;·)
M(f̂t,P⋆)(c)

(s0)]|

≤
√
ϕt(π) ·

√
68H log(4|F|t3/δ),

where ϕt(π) is the contextual potential of π
at round t, which is defined as ϕt(π) :=

Ec

[∑H−1
h=0

∑
sh∈Sc

h

qh(sh|π(c;·),P c
⋆ )∑t−1

i=1 I[π(c;sh)=πi(c;sh)]qh(sh|πi(c;·),P c
⋆ )

]

and M(f,P⋆)(c) = (S,A, P c
⋆ , f(c, ·, ·), s0, H) for any

f ∈ F . The true MDP is M(c) = M(f⋆,P⋆)(c). Also, πi is
the selected policy at round i.
Step 3: relax the confidence bound of step 2 to be additive.
We show that under the good event of step 2, for all t > |A|
and any policy π ∈ ΠC , for βt =

√
17t log(4|F|t3/δ)

|S||A| we have

|Ec[V
π(c;·)
M(c) (s0)]− Ec[V

π(c;·)
M(f̂t,P⋆)(c)

(s0)]|

≤ βt · (ϕt(π) +H|S||A|/t).

Step 4: bound the cumulative contextual potential ϕt over
every round t = |A| + 1, |A| + 2, . . . , T . For the sequence
of selected policies {πt ∈ ΠC}Tt=1 it holds that

T∑
t=|A|+1

ϕt(πt) ≤ |S||A|p−1
min(1 + log(T/|A|)).

By combining all the steps and applying Azuma’s inequality,
we obtain the following regret bound.
Theorem 3.2 (regret bound). For any T > |A|, finite function

class F and δ ∈ (0, 1), let βt =
√

17t log(4|F|t3/δ)
|S||A| for all

t ∈ [T ]. Then, with probability at least 1− δ we have

RegretT (RM-KD) ≤ Õ((p−1
min +H)

√
T |S||A| log |F|/δ).

We remark that in all of our algorithms, for T ≤ |S||A|
the regret is trivially bounded by |S||A|H .

Main Technical Challenges and Our Technique
Following steps 2 and 3, a natural “optimistic in expectation”
strategy is to select at round t

πt ∈ arg max
π∈ΠC

{
Ec[V

π(c;·)
M(f̂t,P⋆)(c)

(s0)] + βt · ϕt(π)
}

= arg max
π∈ΠC

{
Ec[V

π(c;·)
M̂t(c)

(s0)]
}
.

This approach has an obvious three major drawbacks.
(1) The distribution over the contexts, D, is unknown. Hence,
we cannot compute Ec

[
V

π(c;·)
M̂t(c)

(s0)
]
, for any policy π.

(2) Even when D is known, computing πt ∈ ΠC is intractable
when the context space C is large.
(3) The representation of a context-dependent policy πt scales
with the size of the context space |C|, which can be huge.

We overcome these hurdles using two observations. The
first observation is that

max
π∈ΠC

{
Ec

[
V

π(c;·)
M̂t(c)

(s0)
]}

= Ec

[
max

π(c;·)∈S→A
V

π(c;·)
M̂t(c)

(s0)

]
.

We conclude that to compute a context-dependent policy πt ∈
ΠC which maximizes LHS, we can compute for each context
c ∈ C separately, a policy πt(c; ·) : S → A that is optimal
for M̂t(c). For each context c ∈ C separately, solving the
maximization problem in RHS can be done efficiently using
a standard planning algorithm.

The second observation is that in every round t, we do not
have to know the full representation of πk, for all k ≤ t, but
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only the mappings {πk(ci; ·)}tk=1 for the observed contexts
{ci}ti=1. By taking an advantage of these two observations,
at every round t ≤ T , we compute πk(ct; ·) for all k ≤ t,
which can be done in poly(|S|, |A|, H, t) using a planning
algorithm. Using this, we obtain an efficient algorithm which
is independent of |C|.

4 Unknown Context-Independent Dynamics
In this section, we assume the dynamics is unknown to the
learner, but is independent of the context. Meaning, for all
c ∈ C, P c

⋆ = P⋆. We also assume the learner knows the
(context-independent) partition of the states space to layers,
S = {S0, . . . , SH}, and the minimum reachability pmin.
Algorithm overview. Similarly to Algorithm 1, we define
an optimistic-in-expectation rewards function, but, since the
dynamics is unknown, we replace q(s|πi(ct; ·), P ct

⋆ ) with its
lower bound pmin. We denote by Nt(s, a) and Nt(s, a, s

′)
the number of visits to (s, a) and (s, a, s′), respectively, up
to round t. To approximate the dynamics, we use a tabular
approximation and maintain the following confidence bounds

over it, denote them by ξt(s, a) = 2
√

|S|+2 log(4|S||A|T 2/δ)
max{1,Nt(s,a)} ,

for all (s, a) ∈ S ×A. At round t, we compute an optimistic
model w.r.t the rewards function r̂ctt and a deterministic op-
timal policy πt(ct; ·) for it, under the constraints that the
optimistic dynamics is within the confidence interval. (See
Appendix C in Levy and Mansour (2022b) for an efficient
implementation). We remark that the resulting optimistic
approximated dynamics is context-dependent, since it was
computed w.r.t the context-dependent approximated rewards
function.

Algorithm 2: (sketch) Regret Minimization for Unknown
Context Independent Dynamics (RM-UCID)

1: for round t > |A| do
2: f̂t ∈ argminf∈F

∑t−1
i=1

∑H−1
h=0 (f(ci, s

i
h, a

i
h) − rih)

2

is computed using the LSR oracle
3: compute the empirical model for all (s, a, s′) :

P̄t(s
′|s, a) = Nt(s,a,s

′)
max{1,Nt(s,a)}

4: observe a fresh context ct ∼ D
5: for k = |A|+ 1, . . . , t do
6: compute for all (s, a) ∈ S ×A :

r̂ctk (s, a) = f̂k(ct, s, a) +
βk

pmin

∑k−1
i=1 I[a=πi(ct;s)]

7: compute an optimistic model M̂k(ct) =

(S,A, P̂ ct
k , r̂

ct
k , s0, H) and policy πk(ct; ·)

8: end for
9: play πt(ct; ·), observe trajectory σt and update oracle

10: end for

Analysis overview. We construct confidence intervals for
both the dynamics and rewards. For the analysis, we define
an intermediate CMDPs where for all t > |A| and c ∈ C: (1)
M(f,P̂t)(c) = (S,A, P̂ c

t , f(c, ·, ·), s0, H), f ∈ F and P̂ c
t is

the optimistic dynamics w.r.t r̂ct defined in Algorithm 2. (2)
M(f,P⋆)(c) = (S,A, P⋆, f(c, ·, ·), s0, H), f ∈ F and P⋆ is

the true dynamics. (3) M(r̂t,P⋆)(c) = (S,A, P⋆, r̂
c
t , s0, H).

Let π⋆ ∈ ΠC be an optimal policy of the true CMDP.
Analysing the error caused by the rewards approximation.
Similar to the analysis for the known dynamics (Section 3),
we show that with high probability, for all t > |A|, and any
policy π ∈ ΠC the following holds:

|Ec[V
π(c;·)
M(c) (s0)]− Ec[V

π(c;·)
M(f̂t,P⋆)(c)

(s0)]|

≤ βt (ϕt(π) +H|S||A|/t) ,

where we abuse the contextual potential in round t as
ϕt(π) := Ec[

∑H−1
h=0

∑
sh∈Sh

qh(sh,π(c;sh)|π(c;·),P⋆)

pmin

∑t−1
i=1 I[π(c;sh)=πi(c;sh)]

].
Analysing the error caused by the dynamics approxi-
mation. We show that with high probability the following
good event holds. For all t > |A| and (s, a) ∈ S × A, we
have that ∥P̄t(·|s, a) − P⋆(·|s, a)∥1 ≤ ξt(s, a). Under this
good event, our optimistic approximated model M̂t(c) =

(S,A, P̂ c
t , r̂

c
t , s0, H) and the selected policy πt(c; ·) satisfy

for all c ∈ C and t > |A| that V πt(c;·)
M̂t(c)

(s0) ≥ V
π⋆(c;·)
M(r̂ct ,P⋆)

(s0).
When combining the latter inequality with the confidence
bounds over the rewards, we obtain for all t > |A| that

Ec[V
π⋆(c;·)
M(c) (s0)]− Ec[V

πt(c;·)
M̂t(c)

(s0)] ≤ βt ·H|S||A|/t.

Moreover, we show that under the good event of the dynamics
approximation, for T > |S||A| with high probability we have

T∑
t=|A|+1

Ec[V
πt(c;·)
M(f̂t,P̂t)(c)

]− Ec[V
πt(c;·)
M(f̂t,P⋆)(c)

]

≤ O(H1.5|S|
√
|A|T log(|S||A|T 2/δ)).

Lastly, we bound
∑T

t=|A|+1 ϕt(πt) similarly to Section 3.
By combining all the above, and applying Azuma’s inequality,
we obtain the following regret bound
Theorem 4.1 (regret bound). For any T > |S||A|, finite
function class F and δ ∈ (0, 1), for the choice of βt =√

17t log(8|F|t3/δ)
|S||A| for all t, with probability at least 1− δ,

RegretT (RM-UCID) ≤ Õ
(
H1.5|S|

√
T |A| log(1/δ)

+(H + p−1
min) ·

√
|S||A|T log(|F|/δ)

)
.

5 Unknown Context-Dependent Dynamics
In this section, we consider the most challenging case, where
the dynamics is unknown and context-dependent. We assume
an access to a finite function class P ⊆ (S × (S × A ×
C) → [0, 1]), for which every function P ∈ P satisfies∑

s′∈S P (s
′|s, a, c) = 1, ∀(s, a, c) ∈ S × A × C. We use

P to approximate the context-dependent dynamics under the
dynamics realizability assumption (Assumption 2.2).
Algorithm outline. In Algorithm RM-UCDD (Algorithm 3),
we approximate both the rewards and the dynamics using
a LSR oracle. The first |A| rounds are initialization rounds,
as before. At round t > |A|, we compute the approximated
rewards function for the context ct as is done in previous
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sections. For the dynamics approximation, we use the least
square minimizer P̂t. We define the approximated model
for ct, compute an optimal policy πt(ct; ·) for it and run
it to generate a trajectory and update the oracles. We feed
the LSR oracle for the dynamics with samples of the form
((ct, s

t
h, a

t
h, s

′), I[s′ = sth+1]) for all t ≤ T , h ∈ [H − 1] for
every s′ ∈ S, where I is an indicator function.

Algorithm 3: Regret Minimization for CMDP with Unknown
Context-Dependent Dynamics

1: inputs: MDP parameters: S,A,H , s0. Confidence δ > 0
and tuning parameters {βt, γt}Tt=1. Minimum reachabil-
ity parameter pmin > 0.

2: initialization: in round i ≤ |A| run πi(c; s) := ai
3: for round t = |A|+ 1, . . . , T do
4: f̂t ∈ argminf∈F

∑t−1
i=1

∑H−1
h=0 (f(ci, s

i
h, a

i
h) − rih)

2

is computed using the LSR oracle
5: also compute P̂t ∈ argminP̃∈P

∑t−1
i=1

∑H−1
h=0

∑
s′∈S

(P̃ ci(s′|sih, aih)−I[s′ = sih+1])
2 using the LSR oracle

6: observe a fresh context ct ∼ D
7: for k = |A|+ 1, |A|+ 2, . . . , t do
8: compute for all (s, a) ∈ S ×A :

r̂ctk (s, a) = f̂k(ct, s, a) +
βk+H|S|γk

pmin

∑k−1
i=1 I[a=πi(ct;s)]

9: define M̂k(ct) = (S,A, P̂ ct
k , r̂

ct
k , s0, H)

10: compute πk(ct; ·) ∈ argmaxπ∈S→A V
π
M̂k(ct)

(s0)

using planning algorithm
11: end for
12: play πt(ct, ·), observe trajectory σt and update oracles
13: end for

Analysis outline. In the analysis, we define the follow-
ing intermediate MDPs for every t > |A| and context
c ∈ C: (1) M(r̂t,P )(c) = (S,A, P c, r̂ct , s0, H) for context-
dependent dynamics P ∈ P , where r̂ct is the approximated
rewards function in round t, which is defined in Algorithm 3.
By definition, M̂t(c) = M(r̂t,P̂t)(c). (2) M(f,P )(c) =
(S,A, P c, f(c, ·, ·), s0, H) for any f ∈ F and P ∈ P .
By definition, M(c) = M(f⋆,P⋆)(c). We denote by ψt(π)
the contextual potential at round t, which is defined as

ψt(π) := Ec[
∑H−1

h=0

∑
sh∈Sc

h

qh(sh|π(c;·),P̂ c
t )

pmin

∑t−1
i=1 I[π(c;sh)=πi(c;sh)]

].
Analysing the error caused by the rewards approximation.
Similar to the known dynamics setting (Section 3), we show
that with probability at least 1 − δ/4, for all t > |A| and
π ∈ ΠC the following holds.

|Ec[V
π(c;·)
M(f̂t,P̂t)(c)

(s0)]− Ec[V
π(c;·)
M(f⋆,P̂t)(c)

(s0)]|

≤ βt(ψt(π) +H|S||A|/t).
Analysing the error of the dynamics approximation.
Key observation. Let B be a random variable which gener-
ates the next state sh+1 given the true dynamics associated
with c, P c

⋆ , the state sh and the action ah. The random vari-
able B(P c

⋆ , sh, ah) is distributed P c
⋆ (·|sh, ah). Our observa-

tion is that since the CMDP is layered, given the context ct
state sth and action ath, we have that the random variables

B(P ct
⋆ , s

t
h, a

t
h) and (st0, a

t
0, s

t
1, . . . , s

t
h−1, a

t
h−1) are indepen-

dent random variables. Using that observation, we are able
to extend our uniform convergence bound to the dynamics
approximation. Hence, we can apply the four steps strategy
above for the dynamics approximation as well.
Step 1: establish uniform convergence bound over any t ≥
2 and a fixed sequence of functions P2, P3, . . . ∈ P . The
bound implies that for the least square minimizers sequence
{P̂t}Tt=|A|+1 with high probability, for all t > |A|,

t−1∑
i=1

H−1∑
h=0

E
ci,sih,a

i
h

[
∥P̂ ci

t (·|sih, aih)− P ci
⋆ (·|sih, aih)∥22

∣∣∣Hi−1

]
≤ 72H|S| log(8|P|t3/δ).

Step 2: construct a confidence bound over the value of any
given policy w.r.t the approximated and true dynamics, where
the rewards function is f⋆. The confidence bound holds with
high probability, in expectation over the contexts.
Formally, we show that with probability at least 1− δ/4, for
all t > |A| and any policy π ∈ ΠC it holds that

|Ec[V
π(c;·)
M(f⋆,P⋆)(c)

(s0)]− Ec[V
π(c;·)
M(f⋆,P̂t)(c)

(s0)]|

≤
√
H|S|ψt(π) ·

√
72H2|S| log(8|P|t3/δ).

Step 3: relax the confidence bound in step 2 to be additive.
we show that under the good event of step 2 for all t > |A|
and any policy π ∈ ΠC , for γt =

√
18t log(8|P|t3/δ)

|S||A| ,

|Ec[V
π(c;·)
M(f⋆,P⋆)(c)

(s0)]− Ec[V
π(c;·)
M(f⋆,P̂t)(c)

(s0)]|

≤ γtH|S| (ψt(π) +H|S||A|/t) .

Step 4: bound the sum of contextual potential functions simi-
larly to shown for the rewards, in previous sections.

Using all the above, we obtain the optimism lemma which
states that under the good events of step 2 for both the dy-
namics and rewards approximation, for all t > |A|,

Ec[V
π⋆(c;·)
M(c) (s0)− V

πt(c;·)
M̂t(c)

(s0)] ≤
(H|S|γt + βt)H|S||A|

t
,

yielding the following regret bound.

Theorem 5.1 (regret bound). For any δ ∈ (0, 1), T > |A|
and finite function classes F and P , for the choice of βt =√

17t log(8|F|t3/δ)
|S||A| and γt =

√
18t log(8|P|t3/δ)

|S||A| for all t, with
probability at least 1− δ it holds that

RegretT (RM-UCDD) ≤

Õ((H + 1/pmin)H|S|3/2
√
|A|T log(max{|F|, |P|}/δ)).

6 Lower bound
We present a lower bound for layered CMDP, where the
dynamics is known and context-independent, which based
on the lower bound for CMAB presented by Agarwal et al.
(2012), in which K = |A|, G ⊆ (C × A → [0, 1]) and
N ∈ N.
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Figure 1: Lower bound illustration

Theorem 6.1 (Theorem 5.1, Agarwal et al. (2012)). For ev-
eryN andK such that lnN/ lnK ≤ T , and every algorithm
A, there exist a functions class G of cardinality at mostN and
a distribution D(c, r) for which the realizability assumption
holds, but the expected regret of A is Ω(

√
KT lnN/ lnK).

Theorem 6.2 (Lower bound for CMDP). Let δ ∈ (0, 1),
horizon H ≥ 2 and M,N ∈ N. Let T ≥ 8M log(|S|/δ) +
2M lnN/ ln |A| and consider a CMDP (C, S,A,M) for
which |S| =M · (H − 1) + 2.

Then, for any algorithm A, there exist a base function class
G ⊆ (C × A → [0, 1]) of cardinality at most N , and a dis-
tribution D(c, s, a, r) for which the realizability assumption
holds for F = GS and, with probability at least 1 − δ, the
expected regret of A is Ω(

√
TH|S||A| ln(N)/ ln(|A|)).

proof idea. Solving the CMDP illustrated in Figure 1 is equiv-
alent to solving M(H − 1)+ 1 CMAB problems. Hence, the
theorem follows by Theorem 6.1.

7 Extension: Remove the Reachability
The minimum reachability assumption allows us to limit
the exploration-exploitation trade-off only to the actions se-
lection, since any state is reached with probability at least
pmin > 0. In this section we sketch a derivation of Õ(T 3/4)
regret, without the reachability assumption.

A first step towards removing the reachability assumption
is to consider a dynamics class that is mixed with the uni-
form distribution with probability ρ > 0. For every P ∈ P
let Sc

h(P
c) denote the h-layer defined by the transition ma-

trix P c. Using P we define P(ρ), where for each dynamics
P c ∈ P there is a dynamics P̃ c ∈ P(ρ), where in time h
with probability ρ we transition to a random state in Sc

h. As-
sume that we have an access to a LSR oracle that gets as
inputs a parameter ρ and a realizable function class P . Let
P⋆ ∈ P denote the true context-dependent dynamics, and
P̃⋆ ∈ P(ρ) be the related dynamics in P(ρ).
Please notice the following observations:
(1) P̃⋆ has the minimum reachability property for pmin =
ρ/|S|, even if P⋆ does not have it.
(2) For every context c ∈ C, layer h ∈ [H−1] and state-action
(s, a) ∈ Sc

h×A, it holds that ∥P c
⋆ (·|s, a)−P̃ c

⋆ (·|s, a)∥1 ≤ 2ρ.
For ρ < 1/2 this also implies that the function class P(ρ)
has an agnostic approximation error of at most 2ρ (w.r.t the

square loss).
(3) Let any rewards function r ∈ [0, 1], context c ∈ C and
policy π. Then, the value of π on the model defined by (r, P c

⋆ )

and the value of π on the model defined by (r, P̃ c
⋆ ) differ by

at most Õ(ρH2). This implies that the optimal policy for one
of them is near optimal for the other.
By (2), in this setting, our uniform convergence bound of Step
1 has an additional error of 2ρ, which yields (approximately)
an additional term of Õ(ρH2|S|) in the additive confidence
bound of a policy (Step 3) for the dynamics approximation.
Hence, the overall regret bound is Õ(ρH2|S|T +

H2|S|3/2
√
T |A| log(max{|F|, |P|}/δ)|S|/ρ).

For ρ ≈ |S|3/4T−1/4, we obtain a regret bound of
Õ(H2|S|7/4T 3/4

√
|A| log(max{|F|, |P|}/δ)). Therefore,

our approach yields a sub-linear regret bound that does not
depend on the minimum reachability parameter pmin, which
is now a tuned parameter.

8 Discussion
To the best of our knowledge, this work is the first that obtains
sub-liner regret bounds using general function approximation
(i.e., without additional structural assumption regarding the
CMDP or the function classes) and to present an expected
regret lower bound. Our results can be naturally extended to
infinite function classes using covering numbers analysis (see
e.g., Shalev-Shwartz and Ben-David (2014)). Our algorithms
has poly(|S|, |A|, H, T ) running time and space complexity,
assuming an efficient least-square regression oracle.
The main advantages of our technique: (1) We present a
novel confidence interval for general function approximation
in CMDPs. (2) We use an access to a standard offline least-
square regression oracle, which we call only O(T ) times. (3)
Our algorithms do no fully represent the selected context-
dependent policy at each time step, as the representation of
it scales linearly in the context space size |C|, which can be
huge, but rather compute it only for the observed contexts.
Tightness of our bounds. Consider our regret up-
per bounds in terms of the base class G cardinality,
recalling that F = GS . Known context-dependent
dynamics: Õ((H + p−1

min)|S|
√
T |A| log(|G|/δ)).

For the Unknown context-independent dynam-
ics: Õ

(
H1.5|S|

√
T |A| log(1/δ) + (H + p−1

min) ·

|S|
√

|A|T log(|G|/δ)
)

. Unknown context-dependent dynam-

ics: Õ((H + p−1
min)H|S|3/2

√
|A|T log(max{|G|, |P|}/δ)).

On the other hand, recall our lower bound is
Ω(

√
TH|S||A| ln(|G|)/ ln(|A|)). While our dependency in

T , |A| and |G| is near-optimal, bridging the gap in |S|, H
and pmin is an important open question.
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Lattimore, T.; and Szepesvári, C. 2020. Bandit Algorithms.
Cambridge University Press.
Levy, O.; and Mansour, Y. 2022a. Learning Efficiently Func-
tion Approximation for Contextual MDP. arXiv preprint
arXiv:2203.00995.
Levy, O.; and Mansour, Y. 2022b. Optimism in Face of a
Context: Regret Guarantees for Stochastic Contextual MDP.
arXiv preprint arXiv:2207.11126.
Mannor, S.; Mansour, Y.; and Tamar, A. 2022. Rein-
forcement Learning: Foundations. Online manuscript;
https://sites.google.com/view/rlfoundations/home. Accessed
March-05-2023.
Modi, A.; Jiang, N.; Singh, S.; and Tewari, A. 2018. Markov
decision processes with continuous side information. In
Algorithmic Learning Theory, 597–618. PMLR.
Modi, A.; and Tewari, A. 2020. No-regret exploration in con-
textual reinforcement learning. In Conference on Uncertainty
in Artificial Intelligence, 829–838. PMLR.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
university press.
Simchi-Levi, D.; and Xu, Y. 2021. Bypassing the monster: A
faster and simpler optimal algorithm for contextual bandits
under realizability. Mathematics of Operations Research.

Slivkins, A. 2019. Introduction to Multi-Armed Bandits.
Found. Trends Mach. Learn., 12(1-2): 1–286.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. The MIT Press, second edition.
Wei, C.-Y.; Lee, C.-W.; Zhang, M.; and Luo, H. 2021. Last-
iterate convergence of decentralized optimistic gradient de-
scent/ascent in infinite-horizon competitive markov games.
In Conference on learning theory, 4259–4299. PMLR.
Xu, Y.; and Zeevi, A. 2020. Upper counterfactual confidence
bounds: a new optimism principle for contextual bandits.
arXiv preprint arXiv:2007.07876.
Zimin, A.; and Neu, G. 2013. Online learning in episodic
Markovian decision processes by relative entropy policy
search. Advances in neural information processing systems,
26.

8517


