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Abstract

Many applications of reinforcement learning can be for-
malized as goal-conditioned environments, where, in each
episode, there is a “goal” that affects the rewards obtained
during that episode but does not affect the dynamics. Vari-
ous techniques have been proposed to improve performance
in goal-conditioned environments, such as automatic curricu-
lum generation and goal relabeling. In this work, we ex-
plore a connection between off-policy reinforcement learn-
ing in goal-conditioned settings and knowledge distillation.
In particular: the current Q-value function and the target Q-
value estimate are both functions of the goal, and we would
like to train the Q-value function to match its target for all
goals. We therefore apply Gradient-Based Attention Transfer
(Zagoruyko and Komodakis 2017), a knowledge distillation
technique, to the Q-function update. We empirically show
that this can improve the performance of goal-conditioned
off-policy reinforcement learning when the space of goals is
high-dimensional. We also show that this technique can be
adapted to allow for efficient learning in the case of mul-
tiple simultaneous sparse goals, where the agent can attain
a reward by achieving any one of a large set of objectives,
all specified at test time. Finally, to provide theoretical sup-
port, we give examples of classes of environments where (un-
der some assumptions) standard off-policy algorithms such
as DDPG require at least O(d2) replay buffer transitions to
learn an optimal policy, while our proposed technique re-
quires only O(d) transitions, where d is the dimensionality
of the goal and state space. Code and appendix are available
at https://github.com/alevine0/ReenGAGE.

Introduction
In recent years, many works have focused on applying deep
reinforcement learning to goal-conditioned tasks, through
approaches such as goal relabeling (Andrychowicz et al.
2017; Nair et al. 2018; Yang et al. 2021; Fang et al.
2019) and automatic curriculum generation (Florensa et al.
2018; Sukhbaatar et al. 2018; Zhang, Abbeel, and Pinto
2020). In this work, we focus on model-free off-policy goal-
conditioned RL, and present a novel technique for improv-
ing performance in this setting. Our approach relies on a
connection between the standard Bellman update used in
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off-policy reinforcement learning in a goal-conditioned set-
ting, and knowledge distillation, the task of training a stu-
dent network to model the same function as a (generally
more complex) teacher network.1 In brief, the Bellman up-
date can be viewed as an instance of (conditional, stochastic)
knowledge distillation, where the current Q-value estimate is
the student, the target Q-value network (averaged over tran-
sitions) is the teacher, and the independent variable is the
goal that the agent is attempting to reach. We use this in-
sight to develop an novel off-policy algorithm that in some
instances has improved performance over baselines for goal-
conditioned tasks. Our main contributions are as follows:

1. We propose ReenGAGE, a novel technique for goal-
conditioned off-policy reinforcement learning, and eval-
uate its performance.

2. We propose Multi-ReenGAGE, a variant of Reen-
GAGE well-suited for goal-conditioned environments
with many simultaneous sparse goals.

3. We provide theoretical justification for ReenGAGE by
showing that it is in some cases asymptotically more ef-
ficient, in terms of the total number of replay buffer tran-
sitions required to learn an optimal policy, than standard
off-policy algorithms such as DDPG.

In most of this work, we focus on continuous action control
problems; we extend our method to discrete action spaces
in the appendix. Note that while we mostly focus on using
ReenGAGE on top of HER (Andrychowicz et al. 2017) and
DDPG (Lillicrap et al. 2016) in this work, it can be easily
applied alongside any goal-relabeling scheme or automated
curriculum, and can be adapted for other off-policy algo-
rithms such as SAC (Haarnoja et al. 2018) or TD3 (Fuji-
moto, Hoof, and Meger 2018). In particular, we include an
application to SAC in the appendix.

Preliminaries and Notation
We consider control problems defined by goal-conditioned
MDPs (S,A,G, T , R), where S, A, and G denote sets of
states, actions, and goals, respectively, G and A are assumed

1Some works use the term “knowledge distillation” to refer to
the particular method for this task proposed by (Hinton, Vinyals,
and Dean 2015), while others, such as (Gou et al. 2021) use it to
refer to the task in general; we use the latter definition.
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to be continuous spaces, T ∈ S × A → P(S) is a stochas-
tic transition function, and R ∈ S × G → R is a reward
function. At every step, starting at state s ∈ S, an agent
chooses an action a ∈ A. The system then transitions to
s′ ∼ T (s, a), and the agent receives the reward R(s′, g).

For now, we assume that the reward function R(s′, g) is
known a priori to the learning algorithm (while the tran-
sition function is not): this just means that we know how
to interpret the objective which we are trying to achieve.
Note that existing goal relabeling techniques, such as HER
(Andrychowicz et al. 2017), implicitly make this assump-
tion, as it is necessary to compute the rewards of relabeled
transitions. We will discuss cases where this assumption can
be relaxed in later sections.

We consider both shaped rewards, in which R(s′, g) is
continuous and differentiable everywhere, as well as sparse
rewards, where R(s′, g) is not assumed to be differentiable,
but maintains some constant value clow (e.g., clow = -1 or
0) with ∇gR(s′, g) = 0 for a substantial fraction of inputs.
(There may be some boundary points where R(s′, g) = clow
but ∇gR(s′, g) is not defined or ∇gR(s′, g) ̸= 0, but in
theoretical discussion we will assume these are of measure
zero).

The objective of goal-conditioned RL is to find a policy
π ∈ S ×G → A such that the discounted future reward:

r =
∞∑
t=0

γtR(st+1, g) (1)

is maximized in expectation. One common approach is to
find the policy π and Q-function Q ∈ S × A × G → R
that solve the Bellman equation for Q-learning (Watkins and
Dayan 1992), conditioned on a goal g:

∀s, a, g,
Q(s, a, g) = E

s′∼T (s,a)
[R(s′, g) + γQ(s′, π(s′, g), g)] (2)

∀s, g, π(s, g) = argmax
a

Q(s, a, g). (3)

If functions π and Q satisfy these, then π is guaranteed to
be an optimal policy. In practice, off-policy RL techniques,
notably DDPG (Lillicrap et al. 2016) can be used to solve
for these functions iteratively by drawing tuples (s, a, s′, g)
from a replay buffer:

Lcritic = E
(s,a,s′,g)∼Buffer

[
Lmse

[
Qθ(s, a, g),

R(s′, g) + γQθ′(s′, πϕ′(s′, g), g)
]] (4)

Lactor = E
(s,g)∼Buffer

−Qθ(s, πϕ(s, g), g), (5)

where θ and ϕ are the current critic and actor parameters,
and θ′ and ϕ′ are target parameters, which are periodically
updated to more closely match the current estimates. Note
that Equation 2 should ideally hold for all (s, a, g): there-
fore the distribution of (s, a, g) in the replay buffer does not

need to precisely follow any particular distribution, assum-
ing sufficient visitation of possible tuples.2 The only neces-
sary constraint on the buffer distribution is that the marginal
distribution of s′ matches the transition function:

∀s, a, g, Pr
Buffer

[s′|s, a, g] ≈ Pr
T
[s′|s, a], (6)

so that the relation in Equation 2 is respected. This means
that the goal which is included in the buffer need not neces-
sarily reflect a “true” historical experience of the agent dur-
ing training, but can instead be relabeled to enhance train-
ing. (Andrychowicz et al. 2017; Nair et al. 2018; Yang et al.
2021; Fang et al. 2019). Interestingly, (Schroecker and Isbell
2020) shows that HER (Andrychowicz et al. 2017), a popu-
lar relabeling technique, actually does not respect Equation
6 when the transition function is nondeterministic, and there-
fore may exhibit “hindsight bias.”

Proposed Method
From Equation 2, we can take the gradient with respect to g:

∇gQ(s, a, g) =

∇g E
s′∼T (s,a)

[R(s′, g) + γQ(s′, π(s′, g), g)] =

E
s′∼T (s,a)

[∇gR(s′, g) + γ∇gQ(s′, π(s′, g), g)].

(7)

Because the gradient of the Q-value function is equal to the
expectation of the gradient of the sum of the reward and
the next-step Q-value, this suggests that we can augment the
standard DDPG critic loss with a gradient term, which esti-
mates this expected gradient using the replay buffer samples:

LReenGAGE = E
(s,a,s′,g)∼Buffer

[
Lmse

[
Qθ(s, a, g),

R(s′, g) + γQθ′(s′, πϕ′(s′, g), g)
]

+αLmse

[
∇gQθ(s, a, g),

∇gR(s′, g) + γ∇gQθ′(s′, πϕ′(s′, g), g)
]]

(8)

where α is a constant hyperparameter. Note that the sec-
ond MSE term is applied to a vector: thus we are fit-
ting ∇gQθ(s0, a0, g) in all dim(g) dimensions. This allows
more information to flow from the target function to the
current Q-function (a dim(g)−vector instead of a scalar),
and may therefore improve training. We call our method
Reinforcement learning with Gradient Attention for Goal-
seeking Efficiently, or ReenGAGE.

In the case of shaped rewards, we can use this loss func-
tion directly. In the case of sparse rewards, ∇gR(s′, g) is not
necessarily defined or available. However, it is also zero for

2In practice, replay buffers which better match the behavioral
distribution result in better training, due to sources of “extrapo-
lation error”, including incomplete visitation and model inductive
bias; see (Fujimoto, Meger, and Precup 2019).
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a substantial fraction of inputs, and, if R(s′, g) = clow, then
∇gR(s′, g) = 0 with high probability. Therefore, we use
the gradient loss term only when training on tuples where
R(s′, g) = clow, and assume ∇gR(s′, g) = 0:

L(sparse)
ReenGAGE = E

(s,a,s′)

[
Lmse

[
Qθ(s, a, g),

R(s′, g) + γQθ′(s′, πϕ′(s′, g), g)
]

+1R(s′,g)=clowαLmse

[
∇gQθ(s, a, g),

γ∇gQθ′(s′, πϕ′(s′, g), g)
]]

.

(9)

In this sparse case, if ReenGAGE is used alone (i.e., without
goal relabeling), then the reward function R does not need to
be known explicitly a priori. Instead, the observed values of
the rewards R(s′, g) from the training rollouts may be used.

Note that ReenGAGE can only be used in goal-
conditioned reinforcement learning problems: in particular,
we cannot use gradients with respect to states or actions in a
way similar to Equation 7, because, unlike in Equation 7:

∇s,a E
s′∼T (s,a)

[(·)] ̸= E
s′∼T (s,a)

[∇s,a(·)] (10)

because the sampling distribution depends on s and a.

Connection to Knowledge Distillation
We can view Equation 4 as the loss function of a regression
problem, fitting Qθ to the target. We treat g as the indepen-
dent variable, and s and a as parameters:

∀g, Qθ(g; s, a) := Targ.(g; s, a) where

Targ.(g; s, a) = E
s′∼T (s,a)

R(s′, g) + γQθ′(s′, πϕ′(s′, g), g) (11)

This can be framed as a knowledge distillation problem: we
can view Targ.(g; s, a) as a (difficult to compute) teacher
function, and we are trying to fit the network Qθ(g; s, a) to
represent the same function of g. Note however that conven-
tional “knowledge distillation” (Hinton, Vinyals, and Dean
2015), which matches the logits of one network to another
for classification problems in order to provide richer su-
pervision than simply matching the class label output, can-
not be applied here because the output is scalar. However,
(Zagoruyko and Komodakis 2017) proposes Gradient-based
Attention Transfer which instead matches the gradients of
the student to the teacher using a regularization term. Ap-
plied to our Q function and target, this is:

LGAT =LMSE(Qθ(g; s, a),Targ.(g; s, a))

+α∥∇gQθ(g; s, a)−∇gTarg.(g; s, a)∥22,
(12)

which is in fact the ReenGAGE loss function. Therefore we
can think of ReenGAGE as applying knowledge distillation
(specifically Gradient-based Attention Transfer) to the Q-
value update.3 See Figure 1 for an illustration. While the

3(Zagoruyko and Komodakis 2017) actually uses the ℓ2 dis-
tance between the gradients as the regularization term, rather than

Targ.(g;s,a)

g1

g2

ReenGAGE: DDPG:

Qθ(g;s,a)

g1

g2

Targ.(g;s,a)

g1

g2

Qθ(g;s,a)

g2

g1

Figure 1: Illustration comparing the information flow from
the Q-value target function to the current Q-function in
ReenGAGE, compared to standard DDPG. In ReenGAGE,
for each (s, a, s′, g) tuple, the gradient with respect to the
goal is used as supervision, while in standard DDPG, only
point values are used. Note that in stochastic environments,
each tuple only provides a stochastic estimate of the target
gradient (in ReenGAGE) or target point value (in DDPG).

computation of the loss function gradient is somewhat more
complex here than in standard training, involving mixed par-
tial derivatives, (Zagoruyko and Komodakis 2017) notes that
it can still be performed efficiently using modern automatic
differentiation packages; in fact, this “double backpropaga-
tion” should only scale the computation time by a constant
factor (Etmann 2019). Further discussion of this and empir-
ical runtime comparisons are provided in the appendix.

(Zagoruyko and Komodakis 2017) also propose
Activation-based Attention Transfer, which transfers
intermediate layer activations from teacher to student
network rather than gradients; in fact, they report better
performance using this method than the gradient method.
However, this is not applicable in our case. Firstly, in the
dense reward case, we cannot model the reward function in
this way. Secondly, unlike the gradient operator, activations
are nonlinear: so, even in the sparse case, we cannot assume
that the activations of a “converged” Q-network perfectly
modeling the expected target will be the equal to the
expected activations of the target network (i.e., there is no
activation equivalent to Equation 7.) See (Hsu et al. 2022)
for a review of sources of auxiliary network information
that can be used for knowledge distillation.

Toy Example Experiments
We first apply ReenGAGE to a simple sparse-reward envi-
ronment, which we call ContinuousSeek. This task is a con-
tinuous variant of the discrete “Bit-Flipping” environment
proposed in (Andrychowicz et al. 2017). In our proposed
task, the objective is to navigate from an initial state in d-
dimensional space to a desired goal state, by, at each step,
adding an ℓ∞-bounded vector to the current state. Formally:

its square. However, because our gradient estimate is stochastic (in
particular, we are using samples of s′ ∼ T (s, a) rather than the ex-
pectation), we instead use the mean squared error, so that the cur-
rent Q gradients will converge to the population mean. (Zagoruyko
and Komodakis 2017) notes that their particular choice of the ℓ2
norm is arbitrary: other metrics should work.
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Figure 2: ContinuousSeek results. Lines show the mean and standard deviation over 20 random seeds (kept the same for all
experiments.) The Y-axis represents the success rate, defined as the fraction of test episodes for which the goal is ever reached.

• s, g ∈ [−D,D]d

• a ∈ [−1, 1]d

• T (s, a) = s+ a (clipped into [−D,D]d)
• R(s, g) = −1 + 1∥s−g∥∞≤ϵ

• initial state s0 = 0.

In our experiments, we use D = 5, ϵ = 0.1, and we run
for 10 steps per episode. We test with d = 5, 10 and 20.
The chance that a random state achieves the goal is approx-
imately 1

50d
, so this is an extremely sparse reward problem

(as sparse as “Bit-Flipping” with 5.6×d bits). As a baseline,
we use DDPG with HER.

See Figure 2 for results. For the baseline and each
value of α, we performed a grid search over learn-
ing rates {0.00025, 0.0005, 0.001, 0.0015} and batch sizes
{128, 256, 512}; the curves shown represent the “best” hy-
perparameter settings for each α, defined as maximizing the
area under the curves. See appendix for results for all hyper-
parameter settings. We studied the learning rate specifically
to ensure that the ReenGAGE regularization term is not sim-
ply “scaling up” the loss function with similar gradient up-
dates. Other hyperparameters were kept fixed and are listed
in the appendix. We see that ReenGAGE clearly improves
over the baseline for larger-dimensionality goals (d = 10
and d = 20): this shows that ReenGAGE can improve the
performance of DDPG in such high-dimensional goal set-
tings. See the appendix for a similar experiment with SAC
as the base off-policy learning algorithm instead of DDPG.

Robotics Experiments
We tested our method on HandReach, the environment
from the OpenAI Gym Robotics suite (Plappert et al. 2018)
with the highest-dimensional goal space (d = 15). In this
sparse-reward environment, the agent controls a simulated
robotic hand with 20-dimensional actions controlling the
hand’s joints; the goal is to move all of the fingertips to the
specified 3-dimensional positions. As a baseline, we use the
released DDPG+HER code from (Plappert et al. 2018), with
all hyperparameters as originally presented, and only mod-
ify the critic loss term. Results are presented in Figure 3. In
this environment, we see that ReenGAGE greatly speeds up

convergence compared to the baseline. However, at a high
value of α, the success rate declines after first converging.
This shows that ReenGAGE may cause some instability if
the gradient loss term is too large, and that tuning the coeffi-
cient α is necessary (see also the Limitations section below).

We also tried our method on the HandManipulateBlock
environment from the same paper; however, in this lower-
dimensional goal environment (d = 7) ReenGAGE was
not shown to improve performance. This is compatible
with our observation from the ContinuousSeek environment
that ReenGAGE leads to greater improvements for higher-
dimensional tasks, as the dimensionality of the additional
goal-gradient information that ReenGAGE propagates in-
creases. Results are provided in the appendix.

Multi-ReenGAGE: ReenGAGE for Multiple
Simultaneous Goals

In this section, we propose a variant of ReenGAGE for a
specific class of RL environments: environments where the
agent is rewarded for achieving any goal in a large set of ar-
bitrary sparse goals, all of which are specified at test time.
Formally, we consider goals in the form g = {g1, ...gn},
where n may vary but n ≤ nmax. We consider {0, 1} re-
wards, where the reward function takes the form:

R(s′, g) =

{
1 if ∨

gi∈g
(Ritem(s

′, gi) = 1)

0 otherwise
. (13)

In our experiments, we only consider cases where the goals
are mutually exclusive, so this is equivalent to:

R(s′, g) =
∑
gi∈g

Ritem(s
′, gi). (14)

We assume that either: (i) the function Ritem is known a pri-
ori to the agent, or (ii) the item rewards Ritem(s

′, gi) are ob-
served separately for each goal gi at each time step during
training. This scenario presents several challenges. Firstly,
many goal relabeling strategies cannot be directly applied
here: strategies such as HER (Andrychowicz et al. 2017) as-
sume that achieved states can be projected down into the
space of goals. In this case, the space of goals is much larger
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Figure 3: HandReach results. (a) Rendering of the HandReach simulation environment. Figure taken from (Plappert et al. 2018).
(b) Performance of ReenGAGE on HandReach, compared to the baseline from (Plappert et al. 2018). Lines represent mean and
standard deviation for the same set of 5 seeds. The X-axis is the number of training epochs, as defined in (Plappert et al. 2018),
while the Y-axis is the success rate, defined by (Plappert et al. 2018) as the fraction of test episodes where the final state satisfies
the goal. (c) Detailed view of (b), showing the epochs before convergence, where the advantage of ReenGAGE is most clear.
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Figure 4: Multi-ReenGAGE results. (a) and (c): Illustrations of DriveSeek and NoisySeek environments, respectively: cyan
points show goals that were never reached, blue points show goals that were reached, and magenta points show (rounded) non-
goal states that were reached. In (c), we see a NoisyReach agent (correctly) avoiding the trap of going to the nearby isolated
points in favor of seeking the larger cluster. (b) and (d): Results for DriveSeek and NoisySeek, respectively. We see that Multi-
ReenGAGE (“M-RG” in figure legends) substantially improves over standard DDPG for both tasks. Lines are an average of (the
same) 5 random seeds. For NoisySeek, we also show the performance of a perfect “greedy” agent, which simply goes towards
the nearest individual goal. For NoisySeek, evaluations with more values of α are included in the appendix. Note that for both
experiments, the agent takes as input a list of goal coordinates, rather than an image: the agents do not use convolutional layers to
interpret the goals. (On DriveSeek, where the coordinates are bounded, we attempted learning from images as well; ReenGAGE
still outperformed DDPG, but overall performance was worse for both – this experiment is presented in the appendix.)

than the space of possible states, so this assumption is bro-
ken. Secondly, we suggest that standard Q-learning is some-
what unsuited to this kind of problem, because it loses in-
formation about which goal led to a reward. For instance, if
there are 100 goals gi, and a reward is received for a certain
state s′, there is no direct indication of which goal was sat-
isfied. This means that a very large number of episodes may
need to be run in order to learn the effect of each individual
goal on the reward.

We now describe our approach. For concreteness, we
will assume that the agent uses an architecture based on
DeepSets (Zaheer et al. 2017) to process the goal set input

(although we believe our technique can likely be adapted
to using more complex neural set architectures, such as Set
Transformer (Lee et al. 2019)). Concretely, this means that
our Q-function takes the form:

Qθ(s, a, g) := Qhead
θh. (s, a,

∑
gi∈g

[Qencoder
θe. (s, gi)]) (15)

and the policy has a similar architecture. Note that Qencoder
θe.

outputs a vector-valued embedding for a given goal gi. From
this baseline, introduce a set of scalar gate variables bi:

Qθ(s, a, g) := Qhead
θh. (s, a,

n∑
i=1

[biQ
encoder
θe. (s, gi)]). (16)
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Each gate bi is set to 1. However, if bi were zero, this would
be equivalent to the goal gi being absent from the set g. We
then treat the gate variables as differentiable. If a certain goal
gi contributes to the Q function (i.e., if it is likely to be sat-
isfied), then we expect Qθ(s, a, g) to be highly sensitive to
bi; in other words, we expect ∂Qθ

∂bi
to be large. Then ∇bQ

represents the importance of each goal to the Q-value func-
tion. Our key insight is that we can use a ReenGAGE-style
loss to transfer ∇bQ from target to current Q-value estimate,
therefore preserving attention on the relevant goals.

However, this requires us to have a value for ∇bR(s′, g).
Note that the reward can be written as:

R(s′, g) =
∑
gi∈g

biRitem(s
′, gi). (17)

Setting bi = 0 is again like gi being absent. Interpolating:

∂R

∂bi
:= Ritem(s

′, gi) (18)

which gives us a “ground-truth” reward gradient we can
compute. This yields the following loss function:

LMulti-ReenGAGE = LDDPG-Critic + αLmse

[
∇bQθ(s, a, g),

Ritem(s
′, g) + γ∇bQθ′(s′, πϕ′(s′, g), g)

]
(19)

where [Ritem(s
′, g)]i := Ritem(s

′, gi). In practice, we make
two modifications to this algorithm. First, we use b2i as the
gate rather than bi.4 While algebraically this should do noth-
ing but multiply the gradient loss term by 4, it is important
for vectorized implementation; see the appendix for details.

Second, we share the encoder Qencoder between the Q-
function and the policy π. This is so the policy does not have
to learn to interpret the goal set “from scratch” and is em-
pirically important (see ablation study in the appendix). We
train the encoder only during critic training.

Experiments
We test Multi-ReenGAGE on two environments: DriveSeek
and NoisySeek. Both environments are constructed such that
a “greedy” strategy of simply going to the closest individual
goal is not optimal, so the entire goal set must be considered.
We describe the environments informally here and provide
additional detail in the appendix.

DriveSeek is a deterministic environment, where the con-
tinuous position spos. ∈ [−10, 10]2 always moves with con-
stant ℓ2 speed 1, in a direction determined by a velocity vec-
tor svel. on the unit circle. At each step, the agent takes a
1-dimensional action a ∈ [−0.5, 0.5], which represents an-
gular acceleration: it specifies an angle in radians which is
added to the angle of the velocity vector. At the edges of the
space, the state position wraps around to the opposite edge.

The objective is to reach any of up to nmax = 200 goals.
The goals all lie on integer coordinates in [−10, 10]2, and
the agent receives a reward if its coordinates round to a goal.

4And use 2Ritem(s
′, g) instead of Ritem(s

′, g).

In addition to spos. and svel., the agent receives an observa-
tion of its current rounded position. The agent also receives
as input the current list of goal coordinates. Note that the
agent cannot simply stay at a single goal, or take an arbi-
trary path between goals: it is constrained to making wide
turns. Therefore all goals must be considered in planning an
optimal trajectory.

NoisySeek is a randomized environment. In it, s ∈ R2,
a ∈ R2, with ∥a∥2 ≤ 1, and the transition function is de-
fined as T (s, a) ∼ N (s + a, I). In other words, the agent
moves through space at a capped speed, and noise is con-
stantly added to the position. The goals are defined as integer
coordinates in a similar manner to in DriveSeek, but without
a box constraint. Additionally, the goal distribution is such
that goals tend to be clustered together. Note that a “greedy”
agent that simply goes to the nearest goal is suboptimal, be-
cause the probability of consistently reaching that one goal
is low: it is better to seek clusters.

Results are presented in Figure 4. We see that Multi-
ReenGAGE substantially outperforms the baseline of DDPG
on both environments.

Theoretical Properties
Bias
In the Preliminaries section, we discuss that goal relabeling
strategies can exhibit bias if Equation 6 is not respected. In
the dense reward case, our method does not cause bias of
this sort (although such bias may be present if our method
is combined with a relabeling strategy.) However, in the
sparse reward case, if the transitions are nondeterministic,
our method may cause a similar bias. In particular, note that,
in the sparse case, Equation 9 effectively trains the gradient
of the Q-value function to match the following target:

∇gQθ(s, a, g) :=

E
s′∼T (s,a)

[γ∇gQθ′(s′, πϕ′(s′, g), g)|R(s′, g) = clow]≈

∇g E
s′∼T (s,a)

[
R(s′, g)+

γQθ′(s′, πϕ′(s′, g), g)|R(s′, g) = clow

] (20)

where the last line holds exactly if the “boundary” points
where R(s′, g) = clow but ∇gR(s′, g) ̸= 0 are of measure
zero (and the derivative is defined at all such points).

Equation 20 shows us that, in the sparse case, our method
trains the gradient of the Q-function to match an expected
target gradient where the expectation is taken over a biased
distribution: if

Pr
T
[s′|s, a;R(s′, g) = clow] ̸= Pr

T
[s′|s, a], (21)

then this will cause bias in our target gradient estimate, in
a similar manner to the hindsight bias of HER described by
(Schroecker and Isbell 2020).

Note that this is only an issue in nondeterministic environ-
ments: in deterministic environments, for a given (s, a, g),
either R(s′, g) is always ̸= clow, in which case the gradient
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Figure 5: Example dense reward environment class. The
agent receives a reward proportional to the projection of the
state vector onto the goal vector at each step, and can change
the state vector by adding an action vector with ℓ2 distance
up to 1 at each step. However, at each step, this action is
distorted by an unknown rotation U : the agent must learn to
compensate for this distortion.

term is never involved in training, or R(s′, g) is always clow,
in which case

Pr
T
[s′|s, a;R(s′, g) = clow] = Pr

T
[s′|s, a] = 1. (22)

Learning Efficiency
In this section, we provide examples of classes of environ-
ments for which our method will result in provably more ef-
ficient learning than standard DDPG-style updates. We treat
both the dense reward case (in which we have access to the
gradient of the reward function) and the sparse reward case
(in which we do not).

Dense Reward Example Consider the class of simple, de-
terministic environments described as follows:
• g, s, a ∈ Rd; ∥a∥2 ≤ 1

• R(s, g) = gT s

• T (s, a) = s + Ua, where U ∈ Rd×d is an unknown
orthogonal (rotation) matrix.

This environment class is illustrated in Figure 5. Environ-
ments of this class are parameterized by U , so the learning
task is to estimate U . We make the following assumptions:
• The “hypothesis class” consists of all environments with

dynamics of the type described above. We therefore take
as an inductive bias that each model in the considered
model class consists of a Q-function QŨ and policy πŨ
which are in the form of the optimal Q-function and pol-
icy for an estimate of U , notated as Ũ ∈ Rd×d (con-
strained to be orthogonal).

• We assume that QŨ and πŨ share the same estimated pa-
rameter Ũ . (This is analogous to – although admittedly
stronger than – the parameter sharing we used for Multi-
ReenGAGE.) Taken with the above assumption, this im-
plies that a = πŨ (s, g) maximizes QŨ (s, a, g), so we do
not need to train π separately. Similar parameter sharing
occurs between the target policy and Q-function.

• We are comparing our method, minimizing the loss in
Equation 8, with minimizing the “vanilla” DDPG loss
(Equation 4).

• States and actions in the replay buffer are in general po-
sition.

In this case, the following proposition holds:

Proposition 1. Under the above assumptions, minimizing
the ReenGAGE loss can learn U (and therefore learn the
optimal policy) using O(d) unique replay buffer transitions.
However, minimizing the standard DDPG loss requires at
least O(d2) unique transitions to successfully learn U .

Proofs are provided in the appendix. This result shows
that, in some cases, ReenGAGE requires asymptotically less
replay data to successfully learn to perform a task than stan-
dard DDPG.

Sparse Reward Case The result shown above might be
unsurprising to many readers. Specifically, because the gra-
dient ∇gR(s′, g) is used by our method and not by standard
DDPG, in the dense-reward case, our method is utilizing
more information from the environment (to the extent that
R, which we assume that agents know a priori, is part of the
“environment”) than the standard algorithm. However, here
we show a class of sparse reward environments for which
the same result holds, despite ∇gR(s′, g) being unavailable.
The environments are constructed as follows:

• g, a ∈ Rd; ∥a∥2 ≤ 1; s ∈ R2d; the state vector consists
of two halves, denoted s1, s2; we write s as (s1; s2).

• R(s, g) = gT s1

• T (s, a) =

{
(0; s1 + Ua) if s1 ̸= 0

(s2;0) if s1 = 0

• U ∈ Rd×d is an unknown orthogonal (rotation) matrix.
• We define clow = 0.

See Figure 6 for an illustration. Note that this satisfies
sparseness properties: namely, R(s′, g) = 0 = clow at
least every other step; and, when R(s′, g) = 0, then
∇gR(s′, g) = 0 (assuming general position). It is also de-
terministic, so we do not need to worry about the bias dis-
cussed in the previous section. We can therefore apply the
sparse version of our method (Equation 9), which does not
use gradient feedback from the reward:

Proposition 2. Under the same assumptions as Proposi-
tion 1 (replacing Equation 8 with Equation 9), minimizing
the ReenGAGE loss can learn U in the sparse environment
class using O(d) unique replay buffer transitions. However,
minimizing the standard DDPG loss requires at least O(d2)
unique transitions to successfully learn U .

This example is admittedly a bit contrived: the single-step
reward can always be computed without knowledge of the
parameter U . However, it may still give insight about real-
world scenarios in which predicting immediate reward is
much easier than understanding long-term dynamics.

Note that these two scaling results apply to the number
of replay buffer transitions. In particular, if a goal relabeling
algorithm is used on top of DDPG, then O(d2) replay buffer
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Figure 6: Example sparse reward environment class. If s1 is
initially nonzero, then the (rotated) action Ua is added to it,
as in the dense case. However, the resulting vector is imme-
diately “stored” in s2, and s1 is zeroed: this means that no
immediate reward is obtained. In the next step, with s1 zero,
the action is ignored and s2 is “reloaded” into s1, resulting
in a reward that depends on the previous action.

transitions may be able to be constructed from O(d) ob-
served training rollout transitions, so standard DDPG com-
bined with goal relabeling might only require O(d) training
rollout transitions. However, this would be computationally
expensive, and may not work in practice for particular goal
relabeling algorithms. (HER, for instance, only relabels us-
ing achieved states from the same episode: if the episode
length is O(1) in d, then O(d2) observed training rollout
transitions would still be required for DDPG+HER.) Also,
goal relabeling techniques require a priori knowledge of the
function R, while in the sparse example, ReenGAGE does
not (although in the case of this example, we assume that
we are using the correct “hypothesis class”, i.e., the func-
tional form of QŨ : constructing this in practice would likely
require knowing R).

Related Works
Many prior approaches have been taken to the goal-
conditioned reinforcement learning problem (Schaul et al.
2015). See (Liu, Zhu, and Zhang 2022) for a recent survey
of this area. One line of work for this problem involves au-
tomated curriculum generation: here, the idea is to select
goals during training that that are dynamically chosen to
be the most informative (Florensa et al. 2018; Sukhbaatar
et al. 2018; Zhang, Abbeel, and Pinto 2020). In the off-
policy reinforcement learning setting, a related technique
becomes a possibility: one can re-label past experiences with
counter-factual goals. This allows a single experienced tran-
sition to be used to train for multiple goals, and the re-
labeled goals can be chosen using various heuristics to im-
prove training (Andrychowicz et al. 2017; Nair et al. 2018;
Yang et al. 2021; Fang et al. 2019). Note that our proposed
method can be combined with any of these off-policy tech-
niques. (Schroecker and Isbell 2020) discusses bias that can
result from some goal relabeling techniques. (Eysenbach,
Salakhutdinov, and Levine 2021) proposes a method based
on recursive classification which is in practice similar to

hindsight relabeling, but requires less parameter tuning.
In alternative approaches to goal-conditioned RL, (Ey-

senbach et al. 2022) has proposed using an on-policy goal-
conditioned reinforcement learning technique, using con-
trastive learning, while (Janner et al. 2022) and (Janner, Li,
and Levine 2021) propose model-based techniques.

Note that our proposed method is distinct from policy dis-
tillation (Rusu et al. 2016): the goal of policy distillation
is to consolidate one or more already trained policy net-
works into a smaller network; whereas our method is in-
tended to improve initial training. Some prior (Manchin, Ab-
basnejad, and Hengel 2019; Choi, Lee, and Zhang 2017; Wu,
Khetarpal, and Precup 2021) and concurrent (Bertoin et al.
2022) works have focused on using attention-based mech-
anisms to improve either the performance or interpretabil-
ity of reinforcement learning algorithms. However, to our
knowledge, ours is the first to apply gradient-based atten-
tion transfer to the critic update to enhance goal-conditioned
off-policy reinforcement learning.

Some prior works have been proposed for goal-seeking
with structured, complex goals made up of sub-goals, simi-
lar to (and in some cases more general than) the multi-goal
setting that Multi-ReenGAGE is designed for. Some of these
works (Oh et al. 2017; Sohn, Oh, and Lee 2018) use a hi-
erarchical policy; however, such a structure may be unable
to represent the true optimal policy (Vaezipoor et al. 2021).
(Vaezipoor et al. 2021) proposes a method without this lim-
itation; although the setting considered (Linear Temporal
Logic) is different from the multi-goal setting considered
here, in that a reward is achieved at most once per episode.
(Touati and Ollivier 2021) proposes a method for arbitrary
reward functions specified at test time, under discrete ac-
tion spaces; in concurrent work (Touati, Rapin, and Ollivier
2023), this is generalized to continuous actions. (Janner et al.
2022), a model-based technique mentioned above, can use
reward function gradient information to adapt to an arbitrary
shaped (i.e., non-sparse) reward function at test time.

Limitations and Conclusion
ReenGAGE has some important limitations. For example,
we have seen that the hyper-parameter α requires tuning and
can vary greatly (likely due to diverse scales in goal coor-
dinates and rewards); and the benefits of ReenGAGE seem
limited to tasks with high goal dimension.

Still, ReenGAGE represents a novel approach to goal-
conditioned RL, with benefits demonstrated both empiri-
cally and theoretically. In future work, we are particularly
interested in exploring the use of Multi-ReenGAGE in safety
and robustness applications. In particular, the ability to en-
code many simultaneous goals at test time could allow the
agent to consider many “backup” goals, all of which are ac-
ceptable, rather than forcing the agent to focus only a single
goal (resulting in total failure if that goal is unreachable.)
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