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Abstract

In Federated Learning (FL), a common approach for aggre-
gating local solutions across clients is periodic full model av-
eraging. It is, however, known that different layers of neu-
ral networks can have a different degree of model discrep-
ancy across the clients. The conventional full aggregation
scheme does not consider such a difference and synchronizes
the whole model parameters at once, resulting in inefficient
network bandwidth consumption. Aggregating the parame-
ters that are similar across the clients does not make mean-
ingful training progress while increasing the communication
cost. We propose FedLAMA, a layer-wise adaptive model ag-
gregation scheme for scalable FL. FedLAMA adjusts the ag-
gregation interval in a layer-wise manner, jointly considering
the model discrepancy and the communication cost. This fine-
grained aggregation strategy enables to reduce the communi-
cation cost without significantly harming the model accuracy.
Our extensive empirical study shows that, as the aggregation
interval increases, FedLAMA shows a remarkably smaller ac-
curacy drop than the periodic full aggregation, while achiev-
ing comparable communication efficiency.

Introduction
In Federated Learning (FL), periodic full model averaging is
the most common approach for aggregating local solutions.
As the aggregation interval increases, however, the periodic
full aggregations cause a high degree of model discrepancy
across clients, and it results in a slower convergence. It has
recently been observed that the magnitude of gradients can
be largely different across neural network layers (You et al.
2019). That is, all the layers can diverge across the clients
in a difference pace. The conventional periodic full aggrega-
tion scheme does not consider such a difference and always
synchronizes the full model at once. Averaging the param-
eters that are similar across all the clients does not make
meaningful training progress while consuming the network
bandwidth. Considering the limited network bandwidth in
usual FL environments, such inefficient model aggregations
can crucially harm the scalability of FL applications.

Most of the FL strategies assume the underlying peri-
odic full model averaging. A variety of federated optimiz-
ers, such as FedAvg (McMahan et al. 2017), FedProx (Li
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et al. 2018), FedNova (Wang et al. 2020), and SCAFFOLD
(Karimireddy et al. 2020), periodically average the full lo-
cal solutions across all the clients. Many communication-
efficient FL strategies, such as gradient (model) sparsifica-
tion (Wangni et al. 2017; Wang et al. 2018; Alistarh et al.
2018), low-rank approximation (Vogels, Karimireddy, and
Jaggi 2020; Wang, Agarwal, and Papailiopoulos 2021), and
quantization (Alistarh et al. 2017; Wen et al. 2017; Albasy-
oni et al. 2020; Reisizadeh et al. 2020) techniques, also peri-
odically aggregate the compressed form of the full local so-
lutions. Adaptive model aggregation techniques (Wang and
Joshi 2018a; Haddadpour et al. 2019) adjust the aggregation
interval at run-time to reduce the total number of commu-
nications, however, they still aggregate the full local models
at once. Because all the above FL strategies are based on
the periodic full model aggregation scheme which ignores
the layer-wise data characteristics, they can rapidly lose the
accuracy as the aggregation interval increases.

In this paper, we propose FedLAMA, a Layer-wise Adap-
tive Model Aggregation scheme for FL. Our study breaks
the convention of periodic full aggregation and introduces a
novel and efficient model aggregation framework for scal-
able FL. FedLAMA first prioritizes all the layers based
on their contributions to the total model discrepancy. We
present a useful metric for estimating the layer-wise degree
of model discrepancy at run-time. Then, the aggregation in-
tervals are adjusted based on the assigned priorities such that
the low priority layers are less frequently aggregated than the
other layers. The layers are prioritized again after all the lay-
ers are aggregated at least once. Figure 1 shows schematic
illustrations of the periodic full aggregation and FedLAMA.
As the degree of model discrepancy at each layer increases,
its color turns to red. We see that all the layers have a differ-
ence pace of the color change. Rather than having a uniform
aggregation interval at all the layers, FedLAMA assigns a
longer interval to the slower layers than the other layers, and
it results in suppressing the total model discrepancy at the
minimal communication cost.

Our study provides essential insights into how to better
utilize the network bandwidth in FL. FedLAMA finds the
layer-wise model aggregation interval settings, jointly con-
sidering the communication efficiency and the federated op-
timization efficiency. The fine-grained model aggregation
strategy allows to spend more network bandwidth for the
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Figure 1: The comparison of FedAvg and FedLAMA. The dotted vertical lines indicate the model aggregation. The gradient
color of each layer indicates the degree of model discrepancy across clients. The longer the aggregation interval, the higher the
degree of model discrepancy (the slower convergence). FedLAMA adaptively controls the layer-wise model discrepancy.

critical layers that strongly contribute to the model dis-
crepancy while relaxing the aggregation frequency at the
other less critical layers. Thus, when consuming a similar
amount of network bandwidth as the periodic full aggre-
gation, FedLAMA yields a remarkably reduced degree of
model discrepancy, making the global loss converge faster.
We also show that FedLAMA provides a solid convergence
guarantee for non-convex smooth problems under non-IID
data settings.

We evaluate the performance of FedLAMA using three
representative benchmark datasets: CIFAR-10 (Krizhevsky
2009), CIFAR-100, and Federated Extended MNIST (Co-
hen et al. 2017). We first compare FedLAMA to the con-
ventional periodic full model aggregation scheme to demon-
strate its superior convergence properties. We also compare
FedLAMA to the state-of-the-art communication-efficient
FL strategies, FedPAQ (Reisizadeh et al. 2020) and Fed-
COM (Haddadpour et al. 2021), to demonstrate how ef-
ficiently it consumes the network bandwidth. Finally, we
also show that FedLAMA can be applied to FL together
with other communication-efficient FL strategies. This re-
sult shows that FedLAMA is rather complementary to other
FL strategies.

Related Work
Communication-Efficient FL Algorithms – Many recent
works proposed sparsification and quantization methods
specifically designed for FL (Alistarh et al. 2017, 2018; Al-
basyoni et al. 2020; Wangni et al. 2017; Wang et al. 2018;
Wang, Agarwal, and Papailiopoulos 2021; Alistarh et al.
2017; Wen et al. 2017; Reisizadeh et al. 2020). These meth-
ods are also called sketched approach (Konečnỳ et al. 2016).
Another set of communication-efficient FL strategies are
low-rank model approximation (Phan et al. 2020; Vogels,
Karimireddy, and Jaggi 2020; Yao et al. 2021; Hyeon-Woo,
Ye-Bin, and Oh 2021). These are called structured approach.

Although top-k sparsification is widely used in distributed
learning (Wangni et al. 2017; Alistarh et al. 2018; Bibikar
et al. 2021), it is not directly applicable to cross-edge FL.
Since residuals, the small accumulated updates, should re-
main at the client-side until they sufficiently grow up, they

become out-of-date if the device is not activated at a commu-
nication round. Due to the limitation, only cross-silo settings
are considered in (Bibikar et al. 2021). FedPAQ (Reisizadeh
et al. 2020) and FedCOM (Haddadpour et al. 2021) are the
state-of-the-art quantization-based FL strategies. This local
update compression approach still assumes the periodic full
model aggregation scheme, and thus they sharply lose the
accuracy as the aggregation interval increases.
Layer-wise Model Freezing – Layer freezing (dropping)
is a representative layer-wise technique for neural network
training (Brock et al. 2017; Kumar et al. 2019; Zhang and
He 2020; Goutam et al. 2020). All these methods com-
monly stop updating the network layers in a bottom-up di-
rection. These techniques are supported by the analysis pre-
sented in (Raghu et al. 2017). Since the layers converge from
the input-side to the output-side sequentially, the layer-wise
freezing can reduce the training time without strongly af-
fecting the accuracy. These previous works clearly show the
advantages of processing individual layers separately.

Background
Federated Optimization – We consider federated optimiza-
tion problems as follows.

min
x∈Rd

[
F (x) :=

1

m

m∑
i=1

Fi(x)

]
, (1)

where m is the number of local models and Fi(x) =
Eξi∼Di [Fi(x, ξi)] is the local objective function associated
with local data distribution Di.

FedAvg (McMahan et al. 2017) is a basic algorithm
that solves the above minimization problem. As the degree
of data heterogeneity increases, FedAvg converges more
slowly. Several variants, such as FedProx (Li et al. 2018),
FedNova (Wang et al. 2020), and SCAFFOLD (Karimireddy
et al. 2020), tackle the data heterogeneity issue.
Model Discrepancy – All local SGD-based FL algorithms
allow the clients to independently run SGD steps within each
communication round. Thus, the variance of stochastic gra-
dients and heterogeneous data lead the local models to dif-
ferent directions on the parameter space. We formally define
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such a model discrepancy as follows.

1

m

m∑
i=1

∥u− xi∥2,

where m is the number of local models (clients), u is the
synchronized model, and xi is client i’s local model. This
quantity bounds the difference between the local gradients
and the global gradients under a smoothness assumption on
objective functions. Even when the data is independent and
identically distributed (IID), there always exist a certain de-
gree of model discrepancy due to the gradient variance.

Layer-wise Adaptive Model Aggregation
In this section, we first discuss how to prioritize the network
layers jointly considering the communication cost and the
model discrepancy. Then, we describe a layer-wise adap-
tive model aggregation algorithm built upon the proposed
layer prioritization strategy. Finally, we present a general FL
framework built upon our model aggregation method.

Layer Prioritization
In theoretical convergence analysis, the distance between
the local models and the global model is commonly used to
bound the difference between their gradients. Specifically, it
is assumed that the difference between the local gradient and
the global gradient is bounded by the distance between the
corresponding sets of model parameters under an assump-
tion on smoothness of the objective function. Motivated by
this convention, we define ‘layer-wise unit model discrep-
ancy’, a useful metric for prioritizing the layers as follows.

dl =
1
m

∑m
i=1 ∥ul − xi

l∥2

τl ∗ dim(ul)
, l ∈ {1, · · · , L} (2)

where L is the number of layers, u is the global model, xi is
the client i’s local model, τ is the aggregation interval.

The communication cost is proportional to the number of
parameters. Thus, 1

m

∑m
i=1 ∥ul−xi

l∥2/dim(ul) shows how
much model discrepancy can be eliminated by synchroniz-
ing the layer at a unit communication cost. We assign a high
priority to the layers with a large dl value.

Layer-Wise Aggregation Interval Adjustment
We consider selecting a subset of network layers and relax-
ing their synchronization frequency to reduce the commu-
nication cost in Federated Learning. As increasing the ag-
gregation interval at more layers, the communication cost
is proportionally reduced while having a higher degree of
model discrepancy. Thus, we focus on finding the layers that
least increase the model discrepancy while most reducing
the communication cost.

To quantify such criteria, we define accumulative model
discrepancy ratio δl and model partition ratio λl. First, the
accumulative model discrepancy ratio is defined based on
the unit model discrepancy (Eq. 2) as follows.

δl =

∑l
k=1 dI[k] ∗ dim(uI[k])∑L
k=1 dI[k] ∗ dim(uI[k])

, (3)

Figure 2: The comparison between the model discrepancy
ratio δl and the model partition ratio 1−λl for a) CIFAR-10
and b) CIFAR-100 training.

where I is a list of layer indices sorted based on dl. Given
l layers with the smallest dl values, δl quantifies their con-
tribution to the total model discrepancy. Second, the model
partition ratio is defined as follows.

λl =

∑l
k=1 dim(uI[k])∑L
k=1 dim(uI[k])

. (4)

Because both δl and λl are a ratio which lies between 0
and 1, we now can directly compare these two independent
criteria and find a sweat spot where the model discrepancy
is least increased while most reducing the communication
cost. Specifically, we find the l value which makes δl and
1 − λl as close as possible. This condition guarantees that,
when the aggregation interval is increased at the chosen l
layers, the relative impact on the model discrepancy and the
communication cost are almost the same. Because we calcu-
late δl and λl using I, the layer indices sorted based on the
unit model discrepancy, we can expect the minimal increase
of the model discrepancy and the maximal decrease of the
communication cost.

Figure 2 shows the actual δl and λl values measured from
CIFAR-10 (ResNet20) and CIFAR-100 (Wide-ResNet28-
10) training. The x-axis in the charts is the l value that ap-
pears in Eq. 3 and 4. We see that the y-axis value of the cross
point is much smaller than 0.5 in both charts. This means
that, when increasing the aggregation interval at the l layers
with the smallest dl values, we can expect the minimal in-
crease of the model discrepancy and the maximal decrease
of the communication cost.

Algorithm 1 shows the described aggregation interval
adjustment algorithm. The algorithm first obtains I, a list
of layer indices that would sort d in an increasing order
(argsort). Then, looping over the elements in d following the
order of I, the algorithm calculates λl and δl. If δl < (1−λl),
the algorithm sets the aggregation interval at layer I[l] to
ϕτ ′. Otherwise, the aggregation interval is set to τ ′. ϕ is the
interval increase factor, a user-tunable hyper-parameter.

Framework
Now we build a general FL framework FedLAMA upon the
proposed layer-wise adaptive model aggregation scheme.
Algorithm 2 shows the framework. The algorithm receives
two hyper-parameters, the base interval τ ′ and the interval
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Algorithm 1: Layer-wise Aggregation Interval Adjustment.
Input: d: the observed model discrepancy at all L layers,

τ ′: the base aggregation interval,
ϕ: the interval increase factor

I← argsort (d)
for l = 1 to L do

The layer index j ← I[l]
δl ← Equation 3
λl ← Equation 4
if δl < (1− λl) then
τj ← ϕτ ′

else
τj ← τ ′

end if
end for
Output: τ : the new aggregation intervals at all L layers

Algorithm 2: FedLAMA: Federated Layer-wise Adaptive
Model Aggregation.

Input: τ ′: base interval, ϕ: interval increase factor
τl ← τ ′, ∀l ∈ {1, · · · , L}
τ ← τ ′ϕ
for t = 0 to T − 1 do

for j = 0 to τ do
Local SGD step: xi

t,j+1 = xi
t,j − η∇f(xi

t,j , ξi)
for l = 1 to L do

if j mod τl is 0 then
Synchronize layer l: ut ← 1

m

∑m
i=1 x

i
t,j

dl ← Equation 2
Update layer l of the local model: xi

t,j = ut

end if
end for

end for
Adjust the aggregation interval at all L layers (Alg. 1)

end for
Output: uT

increase factor ϕ. The network layers are assigned with an
aggregation interval of either τ ′ or τ ′ϕ depending on their
contribution to the model discrepancy. Whenever a layer is
synchronized, the unit model discrepancy dl is updated for
the next adjustment. After the whole model is synchronized
once, the algorithm re-adjusts the layer-wise aggregation in-
tervals using the observed unit model discrepancy values.

Impact of Interval Increase Factor ϕ – The communica-
tion latency cost is usually not negligible in FL, and the total
number of communications strongly affects the scalability.
Algorithm 1 increases the aggregation interval at a few se-
lected layers by multiplying ϕ to their base interval τ ′. This
approach ensures that the latency cost is not increased while
the bandwidth consumption is reduced when increasing ϕ.

FedAvg can be considered as a special case of FedLAMA
where ϕ is set to 1. When ϕ > 1, FedLAMA less frequently
synchronizes the chosen layers, having a lower total com-
munication cost. When increasing the aggregation interval,
FedLAMA multiplies ϕ to the base interval τ ′. So, it is guar-

anteed that the whole model parameters are fully synchro-
nized after every ϕτ ′ iterations. Because of the layers with
the base aggregation interval τ ′, the total model discrepancy
of FedLAMA after ϕτ ′ iterations is always smaller than that
of FedAvg with the interval of ϕτ ′.

Convergence Analysis
To demonstrate that FedLAMA is a robust model aggregation
scheme for FL, we provide a convergence guarantee and an-
alyze its properties. The proofs can be found in Appendix.
Notations – xi

t,j ∈ Rd denotes the client i’s local model
at jth local step in tth communication round. The stochas-
tic gradient computed from a single training data point ξi
is denoted by ∇Fi(x

i
t,j , ξi). For convenience, we use gi

t,j

instead. The local full-batch gradient is denoted by ∇Fi(·).
We use ∥ · ∥ to denote ℓ2 norm.
Assumptions – Our analysis assumes the followings.

1. (Smoothness). Each local objective function is L-smooth,
that is, ∥∇Fi(x) − ∇Fi(y)∥ ≤ L∥x − y∥, ∀i ∈
{1, · · · ,m}.

2. (Unbiased Gradient). The stochastic gradient at each
client is an unbiased estimator of the local full-batch gra-
dient: Eξi

[
gi
t,j

]
= ∇Fi(x

i
t,j).

3. (Bounded Variance). The gradient variance is bounded:
Eξi

[
∥gi

t,j −∇Fi(x
i
t,j)∥2

]
≤ σ2, ∀i ∈ {1, · · · ,m}.

4. (Bounded Dissimilarity). There exist constants β2 ≥
1 and κ2 ≥ 0 such that 1

m

∑m
i=1 ∥∇Fi(x)∥2 ≤

β2∥ 1
m

∑m
i=1∇Fi(x)∥2+κ2. If local objective functions

are identical to each other, β2 = 1 and κ2 = 0.

The assumption 4 considers the variance as well as the bias
of the local gradients across the clients (Wang et al. 2020).

Lemma 1. (framework) Under Assumption 1 ∼ 3, if the
learning rate η ≤ 1

Lτ , Algorithm 1 ensures

T−1∑
t=0

E
[
∥∇F (ut)∥2

]
≤ 2

ητ
(F (u0)− F (uT−1))

+
LηT

m
σ2

+
L2

mτ

T−1∑
t=0

τ∑
j=1

m∑
i=1

E
[∥∥xi

t,j − ut

∥∥2] .
Lemma 2. (model discrepancy) Under Assumption 1 ∼ 4,
Algorithm 1 ensures

1

m

τ−1∑
j=0

m∑
i=1

E
[∥∥xi

t,j − ut

∥∥2] ≤ η2τ(τ − 1)

1−A
σ2

+
τAβ2

(1−A)L2 E
[
∥∇F (ut)∥2

]
+

τAκ2

(1−A)L2
, (5)

where A := 2η2L2τ(τ − 1) < 1.
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Based on Lemma 1 and 2, we analyze the convergence
rate of FedLAMA as follows.
Theorem 1. Suppose all m local models are initialized to
the same point u0. Under Assumption 1 ∼ 4, if Algorithm
1 runs for T communication rounds and the learning rate

satisfies η ≤ min

{
1
τL ,

1

L
√

2τ(τ−1)(2β2+1)

}
, the average-

squared gradient norm of ut is bounded as follows

1

T

T−1∑
t=0

E
[
∥∇F (ut)∥2

]
≤ 4

ητT
(F (u0)− F (u∗))

+
2Lη

m
σ2

+ 3L2η2(τ − 1)σ2

+ 6η2L2τ(τ − 1)κ2 (6)

where u∗ indicates a local minimum and τ is the largest
averaging interval across all the layers (τ ′ϕ).

Remark 1. (Finite Horizon Result) With a sufficiently
small diminishing learning rate and a large number of train-
ing iterations, FedLAMA achieves linear speedup. If the
learning rate is η =

√
m√
T

, we have

E

[
1

T

T−1∑
t=0

∥∇F (ut)∥2
]
≤ O

(
1√
mT

)
+O

(m
T

)
. (7)

If T > m3, the first term on the right-hand side becomes
dominant and it achieves linear speedup. That is, FedLAMA
has the same complexity of the convergence rate as FedAvg
(Wang and Joshi 2018b; Yang, Fang, and Liu 2021).

Remark 2. (Impact of layer-wise aggregation) Theorem
1 considers the worst-case where only the low-priority lay-
ers contribute to the total model discrepancy. That is, if any
other layers contribute to the model discrepancy, FedLAMA
is guaranteed to converge faster than FedAvg with an aggre-
gation interval of ϕτ ′. In practice, the local gradients most
likely do not become zero at any layers, and thus every layer
more or less contribute to the total model discrepancy.

Experiments
Experimental Settings – We evaluate FedLAMA using
three representative benchmarks: CIFAR-10 (ResNet20 (He
et al. 2016)), CIFAR-100 (WideResNet28-10 (Zagoruyko
and Komodakis 2016)), and Federated Extended MNIST
(CNN (Caldas et al. 2018)). We use TensorFlow 2.4.3 for
local training and MPI for model aggregation. All our ex-
periments are conducted on 8 NVIDIA A1000 GPUs.

Due to the limited compute resources, we simulate large-
scale FL such that each process sequentially trains multi-
ple models and then the models are globally averaged at
once. Thus, instead of wall-clock time, we consider the total
communication cost calculated as follows (Reisizadeh et al.
2020; Bibikar et al. 2021).

C =
L∑

l=1

Cl =
L∑

l=1

dim(ul) ∗ cl, (8)

where cl is the total number of communications at layer l.
Non-IID Datasets – We split CIFAR datasets to 128 subsets
using Dirichlet distributions. The concentration coefficient
is 0.1 which represents a high-degree of non-IIDness. The
distribution is generated with respect to the labels, and the
local dataset sizes are all different (unbalanced non-IID). As
for FEMNIST, we randomly select 256 writers’ samples (∼
7.3% of the whole samples) and assign 2 writers’ samples
to each client. In all the experiments, random 25% of 128
clients run each communication round.

Comparison to Periodic Full Aggregation Scheme
We compare FedLAMA’s classification accuracy to that of
the periodic full aggregation. Table 1, 2, and 3 show the
results of CIFAR-10, CIFAR-100, and FEMNIST, respec-
tively. When increasing the aggregation interval, FedAvg in-
creases the base interval τ ′ while FedLAMA increases the
increase factor ϕ. FedLAMA has two training results, early
stopping and full training. In the early stopping, FedLAMA
stops the training once it achieves a higher accuracy than
FedAvg. In the full training, FedLAMA runs the maximum
training step budget and choose the best achieved accuracy.
The ‘Comm. cost’ column shows the relative communica-
tion cost as increasing the aggregation interval.

First, the early stopping results show that FedLAMA
achieves a similar accuracy to FedAvg in significantly fewer
training steps. This result proves that FedLAMA enables
to increase the aggregation interval having a minimal im-
pact on the model discrepancy. Second, the full training re-
sults show that, after the same number of training steps,
FedLAMA achieves remarkably higher accuracy than Fe-
dAvg. While spending a comparable network bandwidth to
FedAvg, FedLAMA converges faster, and it results in having
higher accuracy.

Comparison to Other FL Strategies
We also compare FedLAMA to the following FL strategies.
1. FedAvg (McMahan et al. 2017)
2. FedProx (Wang et al. 2020)
3. FedPAQ (Reisizadeh et al. 2020)
4. FedCOM (Haddadpour et al. 2021)
FedProx is a federated optimization algorithm that tackles
the data heterogeneity issue by adding a proximal term to
the objective function. FedPAQ is the state-of-the-art quanti-
zation framework designed for communication-efficient FL.
FedCOM is another quantization framework that employs
the server-side learning rate. Although these are not directly
related to the aggregation settings, we believe that this com-
parison will deliver useful insights to the community.

We do not compare FedLAMA to model pruning meth-
ods such as FedDST (Bibikar et al. 2021) and PruneFL
(Jiang et al. 2022) or model decomposition methods such as
FedHM (Yao et al. 2021) and FedPara (Hyeon-Woo, Ye-Bin,
and Oh 2021), because they significantly change the local
model architecture affecting the computational cost. We also
do not compare FedLAMA to the sparsification methods. Al-
though top-k sparsification is used in many distributed learn-
ing studies (Wangni et al. 2017; Alistarh et al. 2018; Stich,
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FedAvg (Periodic Full Avg.) FedLAMA

Full training Early stopping Full training

LR τ ′ ϕ Validation acc. C ratio LR τ ′ ϕ Validation acc. # of steps C ratio Validation acc. C ratio

0.4 10 1 81.66± 0.3% 100% 0.4 10 1 81.66± 0.3% 9,860 100% 81.66± 0.3% 100%
0.3 20 1 72.99± 0.5% 50% 0.2 10 2 77.33± 0.3% 5,160 32.01% 81.46± 0.3% 61.55%
0.3 40 1 66.64± 0.5% 25% 0.2 10 4 68.32± 0.4% 4,120 18.65% 80.60± 0.4% 44.36%

Table 1: The CIFAR-10 (ResNet20) classification results. The total number of local steps is 10,000 and the local batch size is
32. The dataset is split based on a Dirichlet distribution (α = 0.1) w.r.t the labels.

FedAvg (Periodic Full Avg.) FedLAMA

Full training Early stopping Full training

LR τ ′ ϕ Validation acc. C ratio LR τ ′ ϕ Validation acc. # of steps C ratio Validation acc. C ratio

0.4 10 1 76.14± 0.5% 100% 0.4 10 1 76.14± 0.5% 9,920 100% 76.14± 0.5% 100%
0.2 20 1 70.64± 0.4% 50% 0.3 10 2 70.77± 0.3% 6,280 39.13% 75.34± 0.3% 62.32%
0.2 40 1 61.15± 0.5% 25% 0.2 10 4 61.86± 0.4% 5,240 22.67% 71.93± 0.3% 43.26%

Table 2: The CIFAR-100 (Wide-ResNet28-10) classification results. The total number of local steps is 10,000 and the local
batch size is 32. The dataset is split based on a Dirichlet distribution (α = 0.1) w.r.t. the labels.

FedAvg (Periodic Full Avg.) FedLAMA

Full training Early stopping Full training

LR τ ′ ϕ Validation acc. C ratio LR τ ′ ϕ Validation acc. # of steps C ratio Validation acc. C ratio

0.02 20 1 81.57± 0.3% 100% 0.02 20 1 81.57± 0.3% 3,980 100% 81.57± 0.3% 100%
0.02 40 1 80.72± 0.6% 50% 0.06 20 2 80.74± 0.3% 1,600 20.74% 82.33± 0.2% 51.86%
0.02 80 1 80.48± 0.3% 25% 0.04 20 4 80.56± 0.6% 1,360 9.76% 81.37± 0.4% 28.51%
0.02 160 1 78.85± 0.4% 12.5% 0.04 20 8 79.18± 0.3% 2,400 10.68% 80.62± 0.5% 17.80%

Table 3: The FEMNIST (CNN) classification results. The total number of local steps is 4,000 and the local batch size is 32.
Each client is assigned with two different writers’ samples.

Cordonnier, and Jaggi 2018; Wang et al. 2018; Sattler et al.
2019), it potentially harms the FL accuracy. In cross-device
settings, the residuals, the small accumulated local updates,
can be significantly out-of-date if the client is not selected
for many communication rounds, and it can make the global
loss converge more slowly. Due to these limitations, only
cross-silo settings are considered in (Bibikar et al. 2021).

We compare the learning curves among various FL strate-
gies under the aggregation interval settings that provide a
similar communication cost C (Eq. 8). The settings are pro-
vided in Appendix. Figure 3 shows the FEMNIST (left)
and CIFAR-10 (right) learning curves. For both benchmarks,
FedLAMA achieves a higher accuracy than all the other FL
strategies. This result shows that FedLAMA consumes the
network bandwidth most efficiently. FedLAMA maintains a
lower degree of model discrepancy during the training than
the other FL strategies, and it results in making the best train-
ing progress within the same number of training steps.

Harmonization with Other FL Strategies
Because FedLAMA is a standalone model aggregation
scheme, it is complementary to other federated optimiz-
ers and compression methods. Table 4 shows the perfor-

mance evaluation of FedProx + FedLAMA and FedPAQ
+ FedLAMA. Likely to the results in Table 3, FedLAMA
achieves a similar accuracy to the periodic full model av-
eraging in significantly fewer training steps. This result
demonstrates that FedLAMA is indeed complementary to
the state-of-the-art FL strategies. Especially, FedPAQ +
FedLAMA results show that the communication cost can be
extremely reduced by employing the compression method
together with the proposed model aggregation framework.

Communication Cost Analysis
We quantify the communication cost using the number of
communications and the transferred data size. Figure 4
shows the total number of communications at the individ-
ual layers. For FedLAMA, τ ′ is 20 and ϕ is 2. We find that
FedLAMA increases the aggregation interval mostly at the
output-side large layers in all the benchmarks. This indi-
cates that the observed dl value (Eq. 2) at the selected lay-
ers are smaller than that of the other layers. Figure 5 shows
the layer-wise transferred data size (Eq. 8). Although the
number of communications is reduced at few selected lay-
ers only, the total transferred data size is remarkably reduced
because the selected layers take up most of the model size.
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Figure 3: The FEMNIST (left) and CIFAR-10 (right) classification performance comparison among a variety of FL strategies.

FedProx (Periodic Full Avg.) FedProx + FedLAMA

Full training Early stopping Full training

LR τ ′ ϕ Validation acc. C ratio LR τ ′ ϕ Validation acc. # of steps C ratio Validation acc. C ratio

0.04 20 1 82.24± 0.2% 100% 0.04 20 1 82.24± 0.2% 3,920 100% 82.24± 0.2% 100%
0.04 40 1 81.08± 0.2% 50% 0.04 20 2 81.55± 0.1% 1,920 25.59% 82.02± 0.2% 53.32%
0.04 80 1 80.62± 0.2% 25% 0.02 20 4 80.65± 0.2% 1,840 13.79% 81.44± 0.2% 29.97%
0.02 160 1 78.84± 0.2% 12.5% 0.02 20 8 78.94± 0.5% 1,920 8.56% 80.21± 0.2% 17.83%

FedPAQ (Periodic Full Avg.) FedPAQ + FedLAMA

Full training Early stopping Full training

LR τ ′ ϕ Validation acc. C ratio LR τ ′ ϕ Validation acc. # of steps C ratio Validation acc. C ratio

0.02 20 1 80.22± 0.4% 100% 0.04 20 1 80.22± 0.4% 3,900 100% 80.22± 0.4% 100%
0.02 40 1 79.59± 0.6% 50% 0.03 20 2 79.60± 0.2% 3,040 40.52% 80.07± 0.2% 55.32%
0.02 80 1 75.47± 0.5% 25% 0.03 20 4 75.62± 0.2% 1,440 10.61% 78.21± 0.3% 29.48%
0.02 160 1 73.37± 0.6% 12.5% 0.03 20 8 74.19± 0.2% 1,120 5.06% 77.95± 0.3% 18.08%

Table 4: FEMNIST classification performance with FedLAMA and other FL techniques. The scaling factor of the proximal
term for FedProx, µ, is 0.001. The compression level for FedPAQ is 16.

Figure 4: The number of communications at the individual
layers, counted during the whole training.

Conclusion
We proposed FedLAMA, a layer-wise adaptive model aggre-
gation scheme for scalable FL. FedLAMA saves the network
bandwidth consumption by adaptively increasing the aggre-
gation interval at less critical layers. Our study demonstrates
that such a novel layer-wise model aggregation scheme
achieves much higher accuracy within the same fixed epoch
budget as compared to the periodic full model averaging
scheme. We believe this result will introduce many unprece-
dented research directions on partial model aggregation.
Harmonizing FedLAMA with other advanced optimizers,
gradient compression, and low-rank approximation methods

Figure 5: The total data size at all individual layers, that cor-
responds to Figure 4.

can be promising and important future work.
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