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Abstract

Recent progress in using machine learning models for rea-
soning tasks has been driven by novel model architectures,
large-scale pre-training protocols, and dedicated reasoning
datasets for fine-tuning. In this work, to further pursue these
advances, we introduce a new data generator for machine rea-
soning that integrates with an embodied agent. The generated
data consists of templated text queries and answers, matched
with world-states encoded into a database. The world-states
are a result of both world dynamics and the actions of the agent.
We show the results of several baseline models on instantia-
tions of train sets. These include pre-trained language models
fine-tuned on a text-formatted representation of the database,
and graph-structured Transformers operating on a knowledge-
graph representation of the database. We find that these models
can answer some questions about the world-state, but struggle
with others. These results hint at new research directions in
designing neural reasoning models and database representa-
tions. Code to generate the data and train the models will be
released at github.com/facebookresearch/neuralmemory.

Introduction
Advances in machine learning (ML) architectures (Vaswani
et al. 2017), large datasets and model scaling for pre-training
(Radford et al. 2019; Chowdhery et al. 2022; Zhang et al.
2022), modeling approaches (Nye et al. 2021; Wang et al.
2022), and multiple dedicated reasoning datasets (Yang et al.
2018a; Hudson and Manning 2019; Petroni et al. 2020;
Vedantam et al. 2021) have driven progress in both build-
ing models that can succeed in aspects of “reasoning” and
in automatically evaluating such capabilities. This has been
evident particularly in the text setting, but also in computer
vision (Krishna et al. 2016; Johnson et al. 2017; Yi et al.
2020).

In parallel, the last decade has seen advances in the ability
to train embodied agents to perform tasks and affect change
in their environments. These have been also powered in part
by data, with many environments made available for explor-
ing modeling approaches and benchmarking. In particular,
with respect to “reasoning” in embodied agents, there have
been works showing that adding inductive biases to support
reasoning can lead to improved performance with end-to-end
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Sequence Context: "agent is at location (10,7,8). agent has pitch 1.0 
and yaw 2.5. agent has property agent. wilson is at location (0,7,9). 
wilson has pitch -0.8 and yaw 1.1. wilson has property rabbit. wilson 
has property brown. marbles is at location (10,7,3). marbles has 
pitch 1.1 and yaw 3.1. marbles has property chicken. marbles has 
property mottled. pebbles is at location (10,10,13). pebbles has 
pitch 0.5 and yaw -0.3. pebbles has property sheep. pebbles has 
property mottled. gus is at location (3,7,9). gus has pitch 0.4 and 
yaw -0.1. gus has property cow. gus has property mottled. speaker is 
at location (8,7,0). speaker has pitch 0.8 and yaw 2.3. inst_seg is at 
location (3,8,1). inst_seg has property arch. inst_seg is at location 
(10,8,12). inst_seg has property dome. inst_seg is at location 
(14,6,6). inst_seg has property hole. inst_seg is at location (12,5,10). 
inst_seg has property hole."
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Sequence Context + GPT-2: “marbles”
Structured Context + Transformer: 
“marbles”
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Sequence Context: "agent is at location (10,7,8). agent has pitch 1.0 and yaw 
2.5. agent has property agent. speaker is at location (8,7,0). speaker has pitch 
0.8 and yaw 2.3. wilson is at location (0,7,9). wilson has pitch -0.8 and yaw 
1.1. wilson has property rabbit. wilson has property brown. marbles is at 
location (10,7,3). marbles has pitch 1.1 and yaw 3.1. marbles has property 
chicken. marbles has property white. pebbles is at location (10,10,13). 
pebbles has pitch 0.5 and yaw -0.3. pebbles has property sheep. pebbles has 
property mottled. gus is at location (3,7,9). gus has pitch 0.4 and yaw -0.1. 
gus has property cow. gus has property black. inst_seg is at location (3,8,1). 
inst_seg has property arch. inst_seg is at location (10,8,12). inst_seg has 
property dome. inst_seg is at location (14,6,6). inst_seg has property hole."

Query: “what is closest from speaker?”
Answer: “marbles”

Figure 1: (Top): Example of a generated scene in our 3d
gridworld. (Middle): Given the 3d scene, we can convert the
information in the render to a text or structured representa-
tion. Here we show the text Sequence Context representation.
“inst_segs” represent the block items such as structures or
holes. (Bottom): For a particular scene, we can generate a
wide variety of queries. Here we show and example of a dis-
tance query asking which object is the closest to the speaker,
which is the chicken named “marbles”.

training (Zambaldi et al. 2018) and other works have shown
how models can be augmented with extra supervision (Zhong,
Rocktäschel, and Grefenstette 2019).

Recently, several works have shown how large language-
model pre-training can be used to affect planners for em-
bodied agents (Huang et al. 2022; Ahn et al. 2022). More
generally, symbolic representations can be a hub for connect-
ing perception, memory, and reasoning in embodied agents.

However, the growing literature in NLP reasoning models

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8438



is missing data grounded in a dynamic and agent-alterable
world. Models trained on traditional text datasets struggle to
handle physically grounded queries such as those that involve
geometric reasoning. In other words, recent large language
models trained on internet data are not well equipped to
simple questions about a physical environment such as “who
is to my left?”. Grounding large-language models may allow
them more powerful reasoning; and vice versa, may help us
use them as agent controllers.

In this work we describe a data source (i.e., a toolbox to
generate data) designed to help train ML models grounded in
a physical environment, allowing them to make the connec-
tion between perception, memory, and reasoning. It consists
of context-question-answer triples, where the context corre-
sponds to a dynamic and agent-affected 3d gridworld, and
the questions may involve temporal or spatial reasoning, as
well as questions about the agent’s own actions. A sample
generated from our data source is shown in Fig. 1.

While the environment allows rendering the world-context
as a sequence of images, one of our goals is to support re-
search toward answering the question “what are good for-
mats for agent memory systems?”. In pursuit of this, we
abstract the context to a database format that does not require
any perceptual modules, and provide code for converting the
database into a templated text dump, as demonstrated in Fig. 1
(right top). Here, the order of the facts within each timestep
are written randomly, and sequentially written according to
the timesteps. Our hope is that the data source can be used
for augmenting the training (or allowing the assembly) of rea-
soning embodied agents by bringing to bear the advances in
reasoning in language models, or as a supplement to training
language models with grounding from embodied agents.

We train baseline neural models to represent the database
and process the queries. These include finetuning pre-trained
language models on the text version of the database, and
Transformers that input the structured database directly. We
find that while certain queries are easily solved by these
baselines, others, in particular - those having to deal with
spatial geometry, are more difficult.

In short, the contributions of this paper are:
Environment: We introduce an environment for embodied
agents and a data source for generating data to train agents
in this environment (detailed in the Environment, Queries,
and Data section). We provide the code to generate world
contexts, as well as complex queries. We hope this will aid
researchers to isolate and tackle difficult problems for reason-
ing for embodied agents.
Baselines: We evaluate the abilities of baseline models to
answer queries in this environment (Experiments section).
We compare different representations of the world context,
including a pure text based representation as well as a more
structured representation.

Environment, Queries, and Data
We propose a context-question-answer data generator for
embodied agents. In this section, we outline the context, or
environment we generate data in, the types of queries we
create for the agent to solve, and specifics of the data samples.

Environment
We work in a finite three-dimensional gridworld. There is
a primary agent, zero or more other agents, zero or more
get/fetchable items, zero or more placeable/breakable blocks.
The other agents come in two types: they might represent
human “players” that can give commands to the agent and
have the same capabilities as the agent, or animate non-player
characters (NPCs) that follow simple random movement pat-
terns. The placeable/breakable blocks have colors and integer
grid coordinates; all other objects have float coordinates. An-
imate objects (the players, NPCs, and the agent) have a yaw
and pitch pose representing the location they are looking, in
addition to three location coordinates.

To build a scene, we generate some random objects
(spheres, cubes, etc.), randomly place a number of NPCs,
a player, and an agent. With some probability, the agent exe-
cutes a command (to either: build an object, destroy an object,
move to a location, dig a hole, follow an NPC, etc.) The ex-
ecution of a command is scripted; the task executor is from
the Minecraft agent in (Pratik et al. 2021). Whether or not
the agent executes a task, the world steps a fixed number of
times (so, e.g., NPCs may move or act). In the experiments
described below, the world is fully observed at a fixed num-
ber of temporal snapshots, and all poses, object locations and
NPC movements are recorded. However, not every world step
is snapshotted, so the total sequence is not fully observed.

Following (Pratik et al. 2021), the environment is presented
to the agent as an object-centered key-value store. Each ob-
ject, NPC, and the agent’s self have a “memid” keying a data
structure that depends on the object type, and may contain
string data (for example a name) or float or integer data (e.g.
the pose of an NPC). The key-value store also has subject-
predicate-object triples (e.g. "memid has tag mottled"); the
triples themselves also have a unique memid as key.

The generated scene presented as the key-value store de-
fines the agent’s context, C. In our experiments below, we
represent this context in one of two ways. The first is a text
sequence (Ct), where for each snapshot step, all objects and
their properties in the key-value store are flattened into a
templated language, as shown in Fig. 1 (right). Multiple time
snapshots of the context are represented by appending each
successive event in the sequence. While this is in some sense
simplistic, it allows ready application of large pre-trained
language models for ingesting the context; and this kind of
approach has been shown to be effective in (Thorne et al.
2021; Liu et al. 2021).

Alternatively, we can leverage the relational properties of
the context by representing it as a graph where objects and
properties are nodes, and the connections between them are
the edges. For example, if we know that “bob” is a horse and
is the color brown, the node for bob connects to a “horse” and
a “brown” object. Specifically, this “Sequence Context” con-
tains reference object nodes (CR), which are the object instan-
tiations, and triple nodes (CT ), which are the properties of the
reference objects. Each reference object node holds the fol-
lowing information: reference_object_hash (R_id) is a unique
identifier for each reference object, reference_objects_words
holds identifier words of the object such as its name, and
reference_objects_float is the floating point properties of the
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Figure 2: Structured context + Transformer model. The bottom left demonstrates the structured representation of the 3d gridworld,
where R_id is the unique reference object identifier, and T_id is the unique triple property identifier (which connects to one of the
reference objects via R_id). Context nodes (C{R,t}) and query tokens (Qt) are first featurized with learnable embedding layers.
We process the featurized context and query jointly with a Transformer encoder that considers the context structure via relational
embeddings (rij). Finally, a text decoder predicts tokens, and a memid decoder predicts relevant context memids (not pictured).

object such as its (x, y, z) coordinates and pitch/yaw. These
are combined into a single node (detailed in the Models
section). Similarly, each property triple is composed of the
following elements: triples_hash (T_id) contains a unique
identifier for the triple, as well as the reference object hash
that it is linked to, and triples_words are a descriptive text
of a reference object’s property such as “has_color blue”.
These are also combined into a single node. We therefore
have nodes of both reference objects and triples, and the
hashes encompass the edges or relationships between them.

We do not consider the text sequence or graph-structured
representations to be canonical. On the contrary, our goal
is stimulate research into what the correct representation of
world state should be to allow easier model training and
transfer between agents. We simply provide these two repre-
sentations as examples and baselines.

Given the determined set of snapshots, queries are de-
signed to be answerable. That is, all information is known
to answer the questions. We leave to future work making
ambiguous queries, but note here that it is not difficult to
purposefully build and record queries that could theoretically
be answered in some scene but cannot be answered in the par-
ticular scene instantiation, for example because they refer to
an event that occurred between snapshots. It would otherwise
be easy to restrict full observability within each snapshot.

Queries
The embodied agent environment allows for a rich set of
possible queries to ask the agent. We structure the types of
queries we use into three main categories, as covered in Ta-
ble 1. Property queries are those which operate on the current
state of the memory such as the current properties or loca-
tions of an object, and are given with an explicit relation.
Property queries with a single clause can be read directly
from the database or text dump without any “reasoning”.
Temporal queries are those which operate over spans of the

memory such as the movement of object. Geometric queries
are those concerned with the geometric structure of the en-
vironment such as how far away two object are from each
other. Note that many queries are mixes of these types, and
the categorization is blurred.

Within each query class, there are several different “clause”
types. These can be combined as applicable into a multi-
clause query, where the clauses are combined by an “and” or
“or” conjunction randomly. In addition, each clause can be
negated by prepending the word “not”. For example, “what
are the name of the objects that do not have the property
brown and where the x coordinate is less than 4”.

The query, Q, is composed of one or both of the following
representations: query_text (Qt): a text representation of the
query (e.g. “find the reference_objects with color brown”),
query_tree_logical_form (Qlf ) : a tree logical form represen-
tation of the query (e.g. two clauses in an “and” or “or” query
are connected by a parent in the tree).

Given the context and query, the agent should return some
answer, A. Depending on the query type, we randomly ask for
one of the following answer types in the query: name (“what
is the name of...”), properties (“what are the properties of...”),
location (“what is the location of...”), distance (“how far
is...”), and count (“how many...”). In general, we are interested
in predicting the text answer such as “brown” for the query
“what is the color of the horse?”. However, we may also
be interested in pointing to the relevant context objects or
properties (in the structural context representation). Thus, for
each query, we provide both the text answer as well as the
relevant context node IDs (from CR and CT ).

Data
With this data generation framework, we can create arbitrary
amounts of simulated data. Each data sample contains a (C,
Q, A) triple. There are several parameters of the world that
affect the difficulty of question answering, including the size
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Query Class Clause types Example

Property name what are the properties of the objects that have the name alice?
tag what are the names of the objects that has the property brown?
absolute cardinal what are the locations of the objects where the x coordinate is less than 4?

Temporal cardinal what is the name of the object that increased x the most?
relative what is the name of the object that moved to my left the most?
farthest moved object what is the name of the object that moved the farthest?
location at time what was the location of bob at the beginning?
action what did you do?
object tracking where would the ball be if i moved to (4,7,2)?

Geometric absolute distance what is the count of the objects where the distance to (2, 6, 5) is greater than 3?
direction what are the names of the objects to my right?
closest object what is the name of the object that is closest to the cow?
max direction what is the name of the object that is the most to my right?
distance between how far is the horse from you?
distance from position what is the location 3 steps to your right?

Table 1: Query clause types. We categorize the queries we can ask the agent into three separate classes. Within each class, there
are several clause types. Italicized clauses cannot be combined with others.

of the 3d gridworld (e.g., 15x15x15), the set of possible ob-
jects in the world (e.g., bob, alice, ...), and the set of possible
properties that can belong to the objects (e.g. cow, horse, blue,
green, ...). The number of time-steps and number of snapshots
also crucially affect the difficulty of the problem. Similarly,
the distributions over the queries (e.g., how many and what
kind of clauses) can make the problem more difficult.

Related Work
Real-world QA datasets have long been used to test different
aspects of ML model performance such as reading compre-
hension (Rajpurkar et al. 2016; Hill et al. 2016), common-
sense reasoning (Talmor et al. 2019), multi-hop reason-
ing (Yang et al. 2018b), and visual understanding (Agrawal
et al. 2015; Hudson and Manning 2019). While real-world
datasets can provide reliable performance benchmarks and
better approximate the problems faced by practitioners, syn-
thetic datasets can allow for more control and the ability
to isolate the exact limitations of current models. Notably,
bAbI (Weston et al. 2016) is a set of toy QA tasks testing
various reasoning abilities over short text stories that showed
the limitations recurrent neural networks. Since proposed,
all bAbI tasks have been solved by novel memory architec-
tures (Henaff et al. 2017; Dehghani et al. 2019). An gridworld
environment for embodied agents with language instructions
for tasks is described in (Chevalier-Boisvert et al. 2018); our
work here is complementary, giving question-answer pairs
based on abstracted environment histories.

CLEVR (Johnson et al. 2017) is a popular synthetic data
for testing visual reasoning given text queries. (Yi et al. 2020)
extends CLEVR to reasoning over temporal events in videos.
Embodied question answering (EmbodiedQA) (Das et al.
2018) proposes a task where an agent must navigate an envi-
ronment in order to answer a question. VideoNavQA (Cangea
et al. 2019) was proposed in the EmbodiedQA domain to eval-
uate short video-question pairs. Our work has elements of
each these. The agent is embodied, and might need to an-
swer questions about its actions or hypotheticals, but does

not need to act or change the current state of the environment
to answer (as in EmbodiedQA). In comparison to the Embod-
iedQA dataset where the agent has to query the environment
to get more information, our setting doesn’t require the agent
to interact and get more information. As in (Yi et al. 2020),
the agent needs to be able to reason over spatio-temporal
events, in our case, including its own actions. As in CLEVR,
we use programmatically generated queries to probe various
reasoning modalities. One large difference between this work
and those is that we do not focus on computer vision. While
it is possible to render the scenes from our data generator,
our goal is to be agnostic about perceptual modality and ab-
stract away perceptual modeling, and to the extent possible,
focus on the reasoning aspects of the data. Within the vision
community, other works have approached the VQA problem
from this angle (Yi et al. 2018).

Because the agent’s abstracted world representation has
a database-like structure, our work falls into the literature
on ML for question answering on structured data, for exam-
ple (Pasupat and Liang 2015). Our structured Transformer
baseline is inspired by the literature on neural database rep-
resentation, for example (Wang et al. 2019; Yin et al. 2020),
and references therein. Our LM baseline is inspired by the
many works that flatten or otherwise textify databases, and
use pretrained language models as bases for neural query ex-
ecutors, e.g. (Thorne et al. 2020, 2021; Liu et al. 2021). There
are other fundamentally different approaches than these for
neural query execution, for example (Ren, Hu, and Leskovec
2020); our hope is that our data source is useful for exploring
these. (Tuan et al. 2022) introduce a Transformer to gener-
ate responses to questions by reasoning over differentiable
knowledge graphs in both task-oriented and domain specific
chit-chat dialogues. Our structured neural memory baseline
follows works such as (Locatello et al. 2020; Santoro et al.
2018). In this work, the relational “objects’ do not need to
be discovered by the learning algorithm, and their proper-
ties explicitly given to the model to use in featurizing the
objects. Our work is most related to the pigpen environment
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Figure 3: (left): Exact match error for the four different generated datasets. Sequence Context + GPT-2 outperform the Structured
+ Transformer method in all datasets. (middle, right): Loss curves for the All queries dataset. We show the mean loss with
min/max error bars over all hyperparameters for the first 1,000 epochs. The pre-trained GPT-2 model learns much faster than the
from-scratch relational model.

of (Zellers et al. 2021). In comparison to that work, ours uses
more impoverished templated language, but has a larger and
more flexible space of queries. The orientation of our work
is also different: in (Zellers et al. 2021) the learner is given
only a few labeled QA examples (or dynamics prediction
examples) but can use many “unsupervised” state-transitions
to build a world-dynamics model. In our work, we allow large
numbers of labeled context-query-answer examples; but the
difficulty of the queries makes the task non-trivial.

TextWorld (Côté et al. 2018) and and QAit (Yuan et al.
2019) are text-based environments for game play and ques-
tion answering that require interactive reasoning. The main
difference is that our generator is grounded in a 3D gridworld
scene, and there is both a user and interactive agent.

We build our data generator on top of the Droidlet agent
(Pratik et al. 2021), in part using the grammar in (Srinet et al.
2020) to generate the queries and using the Droidlet agent
memory to execute them. This work points the way towards
using neural networks to execute the functions of the Droidlet
agent memory (and hopefully can be used as a resource for
training other agent-memory models).

Experiments
Since the agent’s memory or state can take different forms
(sequence and structured), we compare two separate models
for answering queries about the context of the world. We con-
sider four different datasets for our experiments, as covered
in Table 1: Property queries, Temporal queries, Geometric
queries, and All queries, where All queries is the three pre-
vious categories combined (each query type has roughly the
same likelihood of occurring - we provide the configuration
files in the code).

Each of these except for Properties (which do not require
temporal information) is generated using two time snapshots
with 50 world steps, which gives enough steps for actions to
occur. Properties queries use one snapshot and zero world
steps. For all queries, we place five NPCs in the world, one
of which is a “player” that might have given a command. For
all query types, we choose the world to be 15x15x15.

Models
We generate data as described in the Environment, Queries,
and Data section, and analyze the performance of some base-
line models trained on this data.

Text Sequence Context. Since the text sequence form of
the context is English text, we use a language model to read
the context (Ct) and query (Qt), and predict the correct an-
swer tokens sequentially (if there are multiple outputs, they
are ordered alphabetically). We use the pretrained GPT-2
small model (Radford et al. 2019) from the HuggingFace
library (Wolf et al. 2019) (licensed under the Apache License
2.0) to predict all relevant tokens sequentially:

Ŵ = GPT2([Ct, Qt]), (1)

where Ŵ ∈ RL×V is a soft-max normalized matrix of se-
quence length L and vocabulary size V , and [ ] is the concate-
nation operation. This model is fine-tuned using a sum of the
cross entropy between each token prediction Ŵi and ground
truth token Wi:

Ltext = −
∑
i∈S

∑
j∈V

Wij log Ŵij . (2)

Structured Context. While the text Sequence Context is
useful in that it allows easy application of standard pre-
trained models, it may be that for certain tasks other rep-
resentations are more appropriate. We also show results with
simple models that are designed around the relational struc-
ture of the context. Given a set of ρ reference objects and τ
triples, we first featurize the nodes using a learned convolu-
tional layer given the word, float, and hash values as outlined
in the Environment, Queries, and Data section. The output
of the featurizer layer gives reference object embeddings
CR ∈ Rρ×d, and triple embeddings CT ∈ Rτ×d. Similarly,
text queries Qt ∈ Rr×d are created using a learned lookup
table from the query tokens. We use a Transformer (Vaswani
et al. 2017) encoder to process the context and query. The
output of the encoder is then used to predict both: the text
answer as well as the relevant context memory IDs. We use
a Transformer decoder for the text prediction, and a simple
linear layer to predict the memory values:

8442



104 106

Training data size

20

40

60

80
Va

lid
at

io
n 

er
ro

r (
%

)

Property

104 106

Training data size

20

40

60

80

Temporal

104 106

Training data size

20

40

60

80

Geometric

104 106

Training data size

20

40

60

80

All

Sequence + GPT-2 Structured + Transformer
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(C ′
T , C

′
R, Q

′
t) = Encoder([CT , CR, Qt]) (3)

m̂ = MemidDecoder([C ′
R, C

′
T ]) (4)

ŵ = TextDecoder([C ′
T , C

′
R, Q

′
t]), (5)

where m̂ ∈ Rρ is predicted relevant memids, and ŵ ∈
RV represents predicted relevant text tokens. This model
is trained using a cross-entropy text token loss (eq 2) and
cross-entropy memid loss from the relevant memids m ∈ Rρ:

Lmemid = −
C∑
i=1

m̂i log (mi) . (6)

The total loss is a weighted sum of the two losses: Ltext +
λ · Lmemid, where λ = 0.5.

In the Sequence Context, the entities are represented as
a set, with defined relationships between them. Therefore,
encoding temporal information is not straightforward. To do
so, we add a special “time” embedding to each Sequence
Context node. That is, for timestep 0, we add the time=0
embedding, for timestep 1, we add the time=1 embedding.

For the Sequence Context, the model will return the rele-
vant memory IDs, a text sequence answer, or both. The text
output prediction is shown in Fig. 2.

Relational Embedding. One important form of structure
in data is relations where entities are connected to other enti-
ties. In our data, for example, triple nodes are connected to
object nodes by R_id. Since the vanilla Transformer without
positional embeddings treats input tokens as a set, it lacks
a mechanism for taking account of this relational informa-
tion. Thus, we propose a novel way of encoding relational
information directly into the self-attention mechanism of the
Sequence Context Transformer model. Specifically, we add
an extra term to the softmax attention:

aij = Softmax(qTi kj + qTi rij) (7)

Here rij is a relation embedding vector corresponding to the
relation type between token i and j. Relation embeddings can
be used to encode various types of relations. We note that the
commonly used relative position embeddings (Sukhbaatar
et al. 2015; Shaw, Uszkoreit, and Vaswani 2018) are a spe-
cial case of relation embeddings where rij = ei−j ; more

sophisticated relation embeddings have appeared in (Bergen,
O’Donnell, and Bahdanau 2021).

Model and Training Details
All our models are trained using Adam (Kingma and Ba
2014) for 5,000 epochs, where each epoch is over a chunk
of 10,000 training samples. Since we are generating the data,
we vary the training samples from 1k to 1M, and use a vali-
dation set of 10k samples. We use a linear warmup of 10,000
steps and cosine decay (Loshchilov and Hutter 2016). For the
GPT2 model, we consider learning rates {1e-4, 5e-4, 1e-5}
using a batch size of 32. For the structured model, we con-
sider learning rates {1e-4, 5e-4, 1e-5}, batch size 32, layers
{2, 3}, and embedding dimensions {256, 512}. Hyperparam-
eters were chosen with arbitrary initial values and increased
until validation performance decreased or resources were
depleted. The best performing structured model has 74.58M
parameters, whereas GPT-2 small has 325.89M. All words
are encoded with the GPT-2 tokenizer.

Results
Fig. 3 (left) shows the results for the four different dataset
versions we consider. We report the exact match error for all
data splits. That is,

Exact Match Error =
1

n

n∑
i=1

I
(
yi ̸= ŷi

)
, (8)

where yi ∈ RN are the N ground truth tokens for sample i,
and ŷi are the top N predicted tokens. Fig. 3 (right) shows
the loss curves for the All queries dataset.

For property and geometric queries, the Sequence Context
+ GPT-2 method performs the best. Since GPT-2 is pre-trained
on millions of samples, it can easily learn basic property
queries such as “what is the color of bob?”. GPT-2 has a
near zero test set loss for the properties queries. Geometric
queries, while difficult for both models to answer is solved
more effectively by GPT-2.

Table 2 (top) shows GPT-2 model variation studies for the
All queries dataset. Notably, we test the performance of a
Sequence Context + randomly initialized GPT-2 model (i.e.
one with the same architecture, but not pretrained). We see
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Model Variation Train Loss Test Loss Test Err

GPT-2
sm + rand init 0.361 1.912 47.1%
sm + pretrain 0.015 0.710 14.9%
med + pretrain 0.012 0.635 13.8%

Transfomer relational emb 0.230 0.921 19.7%
random hash 0.630 1.393 30.0%

Table 2: Variations of models (sm=small, med=medium). Pre-
training is a key component of the GPT-2 model success, even
when given large numbers of training examples. Relational
embeddings result in a slightly lower test loss than random-
hash in the graph-structured models.

that the performance is worse than that of the Structured Con-
text + Transformer. This indicates that the primary reason
for the GPT-2 model achieving the best results is due to the
pretraining. Table 2 (bottom) shows a Structured Context +
Transformer method variation for the All queries dataset. We
consider an alternative to the relational embeddings proposed
in the Models section, which is adding random hash embed-
dings to the nodes, or tokens, which are connected to each
other in the Sequence Context representation. This method
performs slightly worse than relational embeddings, hinting
that a more explicit representation of the context structure is
important. Fig. 5 shows a 2-snapshot scene from our test set.

Finally, Fig. 4 shows the result of our baseline models
when using varying amounts of training samples. Since our
data source can generate arbitrary amounts of data, it’s im-
portant to understand how much data is needed to solve
certain problems. Notably, most of the datasets require at
least 100,000 samples to achieve a reasonable validation loss.
In addition, the Sequence + GPT-2 model significantly out-
performs the Structured + Transformer model on the datasets
with small amounts of training samples.

Conclusion
In this work, we introduced a framework for generating world
state contexts with agents, queries, and their answers. This
provides researchers with a flexible sandbox for training and
testing reasoning in embodied agents. Notably, our sequential
data format lets us easily evaluate the ability of large language
models such as GPT to understand a physical world.

We show baseline results with two representations of the
world state context: a pure text sequence representation that
can be used by any off-the-shelf language model, as well as
a structured representation of the entities in the world. We
demonstrate the ability of the models to answer queries in
several query domains, such as temporal or geometric.

We emphasize that our goal in this work is not to create a
fixed static data set, but a resource for generating data. Many
of our experimental choices (w.r.t. environment and query
difficulty) were aimed to allow the baseline models some
traction, but not able to solve the tasks completely.

In particular, we find it likely that large pre-trained lan-
guage models could do better than the GPT-2 base models
we used with the described data generation parameters. On
the other hand, the difficulty of the problem can be scaled
trivially by increasing the number of possible reference ob-

t=0

t=1agent speaker honey
(chicken) (sheep) (sheep)

chicken
(sheep)

Sequence Context + GPT-2: “honey”
Structured Context + Transformer: “honey”

Sequence Context: "agent is at location (13,7,0). agent has pitch -1.1 and 
yaw -3.1. agent has property agent. agent has property self. axle is at 
location (0,7,14). axle has pitch 0.5 and yaw 1.4. axle has property 
chicken. axle has property gray…agent has pitch -1.1 and yaw -3.1. agent 
has property agent. agent has property self. axle is at location (1,7,14).…"

Query Answer Sequence 
+ GPT-2

Structured + 
Transformer

which object moved the farthest? honey honey honey

what is the count of the object 
that has the property sheep?

2 2 2

what is the name of the object 
that is to my front?

axle bart agent

agent

speaker

honey

axle

john

bart

honey

agent

speaker

axle

john

bart

Sequence Context: "agent is at location (13,7,0). agent 
has pitch -1.1 and yaw -3.1. agent has property agent. 
agent has property self. axle is at location (0,7,14). axle 
has pitch 0.5 and yaw 1.4. axle has property chicken. 
axle has property gray. john is at location (6,7,8). john 
has pitch -0.8 and yaw -0.5. john has property sheep. 
john has property white. bart is at location (2,7,12). 
bart has pitch 0.8 and yaw 2.7. bart has property 
sheep. bart has property white. honey is at location 
(3,7,0). honey has pitch -1.3 and yaw -0.5. honey has 
property chicken. honey has property black. speaker is 
at location (2,7,9). speaker has pitch -0.4 and yaw 0.6. 
inst_seg is at location (8,6,4). inst_seg has property 
hollow_cube. inst_seg is at location (12,6,2). inst_seg 
has property hole. inst_seg is at location (7,6,4). 
inst_seg has property hole. agent is at location 
(13,7,0). agent has pitch -1.1 and yaw -3.1. agent has 
property agent. agent has property self. axle is at 
location (1,7,14). axle has pitch 0.5 and yaw 1.4. axle 
has property chicken. axle has property gray. john is at 
location (6,7,8). john has pitch -0.8 and yaw -0.5. john 
has property sheep. john has property white. bart is at 
location (1,7,12). bart has pitch 0.8 and yaw 2.7. bart 
has property sheep. bart has property white. honey is 
at location (5,7,4). honey has pitch -1.3 and yaw -0.5. 
honey has property chicken. honey has property black. 
speaker is at location (2,7,9). speaker has pitch -0.4 
and yaw 0.6. inst_seg is at location (8,6,4). inst_seg 
has property hollow_cube. inst_seg is at location 
(12,6,2). inst_seg has property hole. inst_seg is at 
location (7,6,4). inst_seg has property hole"

Figure 5: Sample scene with two snapshots. The chicken
named “honey” moves from the bottom right toward the cen-
ter, and some other objects move slightly. Both models cor-
rectly answer the query “which object moved the farthest?”.

jects and properties, by increasing the number of reference
objects in the world and increasing the number of instantiated
properties; by making the world bigger, and by increasing
the time-length of episodes and the number of snapshots
recorded. If nothing else, these changes would quickly lead
to the context being too large to fit in the memory of a stan-
dard LM, and necessitating a large-memory LM (Lample et al.
2019; Rae et al. 2019; Beltagy, Peters, and Cohan 2020); or
leading to other approaches e.g. (Ji et al. 2017). Other, more
subtle difficulties can be introduced in straightforward ways
by reducing full observability, or otherwise asking queries
that cannot be answered with the information in the context,
requiring agents some amount of meta-cognition and/or envi-
ronment actions to find the answers, as in (Das et al. 2018).

In future work, we plan to introduce more query types,
including arithmetic and hypotheticals. We hope that re-
searchers will use the data generator as a flexible resource
for augmenting their own agent training or LM pre-training,
or for exploring new models for database reasoning.
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