
LONE SAMPLER : Graph Node Embeddings by Coordinated Local Neighborhood
Sampling

Konstantin Kutzkov
Teva Pharmaceuticals
kutzkov@gmail.com

Abstract

Local graph neighborhood sampling is a fundamental com-
putational problem that is at the heart of algorithms for node
representation learning. Several works have presented algo-
rithms for learning discrete node embeddings where graph
nodes are represented by discrete features such as attributes
of neighborhood nodes. Discrete embeddings offer several
advantages compared to continuous word2vec-like node em-
beddings: ease of computation, scalability, and interpretabil-
ity. We present LONE SAMPLER , a suite of algorithms for
generating discrete node embeddings by Local Neighborhood
Sampling, and address two shortcomings of previous work.
First, our algorithms have rigorously understood theoretical
properties. Second, we show how to generate approximate ex-
plicit vector maps that avoid the expensive computation of a
Gram matrix for the training of a kernel model. Experiments
on benchmark datasets confirm the theoretical findings and
demonstrate the advantages of the proposed methods.

Introduction
Graphs are ubiquitous representation for structured data.
They model naturally occurring relations between objects
and, in a sense, generalize sequential data to more com-
plex dependencies. Many algorithms originally designed for
learning from sequential data are thus generalized to learn-
ing from graphs. Learning continuous vector representations
of graph nodes, or node embeddings, have become an in-
tegral part of the graph learning toolbox, with applications
ranging from link prediction (Grover and Leskovec 2016)
to graph compression (Ahmed et al. 2017). The first al-
gorithm (Perozzi, Al-Rfou, and Skiena 2014) for learning
node embeddings generates random walks, starting from
each node in the graph, and then feeds the sequences of vis-
ited nodes into a word embedding learning algorithm such as
word2vec (Mikolov et al. 2013). The approach was extended
to a more general setting where random walks can consider
different properties of the local neighborhood (Grover and
Leskovec 2016; Tang et al. 2015; Tsitsulin et al. 2018). An
alternative method for training continuous node embeddings
is based on matrix factorization of (powers of) the graph ad-
jacency matrix.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 1: Is u2 or u4 more similar to u3?

As an alternative, researchers proposed to use coordinated
node sampling for training discrete node embeddings (Wu
et al. 2018; Yang et al. 2019). In this setting, each sample
is an independent estimator of the similarity between nodes.
(There are different notions of node similarity but most re-
flect how easy it is to reach one node from another.) Thus,
sampled nodes themselves can be coordinates of the embed-
ding vectors. We can then compare two node embeddings
by their Hamming distance. There are several advantages
of discrete embeddings over continuous embeddings. First,
we avoid the need to train a (possibly slow) word2vec-like
model. Second, the samples are the original graph nodes and
contain all meta-information provided in the original input,
be it personal data of users of a social network or the weather
conditions at railway stations. By sampling, all this infor-
mation is preserved and this can lead to the design of in-
terpretable algorithms. And finally, the algorithms are truly
local and can deal with massive or distributed graphs if only
access to the local neighborhood of each node is possible.

The ultimate goal for node embeddings is to represent the
structural roles of nodes by fixed size vectors which reflect
the similarity between nodes. However, there are different
notions of node similarity. As an example, consider the toy
graph in Figure 1. It seems that u4 is similar to u3 because
they are part of the same local clique. But on the the other
hand one can argue that u1 is more similar to u3 than u4

because they are all directly connected to a hub node like v2.
The goal of the present work is to design scalable embedding
algorithms that can handle different similarity objectives and
have rigorously understood properties.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8413

The main contributions of the paper are as follows:

• Theoretical insights. We formally define the problem of
coordinated local node sampling and present novel dis-
crete embedding algorithms that, unlike previous works
based on heuristics, provably preserve the similarity be-
tween nodes with respect to different objectives. Further-
more, the algorithms are highly efficient.

• Scalable model training. We show how to use the dis-
crete embeddings in scalable kernel models. More pre-
cisely, we design methods that approximate the Hamming
kernel by explicit feature maps such that we can train a
linear support-vector machine for node classification. Pre-
vious works require the computation of a Gram matrix
which is unfeasible for massive graphs.

Organization of the Paper In the next section we present
notation and outline the problem setting. In Section we
present three algorithms for local neighborhood sampling
according to different objectives. We analyze the computa-
tional complexity of each approach and the properties of the
generated samples. In Section we present an approach to the
generation of explicit feature maps for the Hamming kernel,
thus enabling the use of discrete node embeddings in scal-
able kernel models. We discuss related work in Section . An
experimental evaluation is presented in Section . The paper
is concluded in Section .

Notation and Overview of Techniques
The input is a graph G = (V,E) over n = |V | nodes and
m = |E| edges. The distance d(u, v) between nodes u and
v is the minimum number of edges that need to be traversed
in order to reach u from v, i.e., the shortest path from u to
v. We consider undirected graphs, thus d(u, v) = d(v, u).
Also, we assume connected graphs, thus d(u, v) < ∞ for
all u, v ∈ V . These assumptions are however only for the
ease of presentation, all algorithms work for directed or dis-
connected graphs. The k-hop neighbors of node u is the set
of nodes Nk(u) = {v ∈ V : d(u, v) ≤ k}. The set of neigh-
bors of node u is denoted as N(u). We call the subgraph
induced by Nk(u) the local k-hop neighborhood of u. A dis-
crete embedding vector is a fixed size vector whose entries
come from a discrete set. For example, by sampling with re-
placements ℓ nodes from the k-hop neighborhood of each
node we create embeddings that consists of other nodes. Or
attributes of the neighboring nodes, if existent.

We say q̃ is an 1 ± ε-approximation of a quantity q if
(1− ε)q ≤ q̃ ≤ (1 + ε)q.

Sketch-Based Coordinated Sampling Our algorithms
build upon sketching techniques for massive data summa-
rization. In a nutshell, sketching replaces a vector x ∈ Rn

by a compact data structure sketchx ∈ Rd, d ≪ n, that
approximately preserves many properties of the original x.
In coordinated sampling (Cohen 2016), given a universe
of elements U , and a set of sets {Si ⊆ U}, the goal is
to draw samples from U such that each set Si is repre-
sented by a compact summary sketchSi

. It should hold
sim(sketchSi

, sketchSj
) ≈ sim(Si, Sj), i.e., the sum-

Algorithm 1: Coordinated local neighborhood sampling.

Input: Graph G = (V,E)
for each u ∈ V do

Initialize sketchu with node u
for i = 1 to k do

for each u ∈ V do
Update sketchu by merging all sketchv for v ∈ N(u)
into sketchu

for u ∈ V do
Return a node from sketchu as a sample for u.

maries approximately preserve the similarity between the
original sets, for different similarity measures.

Lp Sampling The p-norm of vector x ∈ Rn is ∥x∥p =

(
∑n

i=1 |xi|p)1/p for p ∈ N ∪ {0}. We call Lp sampling a
sampling procedure that returns each coordinate xi from x

with probability |xi|p
∥x∥p

p
.

Work Objective Let fku be the k-hop frequency vectors
of node u such that fku [z] is the number of unique paths of
length at most k from u to z. Let su ∈ Nk(u) be the node
returned by an algorithm A as a sample for node u. We say
that A is a coordinated sampling algorithm with respect to a
similarity measure sim : V × V → [0, 1] iff

Pr[su = sv] = sim(fku , f
k
v) for u, v ∈ V

The goal of our work is the design of scalable algorithms
for coordinated Lp sampling from local node neighborhoods
with rigorously understood properties. We can also phrase
the problem in graph algebra terms. Let A ∈ {0, 1}n×n be
the adjacency matrix of the graph. The objective is to im-
plement coordinated Lp sampling from each row of Mk =∑k

i=0 A
i without explicitly generating the Ai. By sketching

the local k-hop neighborhood frequency vector fku of each
node u we will design efficient Lp sampling algorithms.

LONE SAMPLER
The general form of our approach is in Figure 1. We first
initialize a sketch at each node u with the node u itself. For
k iterations, for each node we collect the sketches from its
neighbors and aggregate them into a single sketch. At the
end we sample from each node’s sketch. The algorithm is
used to generate a single coordinate of the embedding vector
of each node. For each coordinate we will use a different
random seed.

Consider a trivial example. We initialize sketchu with a
sparse n-dimensional binary vector such that sketchu[u] =
1 is the only nonzero coordinate for all u ∈ V . Merging the
sketches is simply entrywise vector addition. We can for-
mally show that after k iterations sketchu is exactly the k-
hop frequency vector of u, i.e., sketch(k)

u [v] = fku [v]. We
need to address the following issues: i) Storing the entire
frequency vectors fku is very inefficient. Even for smaller val-
ues of k, we are likely to end up with dense n-dimensional
sketches as most real graphs have a small diameter. ii) How
can we get coordinated samples from the different sketches?

8414

Coordinated Uniform (L0) Sampling
We first present a simple coordinated sampling algorithm
for generating samples from the local neighborhood of each
node. The approach builds upon min-wise independent per-
mutations (Broder et al. 2000), a technique for estimating the
Jaccard similarity between sets. Assume we are given two
sets A ⊆ U and B ⊆ U , where U is a universe of elements,
for example all integers. We want to estimate the fraction
|A∩B|
|A∪B| . Let π : U → U be a random permutation of the ele-

ments in U . With probability |A∩B|
|A∪B| the smallest element in

A ∪ B with respect to the total order defined by π is con-
tained in A∩B. The indicator variable denoting whether the
smallest elements in π(A) and π(B) are identical is an unbi-
ased estimator of the Jaccard similarity J(A,B). The mean
of t = O(1

αε2) such estimators is an 1± ε-approximation of
J(A,B) ≥ α with high probability.

An algorithm for sampling uniformly from the k-hop
neighborhood of node u easily follows, see Algorithm 2.
We implement a random permutation on the n nodes by
generating a random number for each node r : V →
{0, 1, . . . , ℓ− 1}. For a sufficiently large ℓ with high proba-
bility r is a bijective function and thus it implements a ran-
dom permutation1. For each node u, sketchu is initialized
with (r(u), u), i.e., the sketch is just a single (random num-
ber, node) pair. The aggregation after each iteration is storing
the pair with the smallest random number from u’s neigh-
bors, sketchu = min(rv,v):v∈N(u) sketchv . After k itera-
tions at each node u we have the smallest number from the
set {r(v) : v ∈ Nk(u)}, i.e., we have sampled a node from
Nk(u) according to the permutation defined by the func-
tion r. The samples for any two nodes u and w are coor-
dinated as we work with the same permutation on the set
Nk(u)∪Nk(w) ⊆ V . The next theorem is a straightforward
corollary from the main result on minwise-independent per-
mutations (Broder et al. 2000):
Theorem 1 For all nodes u ∈ V , we can sample su ∈
Nk(u) with probability 1/|Nk(u)| in time O(mk) and space
O(m). For any pair of nodes u, v it holds

Pr[su = sv] =
|Nk(u) ∩Nk(v)|
|Nk(u) ∪Nk(v)|

In terms of linear algebra, the above algorithm is an effi-
cient implementation of the following naı̈ve approach: Let
A be the the adjacency matrix of G. Randomly permute the
columns of Mk =

∑k
i=0 A

i, and for each row in the updated
Mk select the first nonzero coordinate. Thus, the algorithm
implements coordinated L0 sampling from each row of Mk

but avoids the explicit generation of Mk.

Coordinated Lp Sampling
The solution for uniform sampling is simple and elegant but
it does not fully consider the graph structure. It only consid-
ers if there is a path between two nodes u and v but, unlike
in random walks, not how many paths there are between u
and v. We design coordinated sampling algorithms such that
easily accessible nodes are more likely to be sampled.

1For ℓ = n2/δ with probability 1− δ the function is bijective.

Algorithm 2: L0 and L1 sampling for single coordinate.
L0 SAMPLING

Input: Graph G = (V,E), random function r : V → (0, 1]
for each u ∈ V do

Initialize sketchu with (r(u), u)
for i = 1 to k do

for each u ∈ V do
for each v ∈ N(v) do

sketchu = min(sketchu, sketchv)
for u ∈ V do

Return the node z from the pair sketchu = (r(z), z)

L1 SAMPLING

Input: Graph G = (V,E), random function r : V → (0, 1], int ℓ
for each u ∈ V do

Initialize sketchu with node, weight pair (u,w(u) =
1/r(u))

for i = 1 to k do
for each u ∈ V do

for each v ∈ N(v) do
Update sketchu with sketchv , keeping the top ℓ (node,
weight) pairs.

for u ∈ V do
Return node z from sketchu if w(z) ≥ ∥fku∥1

Let us present an approach to Lp sampling from data
streams for p ∈ (0, 2] (Jowhari, Saglam, and Tardos 2011).
Let S be a data stream of pairs i, wi where i is the item
and wi ∈ R is the weight update for item i, for i ∈ [n].
For example, the network traffic for a website where user
i spends wi seconds at the site. The objective is Lp sam-
pling from the frequency vector of the stream, i.e., return
each item i with probability roughly |f [i]|p/∥f∥pp, where
f [i] =

∑
(i,wi)∈S wi. (Items can occur multiple times in

the stream.) The problem has a simple solution if we can
afford to store the entire frequency vector f . The solution
in (Jowhari, Saglam, and Tardos 2011) is to reweight each
item by scaling it by a random number 1/r1/pi for a uniform
random ri ∈ (0, 1]. Let zi = f [i]/r

1/p
i be the new weight of

item i. The crucial observation is that

Pr[zi ≥ ∥f∥p] = Pr[ri ≤ f [i]p/∥f∥pp] =
f [i]p

∥f∥pp
One can show that with constant probability there exists a
unique item i with zi ≥ ∥f∥p. Thus, if we know the value
of ∥f∥p, a space-efficient solution is to keep a sketch data
structure from which we can detect the heavy hitter that will
be the sampled item. Estimating the p-norm of a frequency
vector for p ∈ (0, 2] is a fundamental problem with known
solutions (Charikar, Chen, and Farach-Colton 2004).

There are two challenges we need to address when apply-
ing the above approach to local graph neighborhood sam-
pling. First, how do we get coordinated samples? Second, if
we explicitly generate all entries in the frequency vector of
the local neighborhood this would result in time complex-
ity of O(

∑k
i=0 nnz(A

i)), nnz(A) denoting the number of
non-zero elements in the adjacency matrix A.

For the first issue, we achieve coordinated sampling by
reweighting the nodes u ∈ V by 1/ru for random numbers

8415

ru ∈ (0, 1] for u ∈ V . An inefficient solution works then
as follows. For each node u we generate a random number
ru ∈ (0, 1], initialize w0

u[u] = 1/ru and set w0
u[v] = 0 for

all v ̸= u. We iterate over the neighbor nodes and update
the vector wk

u = wk−1
u ⊕

∑
v∈N(u) w

k−1
v where ⊕ denotes

entrywise vector addition. We sample a node v iff wu[v] ≥
∥fku∥1. (Observe that ∥fku∥1 can be computed exactly by the
same iterative procedure.)

Our L1 sampling solution in Algorithm 2 is based on the
idea of mergeable sketches (Agarwal et al. 2013) such for
any vectors x, y ∈ Rn it holds sketch(x+y) = sketch(x)+
sketch(y). Following the LONE SAMPLER template from
Algorithm 1, we iteratively update the sketches at each
node. The sketch collected in the i-th iteration at node
u results from merging the sketches in N(u) at iteration
i − 1, and summarizes the i-hop neighborhood Ni(u).
(Jowhari, Saglam, and Tardos 2011) use the CountSketch
data structure (Charikar, Chen, and Farach-Colton 2004).
But a CountSketch is just an array of counters from which
the frequency of an item can be estimated. This wouldn’t al-
low us to efficiently retrieve the heavy hitter from the sketch
as we would need to query the sketch for all k-hop neigh-
borsof each node. (In the setting in (Jowhari, Saglam, and
Tardos 2011) a single vector is being updated in a stream-
ing fashion. After preprocessing the stream we can afford
to query the sketch for each vector index as this wouldn’t
increase the asymptotic complexity of the algorithm.)

Here comes the main algorithmic novelty of our approach.
Observing that in our setting all weight updates are strictly
positive, we design a solution by using another kind of
summarization algorithms for frequent items mining, the so
called counter based algorithms (Karp, Shenker, and Pa-
padimitriou 2003). In this family of algorithms, the sketch
consists of an explicitly maintained list of frequent items
candidates. For a sufficiently large yet compact sketch a
heavy hitter is guaranteed to be in the sketch, thus the sam-
pled node will be the heaviest node in the sketch. The algo-
rithm is very efficient as we only need to merge the compact
sketches at each node in each iteration.

The above described algorithm can be phrased again in
terms of the adjacency matrix A. Let Mk =

∑k
i=0 A

i ·R−1

where R ∈ Rn×n is a diagonal matrix with diagonal entries
randomly selected from (0, 1]. Then from the i-th row we
return as sample the index j with the largest value Mi,j for
which the sampling condition Mi,j ≥ ∥A(k)

i,: ∥1 is satisfied.
Sampling in this way is coordinated because the j-th column
of A(k) is multiplied by the same random value 1/rj , thus a
node j with a small rj is more likely to be sampled.

The formal proof for the next theorem is quite technical
and provided in the appendix but at a high level we show that
with high probability we can efficiently detect a node that
satisfies the sampling condition using a sketch with O(log n)
entries at each node.

Theorem 2 Let G be a graph over n nodes and m edges,
and let fku be the frequency vector of the k-hop neighbor-
hood of node u ∈ V . For all u ∈ V , we can sample a node
su ∈ Nk(u) with probability fku [su]

∥fku∥1
in time O(mk log n) and

space O(m+ n log n). For each pair of nodes u, v ∈ V

Pr[su = sv] =
∑
x∈V

min(
fku [x]

∥fku∥1
,
fkv [x]

∥fkv ∥1
)

For L2 sampling we can apply the same approach as for
L1 sampling. The only difference is that we need to reweight
each node u by 1/r

1/2
u for ru ∈ (0, 1] and compare the

weight of the sample candidate with ∥fku∥2. However, un-
like ∥fku∥1, we cannot compute exactly ∥fku∥2 during the k
iterations. But we can efficiently approximate the 2-norm of
a vector revealed in a streaming fashion, this is a fundamen-
tal computational problem for which algorithms with opti-
mal complexity have been designed (Charikar, Chen, and
Farach-Colton 2004). We show the following result:
Theorem 3 Let G be a graph over n nodes and m edges,
and let fku be the frequency vector of the k-hop neighbor-
hood of node u ∈ V . For all u ∈ V , we can sample a
node su ∈ Nk(u) with probability (1 ± ε)

fku [su]
2

∥fku∥2
2

in time

O(mk(1/ε2+log n)) and space O(m+n(1/ε2+log n)), for
a user-defined ε ∈ (0, 1). For each pair of nodes u, v ∈ V

Pr[su = sv] = (1± ε)
∑
x∈V

min(
fku [x]

2

∥fku∥22
,
fkv [x]

2

∥fkv ∥22
)

The similarity measures preserved in the above two theo-
rems may appear non-intuitive. In the appendix we discuss
that in a sense they approximate versions of the well-known
cosine similarity.

An Explicit Map for the Hamming Kernel
A typical application for node embeddings is node classifi-
cation. Previous works (Wu et al. 2018; Yang et al. 2019)
have proposed to train a kernel machine with a Hamming
kernel. The Hamming kernel is defined as the overlap of vec-
tors x, y ∈ Ud for a universe U: H(x, y) =

∑d
i=1 1(xi =

yi), i.e. the number of positions at which x and y are identi-
cal. However, this approach requires the explicit generation
of a precomputed Gram matrix with t2 entries, where t is the
number of training examples.

A solution would be to represent the embeddings by
sparse explicit vectors and train a highly efficient linear
SVM (Joachims 2006) model. For a universe size N , we can
represent each vector by a binary Nd-dimensional vector b
with exactly d nonzeros. But even a linear SVM would be
unfeasible as we will likely end up with dense decision vec-
tors with O(Nd) entries. We can use TensorSketch (Pham
and Pagh 2013), originally designed for the generation of ex-
plicit feature maps for the polynomial kernel. Mapping the
discrete vectors to lower dimensional sketches with O(1/ε2)
entries would preserve the Hamming kernel with an additive
error of εd. Observing that d can be a rather small constant,
we present a simple algorithm that is more space-efficient
than TensorSketch for d < 1/ε. The algorithm hashes each
nonzero coordinate of the explicit Nd-dimensional vector b
to a vector f(b) with d/ε coordinates. If there is a collision,
i.e., f(b)[i] = f(b)[j] for i ̸= j, we set f(b)[i] = 1 without
adding up f(b)[i] and f(b)[j] as in TensorSketch. We show
the following result:

8416

Theorem 4 Let U be a discrete space and x, y ∈ Ud for d ∈
N. For any ε ∈ (0, 1] there is a mapping f : Ud → {0, 1}D
such that D = ⌈d/ε⌉ and H(x, y) = f(x)T f(u) ± εd with
probability 2/3.

Related Work
Random Walk Based Embeddings Pioneering
approaches to learning word embeddings, such as
word2vec (Mikolov et al. 2013) and GloVe (Penning-
ton, Socher, and Manning 2014), have served as the basis
for graph representation learning. The main idea is that for
each graph node u, we learn how to predict u’s occurrence
from its context (Perozzi, Al-Rfou, and Skiena 2014). In
natural language the context of each word is the set of
surrounding words in a sequence, and for graph nodes
the context is the set of local neighbors, thus random
walks have been used to generate node sequences. Various
algorithms have been proposed that allow some flexibility
in selecting local neighbors according to different criteria
(Tang et al. 2015; Grover and Leskovec 2016; Zhou et al.
2017; Tsitsulin et al. 2018).

Matrix Factorization A branch of node embeddings al-
gorithms work by factorization of (powers of) the adjacency
matrix of the graph (Ou et al. 2016; Zhang et al. 2018).
These algorithms have well-understood properties but can be
inefficient as even if the adjacency matrix is usually sparse,
its powers can be dense, e.g., the average distance between
any two users in the Facebook graph is only 4 (Backstrom
et al. 2012). The computational complexity is improved us-
ing advanced techniques from linear algebra.

Deep Learning Node embeddings can be also learned us-
ing graph neural networks (Hamilton, Ying, and Leskovec
2017). GNNs are inductive and can be applied to previously
unseen nodes, while the above discussed approaches, includ-
ing ours, are transductive and work only for a fixed graph.
This comes at the price of the typical deep learning disad-
vantages such as slow training and the need for careful hy-
perparameter tuning.

Coordinated Local Sampling Approaches close to ours
are NetHash (Wu et al. 2018) and NodeSketch (Yang et al.
2019). NetHash uses minwise hashing to produce embed-
dings for attributed graphs. However, it builds individual
rooted trees of depth k for each node and its complexity is
O(nt(m/n)k) where t is the maximum number of attributes
per node. LONE SAMPLER needs time O(nt) to get the at-
tribute with the minimum value for each node and thus the
total complexity is O(nt+mk). For k > 1 this is asymptot-
ically faster by a factor of t(m/n)k−1.

NodeSketch is a highly-efficient heuristic for coordinated
sampling from local neighborhoods. It works by recursively
sketching the neighborhood at each node until recursion
depth k is reached. It builds upon an algorithm for min-max
similarity estimation (Ioffe 2010). NodeSketch assigns first
random weights to nodes, similarly to LONE SAMPLER . In
the i-th recursive call of NodeSketch for each node u we
collect samples from N(u). For node u, a single node from
N(u) is selected and this is the crucial difference to LONE

SAMPLER . Working with a single node for each iteration is
prone to random effects, and the theoretical guarantees from
(Ioffe 2010) hold only for sampling from the 1-hop neigh-
borhood. Consider the graph in Figure 2. There are many
paths from node u to node z in N2(u). In the first iteration
of NodeSketch it is likely that most of u’s immediate neigh-
bors, the yellow nodes v1 to v12, will sample a blue node as
each vi is connected with many blue w nodes, i.e., svi = wj .
Thus, in the second iteration it is likely that u ends up with
a sample for u different from z. By keeping a sketch LONE
SAMPLER provably preserves the information that node z is
reachable from u by many different paths. And we control
the importance we assign to sampling easily reachable nodes
by reweighting the nodes by r

1/p
i .

Experiments

We evaluate LONE SAMPLER on six publicly available
graphs, summarized in Table 1. The first three datasets Cora,
Citeseer, Pubmed (Sen et al. 2008) are citation networks
where nodes correspond to scientific papers and edges to
citations. Each node is assigned a label describing the re-
search topic, and nodes are described by key words. LastFM
and Deezer represent the graphs of the online social net-
works of music streaming sites LastFM Asia and Deezer Eu-
rope (Rozemberczki and Sarkar 2020). The links represent
follower relationships and the vertex features are musicians
liked by the users. The labels in LastFM are the users’ na-
tionality, and for Deezer – the users’ gender. The GitWebML
graph represents a social network where labels correspond to
web or ML developers who have starred at least 10 reposi-
tories and edges to mutual follower relationships. Node fea-
tures are location, starred repositories, employer and e-mail
address (Rozemberczki, Allen, and Sarkar 2021).

We sample node attributes by using the base sampling al-
gorithm. For example, for each keyword kw describing the
citation network nodes we generate a random number rkw
and then at each node we sample keywords according to the
corresponding algorithm (e.g., we take the word with small-
est rkw for L0 sampling, sample according to min-max sam-
pling for NodeSketch (Yang et al. 2019), etc.)

We compare LONE SAMPLER against NodeSketch. Our
L0 sampling yields identical results to NetHash but, as dis-
cussed, our algorithm is much more efficient. Note that we
don’t compare with continuous embeddings. Such a compar-
ison can be found in (Yang et al. 2019) but, as argued in the
introduction, discrete embeddings offer various advantages
such as interpretability and scalability. For completeness, we
provide such a comparison in the full version of the paper.

We generated d = 50 samples from the k-hop neigh-
borhood of each node for k ∈ {1, 2, 3, 4}, resulting in
50-dimensional embeddings, using following methods: i) A
standard random walk (RW) of length k that returns the
last visited node. ii) NodeSketch (NS) as described in (Yang
et al. 2019). iii) LONE SAMPLER for Lp sampling for p ∈
{0, 1, 2}, using a sketch with 10 nodes for p ∈ {1, 2}. Note
that the random walk embeddings are of much lower quality
and some of the results are omitted here.

8417

u

v1 v12

z

w1 w19

Figure 2: NodeSketch (Yang et al. 2019) might miss that there are many length-2 paths from u to z.

GRAPH GRAPH STATISTICS EMBEDDING TIME (in seconds)

nodes edges classes features feats per node diameter | RW NodeSketch L0 L1/L2

Cora 2.7K 5.4K 7 1.4K 18.2 19 | 2.1 2.7 1.5 25.7

Citeseer 3.3K 4.7K 6 3.7K 36.1 28 | 3.3 3.8 2.3 30.4

PubMed 19.7K 44.3K 3 500 50.5 18 | 17.3 35.2 15.3 214.3

Deezer 28.2K 92.7K 2 31K 33.9 21 | 37.0 62.5 33.4 344.4

LastFM 7.6K 27.8K 18 7.8K 195.3 15 | 20.4 68.6 18.9 128.5

GitWebML 37.7K 289K 2 4K 18.3 7 | 70.3 112.4 63.2 609.1

Table 1: Information on datasets and embedding generation time.

kernel SVM explicit map
Cora 0.3 0.7

Citeseer 0.5 1.2
Pubmed 26.3 12.2
Deezer 138 16.2
LastFM 2.1 2.4

GitWebML OOM 15.9

Table 2: SVM training and inference time for NodeSketch
(in seconds).

Embedding Evaluation
Running time The algorithms were implemented in
Python 3 and run on a Linux machine with 16 GB main
memory and a 4.3 GHz Ryzen 7 CPU. 2. In the right half of
Table 1 are results for the running time for 50-dimensional
embeddings generation. We observe that L0 sampling and
NodeSketch are highly efficient, L0 sampling is even faster
than random walks as we need to generate only a single ran-
dom number per node. L1/L2 sampling is slower which is
due to the fact that we update a sketch at each node.

Sketch Quality We set ε = 0.01 and as d = 50 the ex-
pected error for each inner product is bounded by 0.5. In the
full version of the paper we plot the ratio of the actual error
to the expected error for the sketching procedure from The-
orem 4, and for TensorSketch for a sample of 1,000 vector
pairs. The higher variance in TensorSketch leads to outliers.

Node Classification We consider node classification for
comparison of the different approaches. We use a linear

2Code at https://github.com/konstantinkutzkov/lone sampler

SVM model with explicit feature maps as presented in The-
orem 4, with tabulation hashing known to approximate the
behavior of truly random hash functions (Pǎtraşcu and Tho-
rup 2012). We split the data into 80% for training and 20%
for testing, and use default SVM regularization parameters.

Training and Prediction Time In Table 2 we compare the
running time for training and prediction of the linear SVM
model as presented in Theorem 4, and an SVM model with
precomputed kernel. The embedding vectors are computed
by NodeSketch (the values for LONE SAMPLER are simi-
lar). Kernel SVMs are considerably slower for larger graphs
and for GitWebML result in out-of-memory errors.

Classification Accuracy We evaluate the performance of
the algorithms with respect to micro-AUC and macro-AUC.
We report the mean and standard deviation of 10 indepen-
dent train/test splits in Table 3. We see that overall L1 and
L2 sampling achieve the best results. In particular, L0 sam-
pling yields good results only for a smaller neighborhood
depth k, see details in the appendix. The reason is that for
larger k and a small graph diameter many nodes end up with
identical samples: for a connected graph with diameter k all
nodes will have the same sampled node as their k-hop neigh-
borhood is the node set V . In contrast, L1 and L2 sampling
do not suffer from this drawback as samples depend on the
graph structure, not just the set of reachable nodes.

Link Prediction We evaluate the generated sketches on a
link prediction task following a similar approach as in (Yang
et al. 2019). We remove 20% of the edges from each graph
such that the graph remains connected. Then we sample 5%
of all node pairs in the graph. We keep the 1,000 pairs with
the largest overlap. For these 1,000 pairs we compute the
precision@1000 and recall@1000. We report the mean and

8418

NodeSketch L0 L1 L2

Cora Micro AUC 0.972 ± 0.006 (hop 1) 0.970 ± 0.006 (hop 1) 0.974 ± 0.005 (hop 1) 0.973 ± 0.005 (hop 1)
Macro AUC 0.969 ± 0.006 (hop 1) 0.967 ± 0.006 (hop 1) 0.971 ± 0.005 (hop 1) 0.969 ± 0.005 (hop 1)

Citeseer Micro AUC 0.906 ± 0.008 (hop 2) 0.911 ± 0.009 (hop 1) 0.915 ± 0.007 (hop 2) 0.917 ± 0.007 (hop 2)
Macro AUC 0.891 ± 0.010 (hop 4) 0.892 ± 0.008 (hop 2) 0.898 ± 0.007 (hop 2) 0.903 ± 0.007 (hop 2)

PubMed Micro AUC 0.927 ± 0.003 (hop 1) 0.919 ± 0.002 (hop 1) 0.938 ± 0.002 (hop 2) 0.932 ± 0.002 (hop 2)
Macro AUC 0.924 ± 0.003 (hop 1) 0.915 ± 0.002 (hop 1) 0.935 ± 0.002 (hop 2) 0.928 ± 0.002 (hop 2)

DeezerEurope Micro AUC 0.588 ± 0.005 (hop 1) 0.589 ± 0.004 (hop 1) 0.589 ± 0.006 (hop 2) 0.594 ± 0.005 (hop 2)
Macro AUC 0.561 ± 0.005 (hop 1) 0.564 ± 0.004 (hop 1) 0.565 ± 0.006 (hop 2) 0.577 ± 0.005 (hop 2)

LastFM Micro AUC 0.971 ± 0.003 (hop 2) 0.966 ± 0.002 (hop 1) 0.969 ± 0.003 (hop 1) 0.970 ± 0.003 (hop 1)
Macro AUC 0.935 ± 0.003 (hop 1) 0.924 ± 0.002 (hop 1) 0.936 ± 0.003 (hop 1) 0.939 ± 0.003 (hop 1)

GitWebML Micro AUC 0.899 ± 0.003 (hop 1) 0.904 ± 0.002 (hop 1) 0.908 ± 0.002 (hop 1) 0.905 ± 0.002 (hop 1)
Macro AUC 0.848 ± 0.003 (hop 1) 0.854 ± 0.002 (hop 1) 0.862 ± 0.002 (hop 1) 0.855 ± 0.002 (hop 1)

Table 3: The best result for each approach for the different hop depths. The overall best result is given in bold font, and the
second best – in italics.

NodeSketch L0 L1 L2

Cora Precision 0.014 ± 0.003 (hop 1) 0.014 ± 0.004 (hop 1) 0.016 ± 0.003 (hop 1) 0.017 ± 0.003 (hop 1)
Recall 0.266 ± 0.057 (hop 1) 0.271 ± 0.063 (hop 1) 0.317 ± 0.045 (hop 1) 0.334 ± 0.041 (hop 1)

Citeseer Precision 0.020 ± 0.003 (hop 2) 0.017 ± 0.004 (hop 4) 0.020 ± 0.003 (hop 2) 0.021 ± 0.003 (hop 2)
Recall 0.453 ± 0.041 (hop 2) 0.385 ± 0.055 (hop 2) 0.452 ± 0.045 (hop 2) 0.491 ± 0.066 (hop 2)

PubMed Precision 0.001 ± 0.001 (hop 1) 0.011 ± 0.003 (hop 1) 0.025 ± 0.007 (hop 1) 0.007 ± 0.003 (hop 1)
Recall 0.002 ± 0.002 (hop 1) 0.025 ± 0.006 (hop 1) 0.056 ± 0.015 (hop 1) 0.016 ± 0.007 (hop 1)

DeezerEurope Precision < 0.001 < 0.001 < 0.001 < 0.001
Recall < 0.001 < 0.001 < 0.001 < 0.001

LastFM Precision 0.024 ± 0.005 (hop 1) 0.031 ± 0.004 (hop 1) 0.038 ± 0.004 (hop 1) 0.047 ± 0.005 (hop 1)
Recall 0.084 ± 0.016 (hop 1) 0.112 ± 0.016 (hop 1) 0.136 ± 0.016 (hop 1) 0.167 ± 0.018 (hop 1)

GitWebML Precision 0.001 ± 0.001 (hop 1) 0.002 ± 0.001 (hop 1) 0.018 ± 0.005 (hop 1) 0.016 ± 0.004 (hop 1)
Recall 0.002 ± 0.002 (hop 1) 0.003 ± 0.002 (hop 1) 0.031 ± 0.008 (hop 1) 0.027 ± 0.006 (hop 1)

Table 4: The best result (precision@1000 and recall@1000) for each approach for the different hop depths for link prediction.
The overall best result is given in bold font, and the second best – in italics.

standard deviation for the best neighborhood depth for each
approach in Table 4. LONE SAMPLER consistently achieves
better results than NodeSketch, one order of magnitude bet-
ter for the PubMed and GitWebML graphs. All approaches
fail on Deezer because of the large number of node attributes
which make the overlap very small. We observe that the av-
erage overlap for the LONE SAMPLER approaches is larger
than for NodeSketch, and this has a more pronounced effect
for link prediction, see discussion in appendix.

Optimal Values for the Hyperparameters In the ap-
pendix we analyze the optimal values for the different hy-
perparameters: the neighborhood depth k, the dimensional-
ity of the embeddings d, and the sketch size ℓ for L1/L2

sampling. While the optimal k appears to be graph specific,
we observe the improvements for larger d and ℓ to follow a
diminishing returns pattern. It is worth noting that even for
very small embedding dimensions we still achieve very good
results for node classification. Also, for larger d NodeSketch
catches up with L1/L2 sampling as more samples compen-
sate for the inconsistencies due to its heuristic nature.

Conclusions and Future Work

We presented new algorithms for coordinated local graph
sampling with rigorously understood theoretical properties.
We demonstrate that using sketching techniques with well-
understood properties also has practical advantages and can
lead to more accurate algorithms in downstream graph learn-
ing tasks. Also, explicit feature maps of discrete node em-
beddings open the door to highly scalable classification al-
gorithms. We made observations about the graph diameter
and the performance of the different sampling strategies.
More advanced concepts from graph theory will likely lead
to a better understanding of the performance and limitations
of the algorithms.

Finally, we would like to pose an open question. Can we
learn structural roles (Rossi et al. 2020) by assigning ap-
propriate node attributes? In particular, can we combine the
sampling procedure with approaches to graph labeling such
that node labels convey additional information?

8419

References
Agarwal, P. K.; Cormode, G.; Huang, Z.; Phillips, J. M.;
Wei, Z.; and Yi, K. 2013. Mergeable summaries. ACM
Trans. Database Syst., 38(4): 26:1–26:28.
Ahmed, N. K.; Duffield, N. G.; Willke, T. L.; and Rossi,
R. A. 2017. On Sampling from Massive Graph Streams.
Proc. VLDB Endow., 10(11): 1430–1441.
Backstrom, L.; Boldi, P.; Rosa, M.; Ugander, J.; and Vigna,
S. 2012. Four degrees of separation. In Web Science 2012.
Broder, A. Z.; Charikar, M.; Frieze, A. M.; and Mitzen-
macher, M. 2000. Min-Wise Independent Permutations. J.
Comput. Syst. Sci., 60(3): 630–659.
Charikar, M.; Chen, K. C.; and Farach-Colton, M. 2004.
Finding frequent items in data streams. Theor. Comput. Sci.,
312(1): 3–15.
Cohen, E. 2016. Coordinated Sampling. In Encyclopedia of
Algorithms, 449–454.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable Fea-
ture Learning for Networks. In KDD 2016.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In NIPS 2017.
Ioffe, S. 2010. Improved Consistent Sampling, Weighted
Minhash and L1 Sketching. In ICDM 2010.
Joachims, T. 2006. Training linear SVMs in linear time.
In Proceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2006, 217–226.
Jowhari, H.; Saglam, M.; and Tardos, G. 2011. Tight bounds
for Lp samplers, finding duplicates in streams, and related
problems. In PODS 2011.
Karp, R. M.; Shenker, S.; and Papadimitriou, C. H. 2003.
A simple algorithm for finding frequent elements in streams
and bags. ACM Trans. Database Syst., 28: 51–55.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed Representations of Words and
Phrases and their Compositionality. In NIPS 2013.
Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; and Zhu, W. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD
2016.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In EMNLP 2014.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
online learning of social representations. In KDD 2014.
Pham, N.; and Pagh, R. 2013. Fast and scalable polynomial
kernels via explicit feature maps. In KDD, 239–247. ACM.
Pǎtraşcu, M.; and Thorup, M. 2012. The Power of Simple
Tabulation Hashing. J. ACM, 59(3): 14.
Rossi, R. A.; Jin, D.; Kim, S.; Ahmed, N. K.; Koutra, D.; and
Lee, J. B. 2020. On Proximity and Structural Role-based
Embeddings in Networks: Misconceptions, Techniques, and
Applications. ACM Trans. Knowl. Discov. Data, 14(5):
63:1–63:37.
Rozemberczki, B.; Allen, C.; and Sarkar, R. 2021. Multi-
Scale Attributed Node Embedding. Journal of Complex Net-
works, 9(2).

Rozemberczki, B.; and Sarkar, R. 2020. Characteristic Func-
tions on Graphs: Birds of a Feather, from Statistical Descrip-
tors to Parametric Models. In CIKM 2020, 1325–1334.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Gallagher, B.;
and Eliassi-Rad, T. 2008. Collective Classification in Net-
work Data. AI Mag., 29(3): 93–106.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. LINE: Large-scale Information Network Embedding.
In WWW 2015.
Tsitsulin, A.; Mottin, D.; Karras, P.; and Müller, E. 2018.
VERSE: Versatile Graph Embeddings from Similarity Mea-
sures. In WWW 2018.
Wu, W.; Li, B.; Chen, L.; and Zhang, C. 2018. Efficient
Attributed Network Embedding via Recursive Randomized
Hashing. In IJCAI 2018.
Yang, D.; Rosso, P.; Li, B.; and Cudré-Mauroux, P. 2019.
NodeSketch: Highly-Efficient Graph Embeddings via Re-
cursive Sketching. In KDD 2019.
Zhang, Z.; Cui, P.; Wang, X.; Pei, J.; Yao, X.; and Zhu, W.
2018. Arbitrary-Order Proximity Preserved Network Em-
bedding. In KDD 2018.
Zhou, C.; Liu, Y.; Liu, X.; Liu, Z.; and Gao, J. 2017. Scal-
able Graph Embedding for Asymmetric Proximity. In AAAI
2017.

8420

