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Abstract
The mean shift algorithm is a simple yet very effective clus-
tering method widely used for image and video segmenta-
tion as well as other exploratory data analysis applications.
Recently, a new algorithm called MeanShift++ (MS++) for
low-dimensional clustering was proposed with a speedup of
4000 times over the vanilla mean shift. In this work, start-
ing with a first-of-its-kind theoretical analysis of MS++, we
extend its reach to high-dimensional data clustering by inte-
grating the Uniform Manifold Approximation and Projection
(UMAP) based dimensionality reduction in the same frame-
work. Analytically, we show that MS++ can indeed converge
to a non-critical point. Subsequently, we suggest modifica-
tions to MS++ to improve its convergence characteristics. In
addition, we propose a way to further speed up MS++ by
avoiding the execution of the MS++ iterations for every data
point. By incorporating UMAP with modified MS++, we de-
sign a faster algorithm, named UMAP embedded quick mean
shift (UEQMS), for partitioning data with a relatively large
number of recorded features. Through extensive experiments,
we showcase the efficacy of UEQMS over other state-of-the-
art algorithms in terms of accuracy and runtime.

Introduction
Automatic detection of the meaningful groups or clusters
in a dataset is a fundamental task in unsupervised learn-
ing. Mean Shift (MS) (Cheng 1995) emerged as a non-
parametric mode-seeking approach to detect the dense re-
gions in a point cloud. Using a sequence of such momde-
seeking iterates through kernel density estimation, MS auto-
matically estimates the number of clusters in a dataset. Due
to its simplicity and effectiveness, MS and its variants were
widely used in applications such as object tracking (Comani-
ciu, Ramesh, and Meer 2003; Leichter, Lindenbaum, and
Rivlin 2010; Ning et al. 2012; Kumar et al. 2022), unsuper-
vised image and video segmentation (Park, Lee, and Park
2009; Zhou, Wang, and Schaefer 2011; Tao, Jin, and Zhang
2007; Paris 2008; Paris and Durand 2007), and general im-
age processing (Barash and Comaniciu 2004; Bigdeli et al.
2017).

For low-dimensional clustering and segmentation tasks,
the popularity of MS exceeded those of other well-
studied algorithms, such as k-means (Zhao, Deng, and
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Ngo 2018; Ismkhan 2018), Felzenszwalb method (Felzen-
szwalb and Huttenlocher 2004), simple linear iterative clus-
tering (SLIC) (Achanta et al. 2012), and Spectral cluster-
ing (Huang et al. 2020). On the other hand, each iteration
in MS takes O(n2) time, making it computationally expen-
sive. In other words, the computational complexity associ-
ated with finding each point’s neighboring data points is
quadratic in the number of data points. Although MS has su-
perior performance in image segmentation, significant com-
putational cost limits its use in high-resolution image seg-
mentation. To address this issue, a faster variant of MS,
called MeanShift++ (MS++), was recently proposed in (Jang
and Jiang 2021), in which the input space is partitioned into
grid cells, and each data point updates its position towards
the approximated mode by referencing the data points within
its neighboring grid cells. MS++ is ideal for handling ex-
tremely large datasets with low dimensionalities, such as in
image segmentation. In (Jang and Jiang 2021), MS++ was
shown to attain a speedup of 1000 times compared to the
vanilla MS. Since MS++’s runtime is dependent on O(3d)
for a d-dimensional dataset, it becomes extremely slower for
d ≥ 5 datasets. Therefore, its application is only limited to
low-dimensional clustering applications. To address this is-
sue, one may think of integrating a dimensionality reduction
technique as a pre-processing step to MS++.

Nonnegative matrix factorization (Lee and Seung 1999),
Principle Component Analysis (Pearson 1901), and Canoni-
cal Correlation Analysis (Andrew et al. 2013) are commonly
used unsupervised dimensionality reduction (DR) methods.
Such models suffer from limitations over the representa-
tional abilities and cannot identify the non-linear hidden re-
lations among data points in the data very efficiently (Guo,
Lin, and Ye 2021). On the other hand, popular non-linear
dimensionality reduction techniques can be distinguished
by their emphasis on preserving global structure and lo-
cal structure of the data. Isomap (Tenenbaum, Silva, and
Langford 2000) is a well-known DR technique that em-
phasizes more on preserving global structure of the data,
while t-SNE (Van der Maaten and Hinton 2008) emphasizes
more on preserving global structure of the data. Although
UMAP (McInnes, Healy, and Melville 2018) emphasizes
more on preserving local structure of the data, it can also
preserves global structure more effectively. In recent years,
autoencoders (AE) (Tschannen, Bachem, and Lucic 2018)
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have been frequently employed as a DR method for cluster-
ing due to their powerful representational power. Unsuper-
vised autoencoders are competent in acquiring meaningful
encodings of input data. As a way of better understanding,
we study the effectiveness of popular DR methods in con-
junction with the proposed clustering approach in the Illus-
trative Example.

In this paper, we first theoretically establish the conver-
gence argument for MS++. At first, we demonstrate that
the algorithm may converge to undesired and non-critical
points. Still, by making simple modifications, convergence
to a local optimum of the data density function (correspond-
ing to the cluster centroids) can be guaranteed within a finite
number of iterations. Next, we introduce a deflation variant
of MS++, called Quick MeanShift (QMS), that is guaranteed
to have lower time complexity compared to the original one
without sacrificing clustering accuracy. Considering the sim-
plicity and fast runtime of QMS, we extend its application to
high-dimensional datasets by incorporating a dimensionality
reduction technique UMAP, with QMS. The resulted algo-
rithm is named UEQMS. There are the following advantages
of using UMAP:

i) It extracts the low-dimensional features, less than 3,
from high-dimensional datasets more effectively and
efficiently than others (as shown in Fig. 1), while pre-
serving the local and global structure of the data.

ii) The extracted features are less complex and noisy than
the original ones for clustering. Consequently, this im-
proves the clustering accuracy as performance of MS
is improved with decreasing number of insignificant
features (as shown in Table 1).

iii) Due to utilization of UMAP, UEQMS is 105 times
faster than MS and other density-based clustering al-
gorithms for high-dimensional datasets with better
clustering accuracy.

Illustrative Example To show UMAP’s effectiveness with
QMS, before discussing our proposals, let’s examine some
preliminary results on MNIST. Specifically, we assess
QMS’s performance with several popular dimension reduc-
tion methods: tSNE (Van der Maaten and Hinton 2008),
PACMAP (Wang et al. 2021), AE (Tschannen, Bachem,
and Lucic 2018) and UMAP (McInnes, Healy, and Melville
2018). The results of this experiment in terms of accuracy
(ACC), Normalized Mutual Index (NMI), Adjusted Rand In-
dex (ARI), and runtime (RT) are depicted in Fig. 1

During clustering, we first apply dimensionalty reduction
techniques to extract two features for each data point of the
MNIST. Thereafter, we apply QMS on these extracted fea-
tures for clustering. As shown in Fig. 1, we can see that
the UMAP with QMS provides better clustering results than
other dimensionalty reduction techniques with a compara-
ble runtime. As a result, the UMAP with QMS algorithm,
named UEQMS, is faster and more accurate than all other
contenders. Furthermore, we compare the performance of
UEQMS with other density-based clustering algorithms and
MS variants in conjunction with UMAP. We present the re-
sults of this experiment in Table 1. As shown in this table,

Alg NMI ARI RT Alg NMI ARI RT
MS 0.45 0.38 3E+8 QS++ 0.49 0.22 5E+8
MeS 0.51 0.38 4E+8 UEMS 0.88 0.87 491
DB 0.25 0.10 5E+9 UEMS++ 0.83 0.85 74

DB++ 0.24 0.01 4E+8 UEαMS++ 0.83 0.85 68
QS 0.49 0.22 5E+8 UEQMS 0.89 0.88 44

Table 1: Comparison of Algorithms on MNIST data. MS:
Mean shift (Cheng 1995), MeS: Medoid shift (Sheikh,
Khan, and Kanade 2007), DB: DBSCAN (Khan et al.
2014), DB++: DBSCAN++ (Jang and Jiang 2019), QS:
Quick shift (Vedaldi and Soatto 2008), QS++: Quick
shift++ (Jiang, Jang, and Kpotufe 2018), UEMS: UMAP
with mean shift (Cheng 1995), UEMS++: UMAP with
meanshift++ (Jang and Jiang 2021), UEαMS++: UMAP
with α-meanshift++ (Park 2021a), NMI: normalized mutual
information (Estévez et al. 2009), ARI: Adjusted rand in-
dex (Santos and Embrechts 2009), RT: runtime in seconds.

UEQMS performs better than other contenders in terms of
clustering accuracy and runtime. It is worth noting that UE-
QMS is 1E+07 times faster than conventional algorithms.
UEMS++ and UEαMS++ provide lower clustering accuracy
than UEQMS due to noisy clusters (clusters with less than
0.05% data points). UEQMS tackles this issue using pro-
posed modifications. The main contributions of this paper
are as follows:
• In this work, we first define the MS++ kernel func-

tion. Then, we show that MS++ may converge to a non-
stationary point as it is using a non-smooth kernel func-
tion.

• To address the convergence issue, a simple modification
to the steps of MS++ is proposed ensuring that it will al-
ways converge to a local minimum of the kernel function.

• Finally, we propose quicker version of the MS++, named
as Quick Mean Shift (QMS), by incorporating the pro-
posed modification in MS++ and a noise reduction tech-
nique to improve the clustering accuracy. Furthermore,
this algorithm improves the runtime by eliminating du-
plicate computations.

• Finally, we integrate the dimensionality reduction tech-
nique UMAP inside the QMS framework to cluster high-
dimensional datasets.

Background and Notations
The following is the idea behind MS algorithms for data
clustering: Let’s consider dataset {xi}Mi=1 ⊆ Rd derived
from the probability density function (PDF) p(z). We expect
PDF p(z) to have k modes if the dataset contains k clusters.
When we apply a gradient-descent-based optimization algo-
rithm to data point xi as an initial seed, and it converges to
p(z)’s j-th mode, then data point xi can be placed in the j-th
cluster associated with k-th mode.

Kernel Density Estimation
Unfortunately, PDF p(z) is not available in practice for a
real-world dataset. Consequently, we must first estimate the
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Figure 1: Comparison of different dimensionality reduction techniques integrated with QMS on the MNIST dataset. UMAP with
QMS returns qualitatively good clustering results with speedups of 10x and 80x over tSNE and AE, respectively. Meanwhile,
PACMAP requires less time than UMAP, but its clustering accuracy is not upto the mark.

density of the data set. The Kernel Density Estimator (KDE)
is the most popular method for density estimation in the
mean shift paradigm. Consider a kernel function K(z) that
has the following properties. Given that

K(z) ≥ 0 and
∫

K(z)dz = 1, (1)

the corresponding KDE can be defined as:

p̂(z) =
1

M

M∑
i=1

K(z − xi). (2)

There are two popular kernel choices: the Gaussian kernel

KG(z;w) =
c

wd
exp

(
−||z||

2

2w2

)
(3)

and the Epanechnikov kernel

KE(z, w) =
c

wd

[
1− ||z||

2

w2

]
+

, (4)

where c represents the normalizing constants used to ensure
that the kernel integrates into one, and parameter w is called
bandwidth for controlling the variance of the kernel.

MeanShift++
Using KDE p(z), the MS algorithm seeks to find modes of
p̂(z) via the following series of iterations (weighted mean):

z(t+1) ←
∑M

i=1 g
(
z(t), xi;w

)
xi∑M

i=1 g
(
z(t), xi;w

) , (5)

where g(.) is the shadow of the kernel function K(.). For the
Gaussian kernel KG(.), g(z, x;w) = exp(||z − x||2/2w2)

and similarly g(z, x;w) = 1
(
||z − x||2 < w2

)
is defined

for the Epanechnikov kernel.
In (Epanechnikov 1969), it was demonstrated that the

Epanechnikov kernel minimizes mean square error (MSE)
asymptotically, i.e.∫

(p(z)− p̂(z))
2
dz. (6)

However, even with space-partitioning data structures, the
computational cost of g(.) for the Epanechnikov kernel is
too high, i.e., O(M2dt).

MS++ confronts this issue by first partitioning data points
into grid cells. Each grid cell is a hypercube with a side of h.
Next, MS++ calculates the mean of each data point based on
the data points of its 1-neighboring grid cells, which is sim-
ilar to the Epanechnikov mean shift process. The Epanech-
nikov mean shift, on the other hand, selects data points from
the hyperspherical neighborhood region with w (or band-
width) radius to calculate the mean. Hence, h must be 2w

3 to
approximate Epanechnikov’s mean shift. MS++ calculates
the mean much more quickly since each cell can be deter-
mined by dividing the point values. As a result, data points
of adjacent grid cells are easily found with O(M3dt) time
complexity. This makes MS++ suitable for applications in-
volving large datasets with low dimensions, such as image
segmentation. The basic steps of the MS++ are shown in the
supplementary file.

UMAP
UMAP is a recently proposed manifold learning-based di-
mensionality reduction technique that can both accurately
represent local structure and better incorporate global struc-
ture (McInnes, Healy, and Melville 2018). The method has
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several advantages over the t-SNE method. The UMAP al-
gorithm is well suited to handling large datasets, unlike the
t-SNE algorithm. UMAP is also capable of capturing the ad-
vantages from both global and local strategies because it em-
phasizes preserving distances around local neighbourhoods
while keeping the global structure.

Three assumptions underlie UMAP, namely that data are
distributed uniformly over a Riemannian space, Riemannian
metric is locally constant, and the manifold is always locally
connected. Therefore, the manifold can be modeled with a
fuzzy topological structure based on these assumptions. By
seeking the nearest possible fuzzy topological structure cor-
responding to the projection of the data on a lower dimen-
sional space, we can construct the embedding.

Similar to Isomap (Tenenbaum, Silva, and Langford
2000), UMAP computes the nearest neighbours of points
using a k-neighbour based graph algorithm. The UMAP al-
gorithm constructs a weighted k-neighbour graph first, and
then computes a low dimensional layout from this graph.
Cross entropy is used to optimize this low dimensional lay-
out so that it has as close a fuzzy topological representation
as possible to the original.

There are a number of important hyperparameters that af-
fect performance. Firstly, we need to determine how many
neighbors should be considered local. A trade-off is made
between local structure preservation and global structure
capture in terms of granularity. The primary concern is inte-
grating local structure into the embedding, so lower values
for neighbours is typically tuned. The second parameter is
the dimension of the embedding. We set the embedding di-
mension to two in this work. The embedding space must also
be separated by a minimum amount. If this minimum dis-
tance is lower, the true manifold structure will be captured
more accurately, but dense clouds may prevent visualization.

Theoretical Analysis
As the kernel function used in MS++ for density estimation
is difficult to define numerically, the authors have not pro-
vided it in (Jang and Jiang 2021). However, it is necessary
to define for rigorous theoretical analysis of MS++. There-
fore, we estimate a kernel function in this paper that satisfies
all the conditions for being a kernel function, and that fulfills
all the characteristics of the MS++. MS++’s kernel function
can be defined as follows.

KM (z, x;w) =
c

wd

(
1− ||z − x||2

w2

)
I(z, x;w), (7)

where

I(z, x;w) = 1
(⌊ z

h

⌋
−
⌊x
h

⌋
∈ {−1, 0, 1}d

)
, (8)

and h = w
2
√
d

. Therefore, the shadow of this kernel func-
tion, g(.), can be defined as g(z, x;w) = I(z, x;w).
Here, MS++ estimates the modes of the KDE p̂(z) =∑M

i=1 KM (z, xi;w) iteratively based on Eqn. (5).
To conduct further analysis, we eliminate constants and

scaling in p̂ and KM and change them to f and ϕ respec-

tively.

ϕ(z, x;w) =

{
||z − x||2 , if I(z, x;w) = 1,

w2 , otherwise,

f(z;w) =
M∑
i=1

ϕ(z, xi;w).

(9)

These changes do not affect the optimization process and all
modes of f are equivalent to all modes of p̂. Due to page lim-
itation, we report the proof of all lemmas and propositions
in the supplementary file.
Lemma 1. Function f(z) is smooth every where except
points z : max

{
xi

h −
⌊
z
h

⌋}
= 2, ∀i = {1, 2, . . . ,M}.

According to the above lemma, f(z) in MS++ is not
smooth everywhere. With the help of the following lemma,
we can prove that f(z) is strongly convex at smooth points.
Lemma 2. For each smooth point z of f(z), we have

∇f(z) =
∑
i∈F

2(z − xi),

∇2f(z) = 2|F|I,
(10)

where F =
{
i :

⌊
z
h

⌋
−

⌊
xi

h

⌋
∈ {−1, 0, 1}d

}
and I is an

identity matrix. This means that f(z) is locally convex at
all smooth points. Moreover, if F is not an empty set, f(z)
will also be strongly convex.

Since f(z) has some non-smooth points, we use the con-
cept of directional derivative to analyze its properties. The
directional derivative of f(z) for a particular direction µ can
be expressed as follows.

f ′(z;µ) = lim
α→0

f(z + αµ)− f(z)

α
. (11)

The directional derivative can follow the sum rule, therefore

f ′(z;µ) =

M∑
i=1

ϕ′(z, xi;µ). (12)

It is well known that the directional derivative of f(z) for a
smooth point z is simply f ′(z.µ) = ∇f(z)Tµ.

Using the following definition, we can estimate a station-
ary point for a non-smooth function (Razaviyayn, Hong, and
Luo 2013).
Definition 1. For a given z, if f(z;µ) ≥ 0 for all µ, then the
point z is a stationary point of f(.).

Note that the above definition reduces to ∇f(z)Tµ ≥ 0
for all µ in case of a smooth point z. On the other hand,
∇f(z)Tµ ≥ 0 for all µ implies ∇f(z) = 0, which is the
general definition of a stationary point for a smooth function.
Lemma 3. If the following conditions

lim
α→0

⌊
z + αµ

h

⌋
−
⌊xi

h

⌋
∈ {−1, 0, 1}d,

max
{⌊ z

h

⌋
− xi

h

}
= 2,

||z − xi||2 ̸= w2, ∃i

(13)

are met, it is not possible to derive the directional derivative
of f with respect to z in direction µ.
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The following interesting facts can be derived from
Lemma 3.

Proposition 1. Considering the case where z is a non-
smooth point in f(z), z will never be a stationary point for
f(z).

Since the local minimum of the f(z) is also a stationary
point, z cannot be the local minimum if it is a non-smooth
point of the f(z).

Proposition 2. In order for a point z∗ to be a local minimum
of f(z), the following conditions need to be met:

1. No xj exists such that max
{⌊xj

h

⌋
−
⌊
z
h

⌋}
= 2,

2. the set F ̸= ∅, and
3. z∗ = 1

|F|
∑

i∈F xi.

Therefore, MS++ does not provide the local minimum of
the estimated density if one of the conditions listed above
does not hold after convergence.

Modified MeanShift++
Prior to proposing the modification, we examine the conver-
gence of MS++.

Lemma 4. With MS++, the function f(z) is successively
minimized at each iteration, therefore f(z) does not mono-
tonically increase as the iteration count increases.

It is obvious from the Majorization-Minimization inter-
pretation that MS++ tends to converge to a stationary point.
However, this interpretation only applicable for a smooth
function. Due to the non-smooth nature of f(z) and f̂(z | z̆),
no convergence results exist to prove that MS++ always con-
verges to the stationary point. With a non-zero probability, it
can so happen that z(t−1) = z(t) = argmin

z̈
f̂(z̈ | z(t−1)) for

few xi, i ∈
{
i : max

{
xi

h −
⌊
z
h

⌋}
= 2

}
. Based on Proposi-

tions 1 and 2, this implies that z(t), even after convergence
of MS++, cannot be the stationary point (or local minimum)
of f(z).

Algorithm 1: Modified MeanShift++
Require: dataset X ∈ Rd, i = 1, . . . ,M ; bandwidth h > 0; tolerance η.

Ensure: {xi} i = 1, . . . ,M .
Initialize x

(0)
i ← Xi, ∀i = 1, . . . ,M and t = 0;

Initialize empty hash tables C (stores cell counts) and S (stores cell sum);
repeat

Step 1: C
(⌊

x
(t)
i /h

⌋)
← C

(⌊
x
(t)
i /h

⌋)
+ 1, for i ∈ {1,M};

Step 2: S
(⌊

x
(t)
i /h

⌋)
← S

(⌊
x
(t)
i /h

⌋)
+ x

(t)
i , for i ∈ {1,M};

Step 3: x(t+1)
i ←

∑
v∈{−1,0,1}d S

(⌊
x
(t)
i

/h

⌋
+v

)
∑

v∈{−1,0,1}d C
(⌊

x
(t)
i

/h

⌋
+v

) for i ∈ {1,M};

Step 4: If
∑M

i=1 ||x
(t+1)
i − x

(t)
i || ≥ η then

Step 5: Ki ←
{
j : max

{
xj
h −

⌊ xi
h

⌋}
= 2

}
for i ∈ {1,M};

Step 6: x
(t+1)
i ←

∑
j∈Ki

x
(t)
j

+
∑

v∈{−1,0,1}d S
(⌊

x
(t)
i

/h

⌋
+v

)
|Kj |+

∑
v∈{−1,0,1}d C

(⌊
x
(t)
i

/h

⌋
+v

)
for i ∈ {1,M};

Step 7: end if
Step 8: t← t + 1, C ← ∅, and S ← ∅;

until
∑M

i=1 ||x
(t)
i − x

(t−1)
i || ≥ η

To address this issue, we modify the MS++ steps to ac-
count for such situations. The main steps of the modified
MS++ are depicted in Algorithm 1. As per Algorithm 1,
we first pick samples xj such that max

{xj

h −
⌊
z
h

⌋}
= 2

for resolving this problem. Then, we re-update the z as
the weighted mean of samples xj together with all samples
xi, i ∈

{
i :

⌊
z
h

⌋
−

⌊
xi

h

⌋
∈ {−1, 0, 1}

}d
. This allows us to

redefine

z(t) =argmin
z̈

f̃(z̈|z(t−1))

=
∑
j∈K
||z(t−1) − xj ||2 +

∑
i∈F
||z(t−1) − xi||2

+ (M − |F| − |K|)w2,

(14)

where K =
{
j : max

{
xj

h −
⌊
z(t−1)

h

⌋}
= 2

}
and F ={

i :
⌊
z(t−1)

h

⌋
−
⌊
xi

h

⌋
∈ {−1, 0, 1}d

}
.

Next, we demonstrate that modified MS++ (shown in Al-
gorithm 1) calculates a local minimum within a finite num-
ber of iterations.
Lemma 5. With modified MS++, the value of f(z) is strictly
decreasing till z(t) = z(t−1).

Theorem 6. Algorithm 1 terminates at a local minimum of
(9) in a finite number of iterations.

We may observe that, even though we are trying to op-
timize a non-convex and non-smooth function, we obtain a
very strong convergence result: modified MS++ reaches a
local minimum after a finite number of iterations.

Proposed Algorithm
In this section, we introduce UEQMS, which qualifies as
a faster version of MS++ and can be applied to high-
dimensional datasets. First, we describe the main steps of
QMS.

MS++ calculates the shifted position of all data points
in each iteration. Nevertheless, shifted positions of data
points belonging to the same grid have the same value.
Therefore, the shifted positions of all data points do not
need to be stored for subsequent MS++ iterations. Using
unique shifted positions, we can update the shifted posi-
tion of all data points. Consequently, we only save unique
shifted positions with their repetition count in QMS, shown
in Algorithm-2. A new hash table is created in Algorithm-
2, which keeps the number of repetitions of each unique
shifted position. Moreover, the equation used to calculate
shifted locations is updated based on the repetition count
of each unique shifted position. QMS ultimately produces
the same or better result than MS++ since we use the same
kernel function and density estimation alongside the same
optimization process with the proposed modified step. The
source code of QMS is available online at https://github.
com/abhisheka456/QuickMeanShiftPP.

We compare QMS with MS++ and α-MS++ on vari-
ous clustering datasets. To provide a fair comparison, we
used the same datasets employed in the original MS++
paper (Jang and Jiang 2021). The characteristics of these
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Algorithm 2: Quick MeanShift
Require: dataset X ∈ Rd, i = 1, . . . ,M ; bandwidth h > 0; tolerance η.

Ensure: {xi} i = 1, . . . ,M .
Initialize y

(0)
i ← Xi, ny

(0)
i ← 1 ∀i = 1, . . . ,M , and t = 0;

Initialize empty hash tables C (stores cell counts) and S (stores cell sum);
repeat

Step 1: C
(⌊

y
(t)
i /h

⌋)
← C

(⌊
y
(t)
i /h

⌋)
+ ny

(t)
i , for i ∈ {1,M};

Step 2: S
(⌊

y
(t)
i /h

⌋)
← S

(⌊
y
(t)
i /h

⌋)
+ ny

(t)
i y

(t)
i , for i ∈ {1,M};

Step 3: y(t+1)
i ←

∑
v∈{−1,0,1}d S

(⌊
y
(t)
i

/h

⌋
+v

)
∑

v∈{−1,0,1}d C
(⌊

y
(t)
i

/h

⌋
+v

) for i ∈ {1,M};

Step 4: If
∑M

i=1 ||y
(t+1)
i − y

(t)
i || ≥ η then

Step 5: Ki ←
{
j : max

{
yj
h −

⌊ yi
h

⌋}
= 2

}
for i ∈ {1,M};

Step 6: y
(t+1)
i ←

∑
j∈Ki

ny
(t)
j

y
(t)
j

+
∑

v∈{−1,0,1}d S
(⌊

y
(t)
i

/h

⌋
+v

)
∑

j∈Ki
ny

(t)
j

+
∑

v∈{−1,0,1}d C
(⌊

y
(t)
i

/h

⌋
+v

)
for i ∈ {1,M};

Step 7: end if
Step 8: t← t + 1, C ← ∅, and S ← ∅;
Step 9: Update {y(t)

i } and {ny(t)
i };

until
∑M

i=1 ||y
(t)
i − y

(t−1)
i || ≥ η

datasets in terms of the number of features, clusters, and
data points are reported in the supplementary file. QMS is
implemented in Cython and the comparative study is done
using the Cython implementation of MS++ as provided in
(Jang and Jiang 2021) and α-MS++ implemented by us. The
comparison between QMS and MS will not be made here,
since MS++ and α-MS++ are faster variants of MS (Jang
and Jiang 2021; Park 2021b).

To measure the quality of the clustering results, we use
two indices: Adjusted Mutual Information (AMI) (Vinh,
Epps, and Bailey 2010) and Adjusted Rand Index
(ARI) (Hubert and Arabie 1985). By comparing the calcu-
lated labels to the actual labels of the clusters, these two
indices are one of the popular ways to evaluate clustering
performance (Jang and Jiang 2019).

Here, we validate QMS with MS++ and α-MS++ on
6 standard low-dimensional datasets with a range of data
points from 15 to 0.3 millions. In Table 2, the results with
respect to AMI, ARI, and runtime are shown for all algo-
rithms. Table 2 shows that QMS provides better results with
a 40x and 20x faster runtime compared to MS++, and α-
MS++, respectively, on most datasets. Due to the superior
clustering quality and runtime performance, QMS outper-
forms MS++ and α-MS++ on these datasets.

It should be noted that α-MS++ also does not require the
calculation of shifted positions for all data points. However,
in α-MS++, updating at least one data point of each grid
requires shifted positions of all data points. Therefore, α-
MS++ utilizes shifted positions of all data points in each it-
eration. After updating the shifted position of one data point,
the shifted position of other data points belonging to the
same grid will be updated with the same value without hav-
ing to recalculate. QMS does not process all data points in
each iteration, so it is faster than α-MS++ even though α-
MS++ improves the runtime of MS++. Therefore, we can
conclude that QMS is the quickest variant of MS++.

As QMS performs better than MS++ and α-MS++, we

Dataset ARI
QMS MS++ α-MS++

Phone Accelerometer 0.0897 0.0897 0.0896
(37.49s) (1599.34s) (475.58s)

Phone Gyroscope 0.2354 0.2354 0.2355
(108.97s) (5324.19s) (934.28s)

Watch Accelerometer 0.0913 0.0913 0.0908
(18.75s) (926.59s) (319.29s)

Watch Gyroscope 0.1598 0.1593 0.1602
(26.02s) (1247.08s) (416.85s)

Still 0.79 0.7899 0.7901
(0.17s) (8.23s) (3.12s)

Skin 0.3264 0.3264 0.3264
(0.28s) (12.58s) (3.28s)

Dataset AMI
QMS MS++ α-MS++

Phone Accelerometer 0.1959 0.1959 0.1921
(46.01s) (2523.85s) (646.27s)

Phone Gyroscope 0.1835 0.1835 0.1824
(46.01s) (1723.19s) (780.35s)

Watch Accelerometer 0.2309 0.2309 0.2301
(41.04s) (2500.97s) (658.37s)

Watch Gyroscope 0.1402 0.1336 0.1397
(11.87s) (484.27s) (180.24s)

Still 0.8557 0.8551 0.8599
(0.12s) (6.23s) (2.62s)

Skin 0.4238 0.4238 0.4234
(0.18s) (9.28s) (2.92s)

Table 2: Comparison of QMS, MS++, and α-MS++ based
on ARI and AMI scores over 6 datasets. These scores are
calculated after tuning the bandwidth on each dataset for
each algorithm separately. Best scores are reported in bold
fonts. Compared to other algorithms, QMS provides the best
scores or same score in ARI and AMI scores over majority
of the dataset with faster runtime speed. QMS is 40x and
20x faster than MS++ and α-MS++, respectively.

use QMS as our core clustering algorithm in UEQMS. How-
ever, it cannot be applied to datasets with high dimensions.
Using UMAP, we extract the low-dimensional features from
high-dimensional datasets. The basic steps of UEQMS are
as follows:

1. We first use UMAP to the raw data to search for a
low-dimensional and better clusterable manifold that pre-
serves local topology.

2. Then, we apply QMS clustering algorithm to discover the
clusters.

Empirical Performance and Analysis
To validate the effectiveness of the proposed UEQMS algo-
rithm, we conduct extensive experiments in this section. Due
to tight page constraints, we have provided a pertinent abla-
tion study, runtime comparisons, and additional experiments
in the supplementary document.

Comparison with Automated Clustering Algorithm
In this section, we examine the performance of UEQMS
compared to state-of-the-art clustering algorithms on va-
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rieties of popular datasets. Our proposed algorithm can
be utilized for automated clustering. Therefore, we con-
sider the following algorithms as contenders: Mean-Shift
(MS) (Comaniciu and Meer 1999), Weighted Blurring Mean
Shift (WBMS) (Chakraborty, Paul, and Das 2020), Medoid-
Shift (MeS) (Sheikh, Khan, and Kanade 2007), DBSCAN
(DB) (Ester et al. 1996), DBSCAN++ (DB++) (Jang and
Jiang 2019), Quick-Shift (QS) (Vedaldi and Soatto 2008),
Quick-Shift++ (QS++) (Jiang, Jang, and Kpotufe 2018) and
Robust Continuous Clustering (RCC) (Shah and Koltun
2017). We consider 15 real datasets collected from the differ-
ent repositories such as UCI (Asuncion and Newman 2007),
Keel (Alcalá-Fdez et al. 2011), and ASU (Li et al. 2017).

The characteristics of these datasets in terms of the num-
ber of features, clusters, and data points are reported in the
supplementary file. For a fair comparison, we tune the pa-
rameters of all peer algorithms for each problem separately.
Although UMAP’s parameters affect performance for visu-
alization applications, clustering performance remains con-
sistent. Thus, in all experiments, we used UMAP’s default
settings except for min dist. The min dist is set at 0.0 to
create compact clusters. We report the optimal parameter
value of UEQMS for real and feature selection datasets in
the supplementary file. Outcomes of each algorithm in terms
of AMI and ARI values are reported in Table 3. As reported
in Table. 3, the UEQMS algorithm shows superior perfor-
mance compared to other algorithms on most datasets. This
case study concludes that UEQMS provides better clusters
for real datasets compared to state-of-the-art automated clus-
tering techniques.

Mode-seeking models are severely harmed by high-
dimensional datasets, with few useful features and many
noisy features (see Table 3). DR essentially transforms
high-dimensional feature space into low-dimensional fea-
ture space to resolve this issue. While transforming, mean-
ingful properties should not disappear. UMAP is a DR
method that can preserve local and global topological struc-
tures of the data. It maps nearby points on the manifold to
nearby points in the low-dimensional representation and the
reverse. Table 4 (supplementary file) shows that MS and DB
incorporating UMAP provide better results on HD data than
MS and DB. The results show that UMAP provides less
noisy embedding.

Comparison with Deep Clustering Algorithm
This section conducts an experimental study on large-scale
high dimensional datasets. For this purpose, we consider
four image datasets. The same computational protocols
stated in the previous section are followed in this study. We
report the properties of the datasets in terms of the num-
ber of data points, the number of features, and the num-
ber of true clusters in the supplementary file. Here, we
consider state-of-the-art deep clustering algorithms as con-
tenders: DeepCluster (DC) (Caron et al. 2018), dep clus-
tering networks (DCN) (Yang et al. 2017), deep k-means
(DKM) (Fard, Thonet, and Gaussier 2020), deep embed-
ded clustering (DEC) (Xie, Girshick, and Farhadi 2016), im-
proved deep embedded clustering (IDEC) (Guo et al. 2017),
soft regularised k-means (SR-KM) (Jabi et al. 2019), varia-

Dataset Score MS WBMS MeS DB UEQMS

ALLAML AMI 0.00 0.17 0.00 0.00 0.47
ARI 0.00 0.13 0.00 0.00 0.50

arcene AMI 0.00 0.07 0.00 0.00 0.23
ARI 0.00 0.10 0.00 0.00 0.09

GLIOMA AMI 0.00 0.53 0.00 0.00 0.58
ARI 0.00 0.40 0.00 0.00 0.45

leukemia AMI 0.00 0.32 0.00 0.00 0.36
ARI 0.00 0.27 0.00 0.00 0.43

orlraws10P AMI 0.00 0.56 0.00 0.00 0.89
ARI 0.00 0.54 0.00 0.00 0.83

TOX 171 AMI 0.00 0.17 0.00 0.00 0.28
ARI 0.00 0.11 0.00 0.00 0.33

warpAR10P AMI 0.00 0.23 0.00 0.00 0.20
ARI 0.00 0.11 0.00 0.00 0.12

lymphoma AMI 0.00 0.71 0.00 0.00 0.75
ARI 0.00 0.72 0.00 0.00 0.74

cacmcisi AMI 0.13 0.04 0.13 0.27 0.64
ARI 0.06 0.03 0.09 0.12 0.69

dermatology AMI 0.02 0.70 0.02 0.03 0.96
ARI 0.00 0.49 0.00 0.00 0.96

iono AMI 0.13 0.00 0.11 0.15 0.32
ARI 0.06 0.00 0.08 0.01 0.34

segment AMI 0.59 0.03 0.60 0.59 0.70
ARI 0.44 0.00 0.46 0.36 0.58

vehicle AMI 0.22 0.27 0.12 0.15 0.25
ARI 0.06 0.13 0.03 0.03 0.16

vowel AMI 0.40 0.42 0.40 0.38 0.46
ARI 0.08 0.25 0.08 0.06 0.22

wdbc AMI 0.03 0.57 0.01 0.05 0.51
ARI 0.00 0.56 0.00 0.00 0.61

Dataset Score DB++ QS QS++ RCC UEQMS

ALLAML AMI 0.00 0.05 0.00 0.18 0.47
ARI 0.00 0.04 0.10 0.00 0.50

arcene AMI 0.00 0.05 0.00 0.11 0.23
ARI 0.00 0.02 0.10 0.00 0.09

GLIOMA AMI 0.00 0.14 0.00 0.42 0.58
ARI 0.00 0.05 0.30 0.00 0.45

leukemia AMI 0.00 0.03 0.43 0.00 0.36
ARI 0.00 0.04 0.56 0.00 0.43

orlraws10P AMI 0.00 0.34 0.82 0.00 0.89
ARI 0.00 0.13 0.77 0.00 0.83

TOX 171 AMI 0.00 0.01 0.25 0.00 0.28
ARI 0.00 0.00 0.08 0.00 0.33

warpAR10P AMI 0.00 0.01 0.18 0.00 0.20
ARI 0.00 -0.11 0.09 0.00 0.12

lymphoma AMI 0.00 0.01 0.76 0.36 0.75
ARI 0.00 0.01 0.73 0.50 0.74

cacmcisi AMI 0.37 0.18 0.19 0.02 0.64
ARI 0.42 0.37 0.31 0.16 0.69

dermatology AMI 0.02 0.68 0.70 0.43 0.96
ARI 0.00 0.52 0.59 0.62 0.96

iono AMI 0.09 0.21 0.19 0.03 0.32
ARI 0.10 0.22 0.16 0.13 0.34

segment AMI 0.64 0.49 0.61 0.09 0.70
ARI 0.53 0.25 0.40 0.48 0.58

vehicle AMI 0.22 0.17 0.26 0.11 0.25
ARI 0.10 0.10 0.14 0.29 0.16

vowel AMI 0.39 0.22 0.45 0.05 0.46
ARI 0.18 0.08 0.22 0.40 0.22

wdbc AMI 0.02 0.03 0.43 0.12 0.51
ARI 0.00 0.03 0.56 0.25 0.61

Table 3: Performance Analysis on Feature Selection and
Real Datasets in terms of AMI and ARI values.
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Dataset Score DC DCN DKM DEC IDEC SR-KM

MNIST ACC 0.797 0.830 0.840 0.863 0.881 0.939
NMI 0.661 0.810 0.796 0.834 0.867 0.866

USPS ACC 0.562 0.688 0.757 0.762 0.761 0.901
NMI 0.540 0.683 0.776 0.767 0.785 0.912

Fashion ACC 0.542 0.501 – 0.518 0.529 0.507
NMI 0.510 0.558 – 0.546 0.557 0.548

pendigit ACC – 0.720 – 0.701 0.784
NMI – 0.690 – 0.678 0.723

Dataset Score VaDE CGAN JULE DEPICT EDESC UEQMS

MNIST ACC 0.945 0.950 0.964 0.965 0.913 0.913
NMI 0.876 0.890 0.913 0.917 0.862 0.887

USPS ACC 0.566 – 0.950 0.899 0.952
NMI 0.512 – 0.913 0.906 – 0.892

Fashion ACC 0.578 0.630 0.563 0.392 0.631 0.586
NMI 0.630 0.640 0.608 0.392 0.670 0.664

pendigit ACC – 0.770 – – 0.888
NMI – 0.730 – – – 0.862

Table 4: Clustering Performance of Different Deep Cluster-
ing Algorithms and UEQMS in terms ACC and NMI. The
mark “–” denotes that the results is unavailable from paper
or code.

tional deep embedding (VaDE) (Jiang et al. 2016), clustering
with GAN (CGAN) (Mukherjee et al. 2019), joint unsuper-
vised learning (JULE) (Yang, Parikh, and Batra 2016), deep
embedded regularized clustering (DEPICT) (Ghasedi Dizaji
et al. 2017), and efficient deep embedded subspace cluster-
ing (EDESC) (Cai et al. 2022).

The optimal parameters value of UEQMS for image
datasets are reported in the supplementary file. We com-
pare the performance with respect to their accuracy (ACC)
and NMI values on each dataset. we report the outcomes
in Table 4. As shown in Table. 4, UEQMS outperforms
other algorithms for the majority of the datasets as ACC and
NMI of UEQMS is significantly better than other ones. This
study suggests that UEQMS is the best algorithm among
considered peer algorithms for large-scale high-dimensional
datasets.

Conclusion
In this work, we investigate the convergence of MS++.
We observed that it works well but that, as of this writ-
ing, there is no theoretical analysis of its performance. Our
study paid more attention to the non-smoothness of its ker-
nel function. We show that there are some instances where
non-smoothness affects MS++ convergence, and MS++ con-
verges to a non-stationary point. We propose a simple rem-
edy to address this problem. The proposed remedy enhances
the MS++ convergence, where its convergence is guaran-
teed at a local minimum within a finite number of itera-
tions. We also introduce a faster version of MS++, QMS,
which avoids duplicate computations in each iteration. Con-
sequently, QMS has lower computational and memory space
requirements than MS++ while maintaining the same or bet-
ter clustering performance.

The application of QMS and MS++ based algorithms is

only limited to low-dimensional datasets. In this work, we
also address this issue and propose an algorithm named UE-
QMS. In UEQMS, we first apply UMAP to extract the low-
dimensional features of high-dimensional datasets without
sacrificing the local and global structure. Then QMS is ap-
plied to discover the clusters using these low-dimensional
features. The proposed method has been verified to be more
accurate than its competitors through experiments on var-
ious datasets. Moreover, it’s possible to develop a Deep
Neural Network-based AE that works within the MS-based
framework, where the encoder can be trained using binary
cross entropy loss and decoder by reconstruction loss. We
consider this work as a potential future research avenue.
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