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Abstract
We study the problem of best arm identification in a federated
learning multi-armed bandit setup with a central server and
multiple clients. Each client is associated with a multi-armed
bandit in which each arm yields i.i.d. rewards following a
Gaussian distribution with an unknown mean and known vari-
ance. The set of arms is assumed to be the same at all the
clients. We define two notions of best arm—local and global.
The local best arm at a client is the arm with the largest mean
among the arms local to the client, whereas the global best
arm is the arm with the largest average mean across all the
clients. We assume that each client can only observe the re-
wards from its local arms and thereby estimate its local best
arm. The clients communicate with a central server on up-
links that entail a cost of C ≥ 0 units per usage per uplink.
The global best arm is estimated at the server. The goal is
to identify the local best arms and the global best arm with
minimal total cost, defined as the sum of the total number of
arm selections at all the clients and the total communication
cost, subject to an upper bound on the error probability. We
propose a novel algorithm FEDELIM that is based on succes-
sive elimination and communicates only in exponential time
steps, and obtain a high probability instance-dependent up-
per bound on its total cost. The key takeaway from our pa-
per is that for any C ≥ 0 and error probabilities sufficiently
small, the total number of arm selections (resp. the total cost)
under FEDELIM is at most 2 (resp. 3) times the maximum
total number of arm selections under its variant that commu-
nicates in every time step. Additionally, we show that the lat-
ter is optimal in expectation up to a constant factor, thereby
demonstrating that communication is almost cost-free under
FEDELIM. We numerically validate the efficacy of FEDELIM
on two synthetic datasets and the MovieLens dataset.

Introduction
We study an optimal stopping variant of the federated learn-
ing multi-armed bandit (FLMAB) regret minimisation prob-
lem of Shi, Shen, and Yang (2021). The specifics of our
problem setup are as follows. We consider a federated multi-
armed bandit setup with a central server and M > 1 clients.
Each client is associated with a multi-armed bandit with
K > 1 arms in which each arm yields independent and iden-
tically distributed (i.i.d.) rewards following a Gaussian dis-
tribution with an unknown mean and known variance. We
Copyright © 2023, Association for the Advancement of Artificial
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Client 1

Server

Client 2 Client 3

Uplink, cost 

Downlink,
cost-free

Arm 1
Arm 2
Arm 3
Arm 4

Arm 1
Arm 2
Arm 3
Arm 4

Arm 1
Arm 2
Arm 3
Arm 4

Figure 1: An illustration of our problem setup with M = 3
clients and K = 4 arms per client. The mean of arm k of
client m is µk,m, where k ∈ [K] and m ∈ [M ]. Communi-
cation of a scalar to the server is assumed to entail a cost of
C ≥ 0 units per usage of the uplink, whereas the downlink
from the server to the client is cost-free.

assume that the set of arms is identical at all the clients. As
in Shi, Shen, and Yang (2021), we consider two notions of
best arm—local and global. The local best arm at a client
is defined as the arm with the largest mean among the arms
local to the client. The global best arm is the arm with the
largest average of the means averaged across the clients (we
define these terms precisely later in the paper). We assume
that each client can observe the rewards generated only from
its local arms and thereby estimate its local best arm. The
clients do not communicate directly with each other, but in-
stead communicate with the central server. Communication
from each client to the server entails a fixed cost of C ≥ 0
units per usage per uplink. The information transmitted by
the clients on the uplink is used by the server to estimate
the global best arm. In contrast to the work of Shi, Shen,
and Yang (2021) where the goal is to minimise the regret ac-
crued over a finite time horizon, the goal of our work is to
find the local best arms of all the clients and the global best
arm in a way so as to minimise the sum of the total number
of arm pulls at the clients and the total communication cost,
subject to an upper bound on the error probability. Figure 1
summarises our problem setup.

Motivation
The following example from the movie industry motivates
our problem setup. Movies are typically categorised into var-
ious genres (for e.g., comedy, romance, action, thriller, etc.)
and released in several parts (regions) of the world. The peo-
ple of a region develop preferences for one or more genres
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courtesy of certain region-specific demographics (for e.g.,
age profile, females to males ratio of the population, etc.).
Suppose that there are M distinct regions and K distinct
genres. The following questions are commonplace in the
movie industry: (a) What genre of movies is most preferred
locally by the people of a given region? (b) What genre of
movies yields higher profits on the average globally across
all regions? In the above example, a movie is akin to an arm
and a region is akin to a client. The question in (a) above
seeks to find the local best arm of each client, whereas the
question in (b) seeks to find the global best arm.

Related Works
Federated learning is an emerging paradigm that focuses on
a distributed machine learning scenario in which there are
multiple clients and a central server training a common ma-
chine learning model while keeping each client’s local data
private; see McMahan et al. (2017) and Kairouz et al. (2021)
and the references therein for more details. The work of Shi,
Shen, and Yang (2021) extends the federated learning frame-
work to multi-armed bandit paradigm and studies FLMAB
under the theme of regret minimisation wherein the goal
is to design arm selection algorithms to minimise the re-
gret accrued over a finite time horizon. See Lattimore and
Szepesvári (2020) and the references therein for more details
on the regret minimisation theme and other related works
on this theme. Contrary to the theme of regret minimisation,
best arm identification falls under the theme of optimal stop-
ping and can be embedded within the classical framework of
Chernoff (1959). As noted in the work of Bubeck, Munos,
and Stoltz (2011) and Zhong, Cheung, and Tan (2021), algo-
rithms that are optimal in the context of regret minimisation
are not necessarily so in the context of optimal stopping.

The problem of best arm identification is well-studied and
consists in finding the best arm (i.e., the arm with the largest
mean value) in a (single) multi-armed bandit. This problem
is studied under two complementary settings: (a) the fixed-
confidence setting, where the objective is to find the best arm
with the smallest expected number of arm pulls subject to
ensuring that the error probability is no more than a given
threshold value; see Even-Dar et al. (2006); Jamieson et al.
(2014), and (b) the fixed-budget setting, where the objec-
tive is to find the best arm as accurately as possible given a
threshold on the number of arm pulls; see Audibert, Bubeck,
and Munos (2010) and Bubeck, Munos, and Stoltz (2011).
In this paper, we consider the fixed-confidence setting. For
an excellent survey, see Jamieson and Nowak (2014).

Mitra, Hassani, and Pappas (2021) study a federated vari-
ant of the best arm identification problem with a central
server and multiple clients, similar to our work. However,
their problem setting differs from ours in that in their work,
the arms of a single multi-armed bandit are partitioned into
as many subsets as there are clients. Each client is asso-
ciated with a subset of arms and can observe only the re-
wards generated from the arms in this subset. The central
goal in their paper is to identify the global best arm, defined
as arm with the largest mean among the local best arms of
the clients. Notice that an arm that is not the local best arm
at any client cannot be the global best arm. Therefore, it suf-

fices for each client to communicate to the server only the
empirical mean of the estimated local best arm; this commu-
nication is assumed to take place periodically, only for time
step n ∈ {1, H + 1, 2H + 1, . . .} for some fixed period H .
However, in our work, the global best arm (defined as the
arm with the largest average of the means averaged across
the clients) may not necessarily be the local best arm at any
client, because of which the clients may need to communi-
cate the empirical means of their non-local best arms. Also,
we propose an alternative strategy of communicating only at
time steps n = 2t for t ∈ N0 := N ∪ {0}, and demonstrate
that this strategy, called exponentially sparse communica-
tion, mitigates the overall communication cost and renders
communication almost cost-free.

Works on collaborative learning in bandits (e.g., Hillel
et al. (2013) and Tao, Zhang, and Zhou (2019)) consider a
central server and multiple clients as in our work, but with
one salient difference: in the abovementioned works, the
arms and their distributions are identical at all the clients
(the goal is to establish collaboration among the clients to
find the best arm faster than without collaboration). As a re-
sult, the local best arm of each client is identical to those of
the other clients. In this paper, we assume that the set of arms
is identical at all the clients and allow for the arms to have
different distributions across the clients, thereby leading to
possibly distinct local and global best arms.

Contributions
We now highlight the key contributions of this paper.

• We propose a novel algorithm called FEDerated learn-
ing successive ELIMination algorithm (or FEDELIM) for
finding the local best arms and the global best arm (see
Algorithm 1). The key feature of FEDELIM is that clients
communicate to the server in only exponential time steps
n = 2t for some t ∈ N0. Given any δ ∈ (0, 1), we
show that FEDELIM declares the local best arms and the
global best arm correctly with probability at least 1 − δ.
We present problem-instance dependent upper bounds on
the total number of arm selections, the communication
cost, and the total cost of FEDELIM, each of which holds
with probability at least 1 − δ (Theorem 4). Our results
show that the total cost of FEDELIM scales as ln(1/δ)
in the error probability threshold δ, and inversely as the
squares of the sub-optimality gaps of the arms.

• For a variant of FEDELIM (called FEDELIM0) that com-
municates in every time step, we obtain a high probabil-
ity problem instance-dependent upper bound on the total
number of arm selections (Theorem 2). We also obtain a
lower bound on the expected total number of arm selec-
tions required by any algorithm which outputs the correct
answer with probability at least 1 − δ (Theorem 3), and
show that the upper and the lower bounds are tight when
M is constant or when M is sufficiently large.

• The key takeaway from our paper is that for any C ≥ 0
and sufficiently small δ, the total cost of FEDELIM is at
most 3 times the total number of arm selections under
FEDELIM0 with probability at least 1− δ. That is, com-
munication is almost cost-free in FEDELIM. Through
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extensive simulations on two synthetic datasets and the
large-scale, real-world MovieLens dataset, we compare
the total cost of FEDELIM with that of a periodic com-
munication protocol with period H based on successive
elimination, and observe that there is a “sweet spot” for
H where the total cost of the latter is minimal. Determin-
ing this sweet spot requires knowing C and other prob-
lem instance-specific constants and is infeasible in most
practical settings. In comparison, FEDELIM, while being
agnostic to C and other problem instance-specific con-
stants, learns this sweet spot on-the-fly.

Although the focus of our paper is best arm identifi-
cation, FEDELIM may be adapted to solve more general
problems such as top-N arms identification (Kalyanakrish-
nan et al. 2012), thresholding in bandits (Locatelli, Gutzeit,
and Carpentier 2016), ϵ-optimal arm identification (Even-
Dar et al. 2006), and so on. In our paper, the Gaussian re-
wards assumption is merely for simplicity in the presenta-
tion. Our analyses are applicable to observations that are
sub-Gaussian. For more details, see Remarks 5,6 in Reddy,
Karthik, and Tan (2022).

Notations and Problem Setup
In this section, we lay down the notations used through-
out the paper, and specify the problem setup. We consider
a federated multi-armed bandit with a central server and M
clients. Each client is associated with a multi-armed bandit
with K arms (called local arms). We refer to the K-armed
bandit associated with a client as its local multi-armed ban-
dit. We write [K] := {1, 2, . . . ,K} to denote the set of arms,
and assume that [K] is the same for all the clients and the
server. Also, we write [M ] to denote the set of clients.

Local and Global Best Arms
There are M local multi-armed bandits, one associated with
each client. For n ∈ N, let Xk,m(n) denote the reward
(or observation) generated from local arm k of client m at
time n. For each (k,m) pair, {Xk,m(n) : n ≥ 1} is an i.i.d.
process following a Gaussian distribution with an unknown
mean µk,m ∈ R and known variance σ2. For simplicity, we
set σ2 = 1. We define the local best arm k∗m of client m
as the arm with the largest mean among the local arms of
client m, i.e., k∗m := argmaxk µk,m; we assume that k∗m is
unique for each m. Also, let µ∗

m := µk∗
m,m = maxk µk,m

be the mean of the local best arm of client m. Note that two
different clients may have distinct local best arms. Letting
µk :=

∑M
m=1 µk,m/M , we define the global best arm k∗ as

the arm with the largest value of µk, i.e., k∗ = argmaxk µk,
and assume that k∗ is unique. We let µ∗ := µk∗ = maxk µk

denote the mean of the global best arm. The global best arm
may not necessarily be the local best arm at any client.

Communication Model
We assume that each client can observe only the rewards
generated from its local arms, based on which the client can
estimate its local best arm. Estimating the global best arm
requires exchange of information among the clients. We as-
sume that each client communicates with a central server,

and that there is no direct communication between any two
clients. We also assume that the communication link from
a client to the server (uplink) entails a fixed cost of C ≥ 0
units per usage of the link, and that the communication link
from the server to the client (downlink) is cost-free as in
Hanna, Yang, and Fragouli (2022). Each client sends real-
valued information about the rewards from one or more of
its local arms on its uplink. The server aggregates the in-
formation coming from all the clients to construct a set of
arms that are potential contenders for being the global best
arm, and communicates this set to each of the clients on the
downlink. Each client selects each arm in set received from
the server to obtain a more refined estimate of the arm’s em-
pirical mean. In this way, the clients and the server commu-
nicate until there is exactly one contender arm at the server.

When C = 0, it is clearly advantageous for the clients
to communicate with the server at every time step. When
C > 0, it is, however, beneficial for the clients to commu-
nicate with the server only intermittently so that the over-
all communication cost will be minimized. An instance of
periodic communication in federated multi-armed bandits,
where the clients communicate with the server periodically,
once every H time steps for a fixed integer H > 0, may
be seen in Mitra, Hassani, and Pappas (2021). An alterna-
tive communication strategy, one that we explore in this pa-
per, is for the clients to communicate with the server only at
time steps n of the form n = 2t for t ∈ N0. As we shall see
shortly, the latter strategy mitigates the communication costs
significantly and renders communication almost cost-free.

Problem Instance and Algorithm
A problem instance is identified by the matrix µ = [µk,m :
k ∈ [K],m ∈ [M ]] ∈ RK×M of the means of the lo-
cal arms of all the clients. The actual value of µ is un-
known, and the goal is to find the local best arm at each
of the clients and also the global best arm (i.e., the vector
S(µ) := (k∗1 , k

∗
2 , . . . , k

∗
M , k∗) ∈ [K]m+1) with high confi-

dence. Each client selects one or more of its local arms at
every time n ∈ N and forms an estimate of its local best arm
as the arm with the largest empirical mean at time step n.

An algorithm for finding the local best arms and the
global best arm prescribes the following:
• A selection rule that specifies the arm(s) that each client

must select from amongst its local arms for each n.
• A communication rule that specifies the condition(s) un-

der which the clients will communicate with the server
and the information that the clients will send to the server.

• A termination rule that specifies when to stop further se-
lection of arms at the clients.

• A declaration rule that specifies the estimates Ŝ :=

(k̂∗1 , k̂
∗
2 , . . . , k̂

∗
M , k̂∗) ∈ [K]M+1 of the local best arms

and the global best arm to output; here, k̂∗m is the esti-
mate of the local best arm of client m ∈ [M ] and k̂∗ is
the estimate of the global best arm.

We denote an algorithm by π and define its total cost

Ctotal(π) = (total number of arm pulls under π
+ total communication cost under π). (1)
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In (1), the first component on the right hand side represents
the total number of arm selections made by all the clients un-
til termination, and the second component is the total com-
munication cost incurred across all the clients.

Objective
For δ ∈ (0, 1), an algorithm π is said to be δ-probably ap-
proximately correct (or δ-PAC) if for all µ ∈ RK×M , we
have Pπ

µ (Ŝ = S(µ)) ≥ 1− δ; here, Pπ
µ (·) denotes the prob-

ability measure under algorithm π and problem instance µ.
Note that any δ-PAC algorithm π must declare the correct
output with probability at least 1−δ for all problem instances
µ, as π is oblivious to the knowledge of the underlying prob-
lem instance. Given any µ and δ ∈ (0, 1), our objective is
to design a δ-PAC algorithm, say π∗, for finding the local
best arms and the global best arm, and derive a µ-dependent
upper bound, say U(µ, δ), on its total cost Ctotal(π∗), such
that

Pπ∗

µ

(
Ctotal(π∗) ≤ U(µ, δ)

)
≥ 1− δ.

In the following section, we present a version of the well-
known successive elimination algorithm of Even-Dar et al.
(2006) for finding the local best arms and the global best
arm. We interleave it with the exponentially sparse commu-
nication sub-protocol, and subsequently obtain a high prob-
ability upper bound on its total cost.

The Federated Learning Successive
Elimination Algorithm (FEDELIM)

Our algorithm, termed Federated Learning Successive Elim-
ination Algorithm (or FEDELIM), is presented in Algo-
rithm 1. In the following, we provide some algorithm-
specific notations and a detailed description of FEDELIM.

Algorithm-Specific Notations
The FEDELIM algorithm proceeds in several time steps; we
denote a generic time step by n ∈ N. An arm is said to
be a local active arm of client m if it is still a contender
for being the client’s local best arm. On the other hand, an
arm is said to be a global active arm at the central server
if it is still a contender for being the global best arm. At
any given time step, we let Sl,m and Sg denote respec-
tively the set of local active arms at client m and the set
of global active arms at the server. We write µ̂k,m(n) to
denote the empirical mean of arm k of client m at time
step n, and define µ̂k(n) :=

∑M
m=1 µ̂k,m(n)/M . We let

αl(n) :=
√

2 ln (8KMn2/δ)
n and αg(n) :=

√
2 ln (8Kn2/δ)

Mn

denote respectively the local confidence parameter and the
global confidence parameter in time step n.

Algorithm Description
At each client: In each time step n, the algorithm first com-
putes Sm = Sl,m ∪ Sg for each m ∈ [M ]. If |Sm| > 1,
the algorithm selects each arm in Sm once and updates their
respective empirical means (selection rule). Next, for each
m ∈ [M ], the algorithm checks for the validity of the condi-
tion |Sl,m| > 1. If this condition holds, the algorithm elim-
inates all those arms in Sl,m that are no more contenders

for being the local best arm of client m. This is accom-
plished as follows: for each m ∈ [M ], the algorithm com-
putes µ̂∗,m(n) := maxk∈Sl,m

µk,m(n), and eliminates arm
k from Sl,m if µ̂∗,m(n) − µ̂k,m(n) > 2αl(n). The arms re-
maining in Sl,m after elimination are the local active arms of
client m. For each m ∈ [M ], if |Sl,m| = 1 after elimination,
the algorithm outputs the arm in Sl,m as the local best arm
of client m (declaration rule for client m).

At the server: After working on Sl,m for each m ∈ [M ]
as outlined above, the algorithm checks if |Sg| > 1 and if
n = 2t for some t ∈ N0. If both of these conditions hold,
then each client m ∈ [M ] sends to the server its estimates
{µ̂k,m(n) : k ∈ Sg} of the empirical means of the arms in
Sg, one per usage of its uplink (communication rule). Be-
cause the uplink entails a cost of C ≥ 0, the communica-
tion cost incurred at a client is C |Sg|, and therefore the total
communication cost across all the clients is CM |Sg|. The
server eliminates all those arms in Sg that are no more con-
tenders for being the global best arm as follows: the server
first computes µ̂k(n) =

∑M
m=1 µ̂k,m(n)/M for each k ∈ Sg

and also µ̂∗(n) = maxk∈Sg µ̂k(n), and eliminates arm k
from Sg if µ̂∗(n) − µ̂k(n) > 2αg(n). The arms remaining
in Sg after elimination are the global active arms. If |Sg| = 1
after elimination, the algorithm outputs the arm in Sg as the
global best arm (declaration rule for the global best arm).

Upon identifying the local best arms and the global best
arm, the algorithm terminates. Else, if at least one of the
local best arms or the global best arm is not identified, the
algorithm continues to the next time step.
Remark 1. Recall that in our problem setup, the global best
arm may not necessarily be the local best arm at any client.
In fact, the local best arms and the global best arms can
be all distinct. As a result, even if an arm (say arm k) is
eliminated from Sl,m at client m (i.e., arm k is not the local
best arm of client m), it may still need to be selected further
before it can be eliminated globally from Sg, and vice-versa.
It is for this reason that we set Sm = Sl,m ∪ Sg as the set of
arms to be selected at client m. In contrast, when the global
best arm is always one of the local best arms, as in Mitra,
Hassani, and Pappas (2021), eliminating an arm locally at
a client is akin to eliminating the arm globally.

Remark 2. To keep the total cost of an algorithm small,
it is imperative to strike a balance between the total num-
ber of arm selections and the communication cost. For in-
stance, as is naturally expected and also demonstrated by
our numerical results later in the paper, a periodic com-
munication scheme with period H and based on succes-
sive elimination incurs a larger communication cost than
our exponentially sparse communication scheme (see Fig-
ures 2b and 3b). With regard to the total number of arm
selections, one might expect that the periodic communica-
tion protocol outperforms our exponential sparse communi-
cation protocol because more frequent communication in the
former leads to faster identification of the global best arm.
From our numerical results, we find that this is true only
partially. Rather interestingly, Figures 2c and 3c indicate
that the total cost of a periodic communication algorithm
(based on successive elimination) with period H decreases,
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Algorithm 1: Federated Learning Successive Elimi-
nation Algorithm (FEDELIM)
Input: K ∈ N, M ∈ N, δ ∈ (0, 1)

Output: (k̂∗1 , . . . , k∗M , k̂∗) ∈ [K]M+1

Initialize: n = 0, µ̂k,m(n) = 0 and Sl,m = [K] for
all k,m, µ̂k(n) = 0 and Sg = [K] for
all k, run = true

1 while run = true do
2 n← n+ 1
3 for m = 1 : M do
4 Sm ← Sl,m ∪ Sg
5 if |Sm| > 1 then
6 for k ∈ Sm do
7 pull arm k of client m and update its

empirical mean µ̂k,m(n)

8 if |Sl,m| > 1 then
9 Set µ̂∗,m(n) = maxk∈Sl,m

µ̂k,m(n)
10 for k ∈ Sl,m such that

µ̂∗,m(n)− µ̂k,m(n) ≥ 2αl(n) do
11 Sl,m ← Sl,m\{k}

12 if |Sl,m| = 1 then
13 Output k̂∗m ∈ Sl,m
14 Sl,m ← ∅

15 if |Sg| > 1 and n = 2t for some t ∈ N0 then
16 for k ∈ Sg do
17 For each m ∈ [M ], client m sends

µ̂k,m(n) to the server.
18 Set µ̂k(n) =

∑M
m=1 µ̂k,m(n)/M

19 Set µ̂∗(n) = maxk∈Sg µ̂k(n)
20 for k ∈ Sg such that

µ̂∗(n)− µ̂k(n) ≥ 2αg(n) do
21 Sg ← Sg\{k}

22 if |Sg| = 1 then
23 Output k̂∗ ∈ Sg
24 Sg ← ∅
25 if |Sm| = 0 for all m ∈ [M ] then
26 run = false

attains a minimum, and thereafter increases with increase
in H , thereby suggesting that there is “sweet spot” for H ,
say Hopt, where the total cost is minimal. However, Hopt

is, in general, a function of C and problem instance-specific
constants which are not known beforehand in most practical
settings, thereby making the computation of Hopt infeasi-
ble. Figures 2c and 3c show that FEDELIM finds this sweet
spot while being agnostic to C and other problem instance-
specific constants, and thereby achieves a balanced trade-off
between the total number of arm selections and comm. cost.

Performance Analysis of FEDELIM

In this section, we present our theoretical results on the per-
formance (total number of arm pulls, total communication
cost, and the total cost) of FEDELIM. We only state the re-
sults below; for the detailed proofs, see Reddy, Karthik, and
Tan (2022). Our first result asserts that given any δ ∈ (0, 1),
FEDELIM is δ-PAC, i.e., it identifies the local best arms and
the global best arm correctly with probability at least 1− δ.

Theorem 1. Given any δ ∈ (0, 1), FEDELIM identifies the
local best arms and global best arm correctly with probabil-
ity at least 1− δ and is thus δ-PAC.

In the proof, we first show that for any δ ∈ (0, 1), the
event

E :=
⋂

n∈N,k∈[K],m∈[M ]

{
|µ̂k(n)− µk|≤αg(n),

|µ̂k,m(n)− µk,m|≤αl(n)

}
(2)

has probability at least 1−δ; this is established using a stan-
dard inequality on the concentration of the empirical mean
around the true mean for Gaussian rewards. We then show
that FEDELIM always outputs the correct answer under E .

We now analyse a variant of FEDELIM called FEDELIM0
which communicates to the server in every time step. Specif-
ically, FEDELIM0 differs from FEDELIM in line 15 of Al-
gorithm 1, which is executed for all n in FEDELIM0 but
only for n = 2t for t ∈ N0 in FEDELIM. Our interest is
only in the total number of arm selections of FEDELIM0, say
TFEDELIM0, required to find the local best arms and the global
best arm on the event E , and how this compares with the to-
tal number of arm selections of other algorithms which also
communicate in every time step. As we shall see, TFEDELIM0

is an important term that governs the problem instance-
dependent upper bounds for the total number of arm selec-
tions and the total cost of FEDELIM. Note that TFEDELIM0 is
also the total cost of FEDELIM0 on E when C = 0.

Performance Analysis of FEDELIM0

For k ̸= k∗m, let ∆k,m := µk∗
m,m − µk,m denote the

suboptimality gap between the means of arm k of client
m and the local best arm of client m, and let ∆k∗

m,m :=
mink ̸=k∗

m
∆k,m. Similarly, for k ̸= k∗, we let ∆k := µk∗ −

µk and ∆k∗ := mink ̸=k∗ ∆k. The following result provides
a problem instance-dependent upper bound on TFEDELIM0.

Theorem 2. Fix δ ∈ (0, 1). On the event E defined in (2),

TFEDELIM0 ≤ T :=
K∑

k=1

M∑
m=1

max
{
Tk,m, Tk

}
, (3)

where for each k ∈ [K] and m ∈ [M ],

Tk,m := 102 ·
ln

(
64
√

8KM
δ

∆2
k,m

)
∆2

k,m

+ 1, (4)

Tk := 102 ·
ln
(

64
√

8K
δ

M∆2
k

)
M∆2

k

+ 1. (5)
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We show in the proof that on the event E , the total number
of arm selections under FEDELIM0 required to identify arm
k of client m as the client’s local best arm or otherwise, say
T

(1)
k,m, is upper bounded by Tk,m for all k ∈ [K] and m ∈

[M ]. To establish the preceding result, we use the fact that
αl(n) → 0 as n → ∞, and look for the smallest integer n
such that αl(n) ≤ ∆2

k,m/4; call this nk,m. We argue that

T
(1)
k,m ≤ nk,m on the event E , and subsequently show that

Tk,m is an upper bound for nk,m. A similar procedure as
above is used to upper bound the total number of arm pulls
required to identify arm k as being the global best arm or
otherwise at the server. Combining the two upper bounds
and noting that the event E occurs with probability at least
1− δ, we arrive at (3).

The next result shows that the upper bound in (3) is tight
up to a constant factor.

Theorem 3. Given δ ∈ (0, 1) and a δ-PAC algorithm π,
let Tπ

δ denote the total number of arm selections under π
required to find the local best arms and the global best arm
when the clients and the server communicate in every time
step. Under the problem instance µ,

inf
π is δ-PAC

Eπ
µ[T

π
δ ] ≥

K∑
k=1

M∑
m=1

max

{
ln( 1

2.4δ )

∆2
k,m

,
ln( 1

2.4δ )

M2∆2
k

}
,

(6)
where in (6), Eπ

µ[·] denotes the expectation under the algo-
rithm π and the problem instance µ.

The proof of Theorem 3 is based on the transportation
lemma (Kaufmann, Cappé, and Garivier 2016, Lemma 1)
which combines a certain change of measure technique and
Wald’s identity for i.i.d. processes.

Remark 3. Theorems 2 and 3 together provide a fairly tight
characterisation of the total number of arm selections under
the optimal algorithm in the class of all algorithms that com-
municate in every time step. They show that FEDELIM0 is
almost optimal in this class. Neglecting the logarithm terms
and the constants, the key difference between the upper and
lower bounds manifests in the second term in the maximum
in (6), in which there is an additional factor of M in the de-
nominator. When M is a constant or if M is so large so that
∆k,m ≤

√
M ∆k for all (k,m) ∈ [K] × [M ] (a typical

federated learning scenario in which the number of clients
M is large), Theorems 2 and 3 are tight up to log factors.

Performance of FEDELIM with Uplink Cost
We now present a high-probability upper bound on the total
cost (i.e., the sum of the total number of arm pulls and the to-
tal communication cost) of FEDELIM for any C ≥ 0. Given
a problem instance µ, for each k ∈ [K] and m ∈ [M ], let
Tk,m and Tk be as defined in (4) and (5) respectively.

Theorem 4. Fix a problem instance µ, uplink cost C ≥ 0,
and δ ∈ (0, 1) such that C lnTk ≤ Tk for all k ∈ [K].
Let TC

FEDELIM, Ccomm
FEDELIM, and Ctotal

FEDELIM denote respectively the
total number of arm selections, the communication cost, and
the total cost of FEDELIM towards identifying the local best

arms and the global best arm. On the event E defined in (2),
the following inequalities hold (with T as defined in (3)):

TC
FEDELIM ≤

K∑
k=1

M∑
m=1

max{Tk,m, 2Tk} ≤ 2T, (7)

Ccomm
FEDELIM ≤ C ·M ·

K∑
k=1

⌈
lnTk

ln 2

⌉
, (8)

Ctotal
FEDELIM = TC

FEDELIM + Ccomm
FEDELIM ≤ 3T. (9)

Notice that the maxima in (3) and that in (7) are identical
up to the constant 2. Intuitively, the extra factor of 2 arises
because if a candidate arm k is not eliminated in time step
n = 2t but is eliminated in time step n = 2t+1 for some
t ∈ N0, then it must be the case that 2t+1 ≤ 2Tk, and
therefore the total number of arm selections is at most 2Tk.

It is no coincidence that the constant 2 appears inside the
maximum in (7) and also in the denominator in (8). In fact,
exponential sparse communication in time steps n = ⌈λt⌉
for t ∈ N0 and λ > 0, results in λ replacing 2 in both (7)
and (8). Then, optimising the sum of the λ-analogues of the
right hand sides of (7) and (8), we may arrive at a fairly tight
upper bound on the total cost, i.e., the λ-analogue of (9).
However, the optimal λ is, in general, a function of C and
the problem instance-specific sub-optimality gaps which are
unknown in most practical settings. Therefore, we do away
with finding the optimal λ and instead use λ = 2. For a more
detailed discussion, see Reddy, Karthik, and Tan (2022).

Remark 4. The key takeaway result of our paper, presented
in inequality (9), shows that the total number of arm selec-
tions (resp. total cost) of FEDELIM is at most 2 (resp. 3)
times T . These multiplicative gaps of 2 and 3 do not depend
on C. In contrast, for periodic communication (Mitra, Has-
sani, and Pappas 2021) with period H , it can be shown that
the multiplicative gap for the total cost is 1 + C/H , which
does depend on the per usage communication cost C.

Numerical Results
In this section, we present numerical results on the perfor-
mance of FEDELIM (and FEDELIM0). We consider two syn-
thetic datasets and one real-world dataset. The code used for
obtaining the results may be accessed at https://github.com/
pnkarthik/AAAI-2023-Code.

Experiments on a Synthetic Dataset
First, we discuss our numerical results on a stylized syn-
thetic dataset. We consider the problem instance

µ =

0.9 0.1 0.1
0.1 0.9 0.1
0.1 0.1 0.9
0.5 0.5 0.5

 ∈ R4×3. (10)

Notice that arm m is the local best arm of client m for each
m ∈ [3], whereas arm 4 is the global best arm. Figure 2
shows a summary of the results obtained after averaging
across 100 independent trials. The error bars show ±1 stan-
dard deviation away from the mean. Theorem 4 states that
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(a) A plot comparing the number of arm pulls
of FEDELIM0 with the cost of FEDELIM for
C ∈ {0, 10, 100}. FEDELIM0 has a lower
cost compared to FEDELIM when C = 0.
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(b) A plot comparing of the communication
cost incurred under the proposed FEDELIM
algorithm and under periodic communication
with period H ∈ {1, 5, 10} and C = 10.
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(c) A plot comparing the cost under FEDE-
LIM and periodic communication with period
H = 10p for p ∈ {0} ∪ [5] and C = 10.
FEDELIM operates at a sweet spot.

Figure 2: Numerical results on the synthetic dataset with the problem instance in (10).
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(a) Plot analogous to Figure 2a.
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(b) Plot analogous to Figure 2b with C = 10.
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(c) Plot analogous to Figure 2c with C = 10.

Figure 3: Numerical results on the MovieLens dataset.

for FEDELIM, the total cost when C > 0 is at most three
times that when C = 0. Figure 2a strongly corroborates this.
It shows the total cost for FEDELIM for various values of C
as well as FEDELIM0. We observe that for each fixed value
of δ, the total cost of FEDELIM is at most three times that of
FEDELIM0 regardless of the value of C. In fact, the multi-
plicative factor three is conservative as empirically observed
from Figure 2a.

In Figure 2b, we compare the communication cost of
FEDELIM and periodic communication (Mitra, Hassani, and
Pappas 2021). First, we see that as H increases, the commu-
nication cost decreases as expected. Second, we observe that
the communication cost of FEDELIM is significantly smaller
than that of the periodic communication schemes.

In Figure 2c, we compare the total cost (defined in (1)) of
FEDELIM and periodic communication with period H =
10p for p ∈ {0, . . . , 5}. We observe that, per Remark 2,
for periodic communication, there is a “sweet spot” for H ,
which, in this case, occurs at around H = 102. On the
other hand, FEDELIM does almost as well as the best pe-
riodic communication scheme for the optimal H . FEDE-
LIM is, however, agnostic to the cost C, which is set to 10
here. More experimental results, specifically on a dataset of
Bernoulli observations used in (Mitra, Hassani, and Pappas
2021), is available in Reddy, Karthik, and Tan (2022).

Experiments on the MovieLens Dataset
We also run our algorithm on a large-scale subsampled ver-
sion of the MovieLens dataset (Cantador, Brusilovsky, and
Kuflik 2011) crafted so as to simulate heterogeneity among

the clients. Specifically, we extract a subset of the Movie-
Lens dataset containing movies that were produced in 38
different countries and across 20 different genres, resulting
in a total of 8, 636 movies and about 2.04 million ratings;
see Reddy, Karthik, and Tan (2022) for the details. We then
set the countries and genres to be in one-to-one correspon-
dence with the clients (so M = 38) and arms (so K = 20),
respectively. Figure 3 shows the results of running FEDE-
LIM on this dataset. The qualitative behaviours of FEDE-
LIM, FEDELIM0 and the strategy that communicates with
the server periodically match with those for the synthetic
dataset. The highlight of Figure 3c is that FEDELIM attains
the absolute minimum among all schemes that communicate
periodically to the server, thus incontrovertibly demonstrat-
ing the ability of FEDELIM to effectively balance commu-
nication and the number of arm selections on a real-world,
large-scale dataset.

Summary and Future Work
We designed and analyzed an algorithm called FEDELIM,
and showed that it is effective in learning the local and global
best arms in the context of a federated learning setting. We
did not take into account the fact that communication to the
server typically requires quantization of the empirical means
at each of the clients. Elucidating the tradeoff between the
number of bits used and the number of arm pulls (cf. Hanna,
Yang, and Fragouli (2022)) is a promising area for future re-
search. Another interesting direction is to study the perfor-
mance of a track-and-stop-based algorithm for our problem.
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