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Abstract

Simulations that produce three-dimensional data are ubiqui-
tous in science, ranging from fluid flows to plasma physics. We
propose a similarity model based on entropy, which allows for
the creation of physically meaningful ground truth distances
for the similarity assessment of scalar and vectorial data, pro-
duced from transport and motion-based simulations. Utilizing
two data acquisition methods derived from this model, we
create collections of fields from numerical PDE solvers and
existing simulation data repositories. Furthermore, a multi-
scale CNN architecture that computes a volumetric similarity
metric (VolSiM) is proposed. To the best of our knowledge
this is the first learning method inherently designed to ad-
dress the challenges arising for the similarity assessment of
high-dimensional simulation data. Additionally, the tradeoff
between a large batch size and an accurate correlation compu-
tation for correlation-based loss functions is investigated, and
the metric’s invariance with respect to rotation and scale oper-
ations is analyzed. Finally, the robustness and generalization
of VolSiM is evaluated on a large range of test data, as well as
a particularly challenging turbulence case study, that is close
to potential real-world applications.

1 Introduction

Making comparisons is a fundamental operation that is essen-
tial for any kind of computation. This is especially true for the
simulation of physical phenomena, as we are often interested
in comparing simulations against other types of models or
measurements from a physical system. Mathematically, such
comparisons require metric functions that determine scalar
distance values as a similarity assessment. A fundamental
problem is that traditional comparisons are typically based on
simple, element-wise metrics like the L! or L2 distances, due
to their computational simplicity and a lack of alternatives.
Such metrics can work reliably for systems with few elements
of interest, e.g. if we want to analyze the position of a mov-
ing object at different points in time, matching our intuitive
understanding of distances. However, more complex physical
problems often exhibit large numbers of degrees of freedom,
and strong dependencies between elements in their solutions.
Those coherences should be considered when comparing
physical data, but element-wise operations by definition ig-
nore such interactions between elements. With the curse of
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dimensionality, this situation becomes significantly worse for
systems that are modeled with dense grid data, as the number
of interactions grows exponentially with a linearly increasing
number elements. Such data representations are widely used,
e.g. for medical blood flow simulations (Olufsen et al. 2000),
climate and weather predictions (Stocker et al. 2014), and
even the famous unsolved problem of turbulence (Holmes
et al. 2012). Another downside of element-wise metrics is
that each element is weighted equally, which is typically
suboptimal; e.g. smoke plumes behave differently along the
vertical dimension due to gravity or buoyancy, and small key
features like vortices are more indicative of the fluid’s general
behavior than large areas of near constant flow (Pope 2000).

In the image domain, neural networks have been employed
for similarity models that can consider larger structures, typi-
cally via training with class labels that provide semantics, or
with data that encodes human perception. Similarly, physical
systems exhibit spatial and temporal coherence due to the
underlying laws of physics that can be utilized. In contrast to
previous work on simulation data (Kohl, Um, and Thuerey
2020), we derive an entropy-based similarity model to ro-
bustly learn similarity assessments of scalar and vectorial
volumetric data. Overall, our work contributes the following:

* We propose a novel similarity model based on the en-
tropy of physical systems. It is employed to synthesize
sequences of volumetric physical fields suitable for metric
learning.

* We show that our Siamese multiscale feature network
results in a stable metric that successfully generalizes to
new physical phenomena. To the best of our knowledge
this is the first learned metric inherently designed for the
similarity assessment of volumetric fields.

* The metric is employed to analyze turbulence in a case
study, and its invariance to rotation and scale are evaluated.
In addition, we analyze correlation-based loss functions
with respect to their tradeoff between batch size and accu-
racy of correlation computation.

The central application of the proposed VolSiM metric is the
similarity assessment of new physical simulation methods,
numerical or learning-based, against a known ground truth.!

'Our source code, datasets, and ready-to-use models are avail-
able at https://github.com/tum-pbs/VOLSIM. For a version of this
work with an appendix also see https://arxiv.org/abs/2202.04109.



This ground truth can take the form of measurements, higher
resolution simulations, or existing models. Similar to percep-
tual losses for computer vision tasks, the trained metric can
also be used as a differentiable similarity loss for various
physical problems. We refer to Thuerey et al. (2021) for an
overview of such problems and different learning methods to
approach them.

2 Related Work

Apart from simple L™ distances, the two metrics peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM)
from Wang et al. are commonly used across disciplines for
the similarity assessment of data. Similar to the underlying
L? distance, PSNR shares the issues of element-wise metrics
(Huynh-Thu and Ghanbari 2008, 2012). SSIM computes a
more intricate function, but it was shown to be closely re-
lated to PSNR (Horé and Ziou 2010) and thus has similar
problems (Nilsson and Akenine-Mdller 2020). Furthermore,
statistical tools like the Pearson correlation coefficient PCC
(Pearson 1920) and Spearman’s rank correlation coefficient
SRCC (Spearman 1904) can be employed as a simple simi-
larity measurement. There are several learning-based metrics
specialized for different domains such as rendered (Ander-
sson et al. 2020) and natural images (Bosse et al. 2016),
interior object design (Bell and Bala 2015), audio (Avgousti-
nakis et al. 2020), and haptic signals (Kumari, Chaudhuri,
and Chaudhuri 2019).

Especially for images, similarity measurements have been
approached in various ways, but mostly by combining deep
embeddings as perceptually more accurate metrics (Prashnani
et al. 2018; Talebi and Milanfar 2018). These metrics can
be employed for various applications such as image super-
resolution (Johnson, Alahi, and Fei-Fei 2016) or generative
tasks (Dosovitskiy and Brox 2016). Traditional metric learn-
ing for images typically works in one of two ways: Either, the
training is directly supervised by learning from manually cre-
ated labels, e.g. via two-alternative forced choice where hu-
mans pick the most similar option to a reference (Zhang et al.
2018), or the training is indirectly semi-supervised through
images with class labels and a contrastive loss (Chopra, Had-
sell, and LeCun 2005; Hadsell, Chopra, and LeCun 2006).
In that case, triplets of reference, same class image, and
other class images are sampled, and the corresponding latent
space representations are pulled together or pushed apart.
We refer to Roth et al. (2020) for an overview of different
training strategies for learned image metrics. In addition, we
study the behavior of invariance and equivariance to different
transformations, which was targeted previously for rotational
symmetries (Weiler et al. 2018; Chidester et al. 2019) and
improved generalization (Wang, Walters, and Yu 2021).

Similarity metrics for simulation data have not been stud-
ied extensively yet. Siamese networks for finding similar
fluid descriptors have been applied to smoke flow synthesis,
where a highly accurate similarity assessment is not necessary
(Chu and Thuerey 2017). Um et al. (2017; 2021) used crowd-
sourced user studies for the similarity assessment of liquid
simulations which rely on relatively slow and expensive hu-
man evaluations. Scalar 2D simulation data was previously
compared with a learned metric using a Siamese network
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(Kohl, Um, and Thuerey 2020), but we overcome methodi-
cal weaknesses and improve upon the performance of their
work. Their LSiM method relies on a basic feature extractor
based on common classification CNNs, does not account for
the long-term behavior of different systems with respect to
entropy via a similarity model during training, and employs
a simple heuristic to generate suitable data sequences.

3 Modeling Similarity of Simulations

To formulate our methodology for learning similarity met-
rics that target dissipative physical systems, we turn to the
fundamental quantity of entropy. The second law of thermo-
dynamics states that the entropy S of a closed physical system
never decreases, thus AS > 0. In the following, we make the
reasonable assumption that the behavior of the system is con-
tinuous and non-oscillating, and that AS > 0.2 Eq. 1 is the
Boltzmann equation from statistical mechanics (Boltzmann
1866), that describes S in terms of the Boltzmann constant
k;, and the number of microstates W of a system.?

S = kg log(W) ()

Since entropy only depends on a single system state, it can be
reformulated to take the relative change between two states
into account. From an information-theoretical perspective,
this is related to using Shannon entropy (Shannon 1948) as a
diversity measure, as done by Rényi (1961). Given a sequence
of states sg, s1, - . ., S, we define the relative entropy

S(s) = klog(10%wsy). (2)

Here, w; is the monotonically increasing, relative number of
microstates defined as 0 for sg and as 1 for s,,. 10¢ > 0 is
a system-dependent factor that determines how quickly the
number of microstates increases, i.e. it represents the speed
at which different processes decorrelate. As the properties
of similarity metrics dictate that distances are always non-
negative and only zero for identical states, the lower bound
in Eq. 2 is adjusted to 0, leading to a first similarity model
D(s) = klog(10°w, + 1). Finally, relative similarities are
equivalent up to a multiplicative constant, and thus we can
freely choose k. Choosing k = 1/(log 10° + 1) leads to the
full similarity model

_ log(10°w, + 1)

D(s) = log(10¢ 4 1) ®)

For a sequence s, it predicts the overall similarity behavior
between the reference sy and the other states with respect to
entropy, given the relative number of microstates w, and the
system decorrelation speed c.

Fig. 1 illustrates the connection between the logarithmi-
cally increasing entropy and the proposed similarity model

These assumptions are required to create sequences with mean-
ingful ground truth distances below in Sec. 4.

3We do not have any a priori information about the distribution
of the likelihood of each microstate in a general physical system.
Thus, the Boltzmann entropy definition which assumes a uniform
microstate distribution is used in the following, instead of more
generic entropy models such as the Gibbs or Shannon entropy.
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Figure 1: Idealized model of the behavior of entropy and
similarity for different A or different c, respectively.

for a state sequence with fixed length n. Here, A denotes
the magnitude of change between the individual sequence
states which is directly related to ws, and c is the decorre-
lation speed of the system that produced the sequence. In
the following, we will refer to the property of a sequence
being informative with respect to a pairwise similarity anal-
ysis as difficulty. Sequences that align with the red dotted
curve contain little information as they are dissimilar to sq
too quickly, either because the original system decorrelates
too fast or because the difference between each state is too
large (high difficulty). On the other hand, sequences like the
green dashed curve are also not ideal as they change too
little, and a larger non-practical sequence length would be
necessary to cover long-term effects (low difficulty). Ideally, a
sequence s employed for learning tasks should evenly exhibit
both regimes as well as intermediate ones, as indicated by
the black curve. The central challenges now become finding
sequences with a suitable magnitude of A, determining c,
and assigning distances d to pairs from the sequence.

4 Sequence Creation

To create a sequence sg, s1, . . . , S, Within a controlled envi-
ronment, we make use of the knowledge about the underlying
physical processes: We either employ direct changes, based
on spatial or temporal coherences to sg, or use changes to the
initial conditions of the process that lead to so. As we can
neither directly determine ¢ nor d at this point, we propose to
use proxies for them during the sequence generation. Initially,
this allows for finding sequences that roughly fall in a suit-
able difficulty range, and accurate values can be computed
afterwards. Here, we use the mean squared error (MSE) as
a proxy distance function and the PCC to determine c, to
iteratively update A to a suitable range.

Given any value of A and a corresponding sequence, pair-
wise proxy distances* between the sequence elements are
computed d® = MSE(s;, s;) and min-max normalized to
[0, 1]. Next, we determine a distance sequence corresponding
to the physical changes over the states, which we model as
a simple linear increase over the sequence ws = (j — i)/n
following (Kohl, Um, and Thuerey 2020). To indirectly de-
termine ¢, we compare how both distance sequences differ in
terms of the PCC as r = PCC(d®, w;). We empirically de-
termined that correlations between 0.65 and 0.85 work well
for all cases we considered. In practice, the network stops
learning effectively for lower correlation values as states are

“To keep the notation clear and concise, sequentially indexing
the distance vectors d and w, with i and j is omitted here.
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too different, while sequences with higher values reduce gen-
eralization as a simple metric is sufficient to describe them.
Using these thresholds, we propose two semi-automatic it-
erative methods to create data, depending on the method
to introduce variations to a given state (see Fig. 2). Both
methods sample a small set of sequences to calibrate A to
a suitable magnitude and use that value for the full data set.
Compared to strictly sampling every sequence, this method is
computationally significantly more efficient as less sampling
is needed, and it results in a more natural data distribution.

[A] Variations from Initial Conditions of Simulations
Given a numerical PDE solver and a set of initial conditions
or parameters p, the solver computes a solution to the PDE
over the time steps to, ¢1, . . ., t¢. To create a larger number of
different sequences, we make the systems non-deterministic
by adding noise to a simulation field and randomly gener-
ating the initial conditions from a given range. Adjusting
one of the parameters p; in steps with a small perturbation
A;, allows for the creation of a sequence sg, $1, - . ., S, With
decreasing similarity to the unperturbed simulation output sg.
This is repeated for every suitable parameter in p, and the
corresponding A is updated individually until the targeted
MSE correlation range is reached. The global noise strength
factor also influences the difficulty and can be updated.

[B] Variations from Spatio-temporal Coherences For a
source D of volumetric spatio-temporal data without access to
a solver, we rely on a larger spatial and/or temporal dimension
than the one required for a sequence. We start at a random
spatio-temporal position p to extract a cubical spatial area s
around it. p can be repeatedly translated in space and/or time
by A¢ 4.~ to create a sequence So, 1, - . . , S, of decreasing
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Figure 2: Iteration schemes to calibrate and create data se-
quences of decreasing similarity. Variation from the reference
state can be introduced via the initial conditions of a numeri-
cal PDE simulation (method [A], top), or via spatio-temporal
data changes on data from a repository (method [B], bottom).



similarity. Note that individual translations in space or time
should be preferred if possible. Using different starts leads to
new sequences, as long as enough diverse data is available. It
is possible to add some global random perturbations ¢ to the
positions to further increase the difficulty.

Data Sets To create training data with method [A], we uti-
lize solvers for a basic Advection-Diffusion model (Adv),
Burgers’ equation (Bur) with an additional viscosity term,
and the full Navier-Stokes equations via a Eulerian smoke
simulation (Smo) and a hybrid Eulerian-Lagrangian liquid
simulation (Liq). The corresponding validation sets are gen-
erated with a separate set of random seeds. Furthermore, we
use adjusted versions of the noise integration for two test
sets, by adding noise to the density instead of the velocity
in the Advection-Diffusion model (AdvD) and overlaying
background noise in the liquid simulation (L1gN).

We create seven test sets via method [B]. Four come from
the Johns Hopkins Turbulence Database JHTDB (Perlman
et al. 2007) that contains a large amount of direct numerical
simulation (DNS) data, where each is based on a subset of
the JHTDB and features different characteristics: isotropic
turbulence (Iso), a channel flow (Cha), magneto-hydrody-
namic turbulence (Mhd), and a transitional boundary layer
(Tra). Since turbulence contains structures of interest across
all length scales, we additionally randomly stride or interpo-
late the query points for scale factors in [0.25, 4] to create se-
quences of different physical size. One additional test set (SF)
via temporal translations is based on ScalarFlow (Eckert, Um,
and Thuerey 2019), consisting of 3D reconstructions of real
smoke plumes. Furthermore, method [B] is slightly modified
for two synthetic test sets: Instead of using a data repository,
we procedurally synthesize spatial fields: We employ linearly
moving randomized shapes (Sha), and randomized damped
waves (Wav) of the general form f(x) = cos(x) x e~*. All
data was gathered in sequences with n = 10 at resolution
1283, and downsampled to 643 for computational efficiency
during training and evaluations.

Determining ¢ For each calibrated sequence, we can now
more accurately estimate c. As c corresponds to the decor-
relation speed of the system, we choose Pearson’s distance
d® =1 — |PCC(so, s;)| as a distance proxy here. c is deter-
mine via standard unbounded least-squares optimization from
log(10° d® +1)

the similarity model in Eq. 3 as ¢ = argmin,, Tog(10°F1)

5 Learning a Distance Function

Given the calibrated sequences s of different physical sys-
tems with elements s, s1, . . ., Sy, the corresponding value
of ¢, and the pairwise physical target distance sequence
ws = (j — i)/n, we can now formulate a semi-supervised
learning problem: We train a neural network m that receives
pairs from s as an input, and outputs scalar distances d for
each pair. These predictions are trained against ground truth

distances g = %. Note that g originates from the
sequence order determined by our data generation approach,
transformed with a non-linear transformation according to
the entropy-based similarity model. This technique incorpo-

rates the underlying physical behavior by accounting for the
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decorrelation speed over the sequence, compared to adding
variations in a post-process (as commonly done in the domain
of images, e.g. by Ponomarenko et al. (2015)). To train the
metric network, the correlation loss function in Eq. 4 below
compares d to g and provides gradients.

Network Structure For our method, we generally follow
the established Siamese network structure, that was originally
proposed for 2D domains (Zhang et al. 2018): First, two in-
puts are embedded in a latent space using a CNN as a feature
extractor. The Siamese structure means that the weights are
shared, which ensures the mathematical requirements for a
pseudo-metric (Kohl, Um, and Thuerey 2020). Next, the fea-
tures from all layers are normalized and compared with an
element-wise comparison like an absolute or squared differ-
ence. Finally, this difference is aggregated with sum, mean,
and learned weighted average functions. To compute the pro-
posed VolSiM metric that compares inherently more complex
3D data, changes to this framework are proposed below.

Multiscale Network Scale is important for a reliable simi-
larity assessment, since physical systems often exhibit self-
similar behavior that does not significantly change across
scales, as indicated by the large number of dimensionless
quantities in physics. Generally, scaling a data pair should
not alter its similarity, and networks can learn such an invari-
ance to scale most effectively by processing data at different
scales. One example where this is crucial is the energy cas-
cade in turbulence (Pope 2000), which is also analyzed in our
case study below. For learned image metrics, this invariance
is also useful (but less crucial), and often introduced with
large strides and kernels in the convolutions, e.g. via a feature
extractor based on AlexNet (Zhang et al. 2018). In fact, our
experiments with similar architectures showed, that models
with large strides and kernels generally perform better than
models that modify the scale over the course of the network
to a lesser extent. However, we propose to directly encode
this scale structure in a multiscale architecture for a more
accurate similarity assessment, and a network with a smaller
resource footprint.

Fig. 3 shows the proposed fully convolutional network:
Four scale blocks individually process the input on increas-
ingly smaller scales, where each block follows the same layer
structure, but deeper blocks effectively cover a significantly
larger volume due to the reduced input resolutions. Deeper

Input ¥ ¥ ¥

2x2x2 AvgPool 4x4x4 AvgPool 8x8x8 AvgPool

; Ir> Concat'enation Ir> Concatvenation > Concat:enation
ScaleBlock 4 ) | ScaleBlock 8 )| ScaleBlock 16 L. ScaleBlock 32
native resolution 1/2resolution 1/ 4 resolution 1/8 resolution
ScaleBlock ¢ channels: (c—c—c—c), strides: (1-2—1-1), pad: (2-2—1-1))

| 5x5x5 Conv. IM>| 5x5x5 Conv. Iﬂﬁ 3x3x3 Conv. Iﬂﬁ 3x3x3 Conv. |

Figure 3: Standard Conv+ReLU blocks (bottom) are interwo-
ven with input and resolution connections (blue dotted and
red dashed), to form the combined network architecture (top)
with about 350k weights.




architectures can model complex functions more easily, so
we additionally include resolution connections from each
scale block to the next resolution level via concatenation.
Effectively, the network learns a mixture of connected deep
features and similar representations across scales as a result.

Training and Evaluation To increase the model’s robust-
ness during training, we used the following data augmenta-
tions for each sequence: the data is normalized to [—1, 1],
and together randomly flipped and rotated in increments of
90° around a random axis. The velocity channels are ran-
domly swapped to prevent directional biases from some sim-
ulations, while scalar data is extended to the three input
channels via repetition. For inference, only the normalization
operation and the repetition of scalar data is performed. The
final metric model was trained with the Adam optimizer with
a learning rate of 10~ for 30 epochs via early stopping. To
determine the accuracy of any metric during inference in
the following, we compute the SRCC between the distance
predictions of the metric d and the ground truth w;, where a
value closer to 1 indicates a better reconstruction.’

Loss Function Given predicted distances d and a ground
truth g of size n, we train our metric networks with the loss
L(d,g) = M(d —g)* + X2(1 - 1)
>ici(di —d) (9i — 9)

VI = )2\ T (g - 9)?
consisting of a weighted combination of an MSE and an
inverted correlation term 7, where d and g denote the mean.
While the formulation follows existing work (Kohl, Um, and
Thuerey 2020), it is important to note that g is computed by
our similarity model from Sec. 3, and below we introduce
a slicing technique to apply this loss formulation to high-
dimensional data sets.

To successfully train a neural network, Eq. 4 requires a
trade-off: A large batch size b is useful to improve training
stability via less random gradients for optimization. Similarly,
a sufficiently large value of n is required to keep the correla-
tion values accurate and stable. However, with finite amounts
of memory, choosing large values for n and b is not possible
in practice. Especially so for 3D cases, where a single sample
can already be memory intensive. In general, n is implicitly
determined by the length of the created sequences via the
number of possible pairs. Thus, we provide an analysis how
the correlation can be approximated in multiple steps for a
fixed n, to allow for increasing b in return. In the following,
the batch dimension is not explicitly shown, but all expres-
sions can be extended with a vectorized first dimension. The
full distance vectors d and g are split in slices with v ele-
ments, where v should be a proper divisor of n. For any slice
k, we can compute a partial correlation r; with

e i (di=d) (5 —9)
VS - 42 S

>This is equivalent to SRCC(d, g), since the SRCC measures
monotonic relationships and is not affect by monotonic transforma-
tions, but using w; is more efficient and has numerical benefits.

“

where r

. 5
gi — 9)* ©
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Figure 4: Combined validation and test performance for dif-
ferent batch sizes b and slicing values v (markers), and the
usage of running sample mean RM and correlation aggrega-
tion AG (colors).

Note that this is only an approximation, and choosing larger
values of v for a given b is always beneficial, if sufficient
memory is available. For all slices, the gradients are accu-
mulated during backpropagation since other aggregations
would required a computational graph of the original, im-
practical size. Eq. 5 still requires the computation of the
means d and g as a pre-process over all samples. Both can
be approximated with the running means d and g for effi-
ciency (RM). For small values of v, the slicing results in
very coarse, unstable correlation results. To alleviate that, it
is possible to use a running mean over all previous values
T = (1/k)(ri + Z;:ll r;). This aggregation (AG) can sta-
bilize the gradients of individual r as they converge to the
true correlation value.

Fig. 4 displays the resulting performance on our data, when
training with different combinations of b, v, RM, and AG.
All models exhibit similar levels of memory consumption
and were trained with the same random training seed. When
comparing models with and without RM both are on par
in most cases, even though computation times for a running
mean are about 20% lower. Networks with and without AG
generalize similarly, however, models with the aggregation
exhibit less fluctuations during optimization, leading to an
easier training process. Overall, this experiment demonstrates
that choosing larger v consistently leads to better results
(marker shape), so more accurate correlations are beneficial
over a large batch size b in memory-limited scenarios. Thus,
we use b = 1 and v = 55 for the final model.

6 Results

We compare the proposed VolSiM metric to a variety of ex-
isting methods in the upper section of Tab. 1. All metrics
were evaluated on the volumetric data from Sec. 4, which
contain a wide range of test sets that differ strongly from the
training data. VolSiM consistently reconstructs the ground
truth distances from the entropy-based similarity model more
reliably than other approaches on most data sets. As expected,
this effect is most apparent on the validation sets since their
distribution is closest to the training data. But even on the
majority of test sets with a very different distribution, Vol-
SiM 1is the best performing or close to the best performing
metric. Metrics without deep learning often fall short, in-
dicating that they were initially designed for different use
cases, like SSIM (Wang et al. 2004) for images, or variation



Validation data sets I

Test data sets

Simulated Simulated Generated JHTDB* ‘ SE® ‘ ¢
Metric Adv Bur Lig Smo H AdvD LigN Sha Wav Iso Cha Mhd Tra SF ‘ All
MSE 0.61 070 051 0.68 0.77 076  0.75 0.65 0.76 086 0.80 0.79 0.79 | 0.70
PSNR 0.61 0.68 0.52 0.68 0.78 0.76  0.75 0.65 078 086 081 0.83 0.79 | 0.73
SSIM 075 0.68 049 0.64 0.81 0.80 0.76 0.88 0.49 0.55 062 060 044 | 0.61
\%4 0.57 0.69 043 0.60 0.69 0.82 0.67 0.87 0.59 0.76 0.68 0.67 041 | 0.62
LPIPS (2D) 0.63 062 035 0.56 0.76 0.62 087 092 0.71 0.83 079 0.76 0.87 | 0.76
LSiM (2D) 0.57 055 048 0.71 0.79 0.75 093 097 069 086 079 0.81 098 | 0.81
VoISiM (ours) 075 0.73 0.66 0.77 || 0.84 0.88 095 09 077 0.86 0.81 088 095 | 0.85
CNNained 0.60 0.71 0.63 0.76 0.81 077 092 093 0.75 0.86 0.78 085 095 | 0.82
MS ana 0.57 066 045 0.69 0.76 0.75 0.80 0.78 0.74 086 080 0.82 0.84 | 0.74
CNN and 0.52 0.66 049 0.69 0.77 070 093 096 074 085 079 0.83 0095 | 0.81
MSideniry 0.75 071 0.68 0.73 0.83 0.85 087 096 074 087 077 0.87 094 | 0.82
MS3 scates 0.70 0.69 0.70 0.73 0.83 082 095 094 0.76 0.87 080 088 093 | 0.83
MS5 scates 078 0.72 0.78 0.78 0.81 090 094 093 0.75 0.85 0.77 0.88 0.93 | 0.82
MSadded 150 0.73 072 077 0.79 0.84 0.84 092 097 [0.79] 087 0.80 086 097 | 0.84
MSoniy 150 058 0.62 032 0.63 0.78 0.65 0.72 092 [0.82] 0.77 086 0.79 0.65 | 0.75

# Johns Hopkins Turbulence DB (Perlman et al. 2007)

b ScalarFlow (Eckert, Um, and Thuerey 2019)

¢ Combined test data sets

Table 1: Top: performance comparison of different metrics for 3D data via the SRCC, where values closer to 1 indicate a better
reconstruction of the ground truth distances (bold+underlined: best method for each data set, underlined: within a 0.01 margin of
the best performing). Bottom: ablation study of the proposed method (brackets: advantage due to different training data).

of information VI (Meila 2007) for clustering. The strictly
element-wise metrics MSE and PSNR exhibit almost identical
performance, and both work poorly on a variety of data sets.
As the learning-based methods LPIPS (Zhang et al. 2018)
and LSiM (Kohl, Um, and Thuerey 2020) are limited to two
dimensions, their assessments in Tab. 1 are obtained by av-
eraging sliced evaluations for all three spatial axes. Both
methods show improvements over the element-wise metrics,
but are still clearly inferior to the performance of VolSiM.
This becomes apparent on our aggregated test sets displayed
in the A11 column, where LSiM results in a correlation value
of 0.81, compared to VolSiM with 0.85. LSiM can only come
close to VolSiM on less challenging data sets where corre-
lation values are close to 1 and all learned reconstructions
are already highly accurate. This improvement is comparable
to using LPIPS over PSNR, and represents a significant step
forward in terms of a robust similarity assessment.

The bottom half of Tab. 1 contains an ablation study of the
proposed architecture MS, and a simple CNN model. This
model is similar to an extension of the convolution layers of
AlexNet (Krizhevsky, Sutskever, and Hinton 2017) to 3D, and
does not utilize a multiscale structure. Even though VolSiM
has more than 80% fewer weights compared to CNN;ineds
it can fit the training data more easily and generalizes bet-
ter for most data sets in Tab. 1, indicating the strengths of
the proposed multiscale architecture. The performance of un-
trained models CNN,,,q and MS, 4,4 confirm the findings from
Zhang et al. (2018), who also report a surprisingly strong
performance of random networks. We replace the non-linear
transformation of w; from the similarity model with an iden-
tity transformation for MSgensir, during training, i.e. only the
sequence order determines g. This consistently lowers the
generalization of the metric across data sets, indicating that
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well calibrated sequences as well as the similarity model are
important for the similarity assessment. Removing the last
resolution scale block for MS3 scqi.s Overly reduces the capac-
ity of the model, while adding another block for MSs scqzes 18
not beneficial. In addition, we also investigate two slightly
different training setups: for MS,q4ed 150 We integrate addi-
tional sequences created like the Iso data in the training,
while MSqny 150 15 €xclusively trained on such sequences.
MS.dded 150 Only slightly improves upon the baseline, and
even the turbulence-specific MS,1y 15, model does not con-
sistently improve the results on the JHTDB data sets. Both
cases indicate a high level of generalization for VolSiM, as it
was not trained on any turbulence data.

CNNtrained CNNtrained
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Figure 5: Distance deviation from the mean prediction over
differently rotated (left) and scaled (right) inputs for a simple
CNN and the proposed multiscale model.

Transformation Invariance Physical systems are often
characterized by Galilean invariance (McComb 1999), i.e.
identical laws of motion across inertial frames. Likewise,
a metric should be invariant to transformations of the in-
put, meaning a constant distance output when translating,
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Figure 6: Top: Analysis of forced isotropic turbulence across three time spans. The high SRCC values indicate strong agreement
between a traditional correlation evaluation and VolSiM. Bottom: Examples from the sequence, visualized via a mean projection

along the x-axis and color-coded channels.

scaling, or rotating both inputs. Element-wise metrics fulfill
these properties by construction, but our Siamese network
structure requires an equivariant feature representation that
changes along with input transformations to achieve them.
As CNN features are translation equivariant by design (apart
from boundary effects and pooling), we empirically examine
rotation and scale invariance for our multiscale metric and
a standard Conv+ReLU model on a fixed set of 8 random
data pairs from each data set. For the rotation experiment,
we rotate the pairs in steps of 5° around a random coordinate
axis. The empty volume inside the original frame is filled
with a value of 0, and data outside the frame is cropped. For
scaling, the data is bilinearly up- or downsampled according
to the scale factor, and processed fully convolutionally.

In Fig. 5, the resulting distance deviation from the mean
of the predicted distances is plotted for rotation and scaling
operations. The optimal result would be a perfectly equal
distance with zero deviation across all transformations. Com-
pared to the model CNN,,ineq, it can be observed that VoISiM
produces less deviations overall, and leads to significantly
smoother and more consistent distance curves, across scales
and rotations as shown in Fig. 5. This is caused by the mul-
tiscale architecture, which results in a more robust internal
feature representation, and thus higher stability across small
transformations. Note that we observe scale equivariance
rather than invariance for VolSiM, i.e. a mostly linear scaling
of the distances according to the input size. This is most likely
caused by a larger spatial size of the fully convolutional fea-
tures. Making a scale equivariant model fully invariant would
require a form of normalization, which is left for future work.

Case Study: Turbulence Analysis As a particularly chal-
lenging test for generalization, we further perform a case
study on forced isotropic turbulence that resembles a po-
tential real-world scenario for our metric in Fig. 6. For this
purpose, fully resolved raw DNS data over a long temporal
interval from the isotropic turbulence data set from JHTDB is
utilized (see bottom of Fig. 6). The 10243 domain is filtered
and reduced to a size of 1283 via strides, meaning VoISiM is
applied in a fully convolutional manner, and has to generalize
beyond the training resolution of 643. Three different time
spans of the simulation are investigated, where the long span
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also uses temporal strides. Traditionally, turbulence research
makes use of established two-point correlations to study such
cases (Pope 2000). Since we are interested in a comprehen-
sive spatial analysis instead of two single points, we can make
use of Pearson’s distance that corresponds to an aggregated
two-point correlation on the full fields to obtain a physical
reference evaluation in this scenario.

Fig. 6 displays normalized distance values between the
first simulation time step ¢; and each following step ¢;. Even
though there are smaller fluctuations, the proposed VolSiM
metric (blue) behaves very similar to the physical reference
of aggregated two-point correlations (red dashed) across all
time spans. This is further emphasized by the high SRCC
values between both sets of trajectories, even for the chal-
lenging long time span. Our metric faithfully recovers the
correlation-based reference, despite not having seen any tur-
bulence data at training time. Overall, this experiment shows
that the similarity model integrates physical concepts into
the comparisons of VolSiM, and indicates the generalization
capabilities of the multiscale metric to new cases.

7 Conclusion

We presented the multiscale CNN architecture VolSiM, and
demonstrated its capabilities as a similarity metric for vol-
umetric simulation data. A similarity model based on the
behavior of entropy in physical systems was proposed and
utilized to learn a robust, physical similarity assessment. Dif-
ferent methods to compute correlations inside a loss func-
tion were analyzed, and the invariance to scale and rotation
transformations investigated. Furthermore, we showed clear
improvements upon elementwise metrics as well as exist-
ing learned approaches like LPIPS and LSiM in terms of an
accurate similarity assessment across our data sets.

The proposed metric potentially has an impact on a broad
range of disciplines where volumetric simulation data arises.
An interesting area for future work is designing a metric
specifically for turbulence simulations, first steps towards
which were taken with our case study. Additionally, inves-
tigating learning-based methods with features that are by
construction equivariant to rotation and scaling may lead to
further improvements in the future.
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