
The Influence of Dimensions on the Complexity of Computing Decision Trees
Stephen G. Kobourov1, Maarten Löffler2, Fabrizio Montecchiani3, Marcin Pilipczuk4,

Ignaz Rutter5, Raimund Seidel6, Manuel Sorge7, Jules Wulms7

1 University of Arizona, Department of Computer Science
2 Utrecht University, Department of Information and Computing Sciences

3 University of Perugia, Department of Engineering
4 University of Warsaw, Faculty of Mathematics, Informatics, and Mechanics

5 University of Passau, Faculty of Computer Science and Mathematics
6 Saarland University, Department of Computer Science

7 TU Wien, Institute of Logic and Computation
kobourov@cs.arizona.edu, m.loffler@uu.nl, fabrizio.montecchiani@unipg.it, malcin@mimuw.edu.pl,

rutter@fim.uni-passau.de, rseidel@cs.uni-saarland.de {manuel.sorge, jwulms}@ac.tuwien.ac.at

Abstract

A decision tree recursively splits a feature space Rd and then
assigns class labels based on the resulting partition. Decision
trees have been part of the basic machine-learning toolkit for
decades. A large body of work considers heuristic algorithms
that compute a decision tree from training data, usually aim-
ing to minimize in particular the size of the resulting tree.
In contrast, little is known about the complexity of the un-
derlying computational problem of computing a minimum-
size tree for the given training data. We study this problem
with respect to the number d of dimensions of the feature
space Rd, which contains n training examples. We show that
it can be solved in O(n2d+1) time, but under reasonable
complexity-theoretic assumptions it is not possible to achieve
f(d) · no(d/ log d) running time. The problem is solvable in
(dR)O(dR) · n1+o(1) time, if there are exactly two classes
and R is an upper bound on the number of tree leaves labeled
with the first class.

1 Introduction
A decision tree is a useful tool to classify and describe
data (Murthy 1998). It takes the feature space Rd, recur-
sively performs axis-parallel cuts to split the space into two
subspaces, and then assigns class labels based on the result-
ing partition (see Figure 1). Because of their simplicity, de-
cision trees are particularly attractive as interpretable mod-
els of the underlying data (Molnar 2020). In this context,
small trees are preferable, i.e., trees that have a small num-
ber of nodes, or in other words, perform a small number of
cuts (Moshkovitz et al. 2020). Such trees are also desired in
the context of classification, because it is thought that mini-
mizing the number of nodes reduces the chances of overfit-
ting (Fayyad and Irani 1990).

In the learning phase, we are given a finite set of examples
E ⊆ Rd labeled with classes and we want to find a decision
tree that optimizes certain performance criteria and that is
consistent with E, that is, the classes assigned by the tree
perfectly agree with the class labels of the examples. Among

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other criteria, the number of nodes is often minimized for
the above-mentioned reasons. There is a plethora of imple-
mentations for learning decision trees (e.g., (Breiman et al.
1984; Bessiere, Hebrard, and O’Sullivan 2009; Narodytska
et al. 2018; Schidler and Szeider 2021; Hu, Rudin, and
Seltzer 2019)). The classical CART heuristic herein is
among the Top 10 Algorithms of Data Mining chosen by
the ICDM (Wu et al. 2008; Steinberg 2009) and several im-
plementations are based on exact algorithms minimizing the
size of the produced trees. Despite this, our knowledge of
the computational complexity of learning (minimum-node)
decision trees is limited: Several classical results show NP-
hardness (Hyafil and Rivest 1976; Goodrich et al. 1995) (see
also the survey by Murthy (1998)) and we know that even
if we require parameters such as the number of nodes of the
tree, or the number of different feature values, to be small,
we still cannot achieve efficient algorithms in terms of upper
bounds on the running time (Ordyniak and Szeider 2021).

In this paper, we study the influence of the number d of
dimensions of the feature space on the complexity of learn-
ing small decision trees. This problem can be phrased as the
decision problem MINIMUM DECISION TREE SIZE (DTS):
The input is a tuple (E, λ, s) consisting of a set E ⊆ Rd

of examples, a class labeling λ : E → {blue, red}, and
an integer s, and we want to decide whether there is a
decision tree for (E, λ) of size at most s. Herein, a binary
tree T is decision tree for (E, λ) if the labeled partition of
Rd associated with T agrees with the labels λ of E; see
Section 2 for a precise definition.

We provide three main results. First, we show that DTS
can be solved in O(n2d+1d) time (Theorem 3.1), where n
is the number of input examples. In other words, for fixed
number of dimensions, DTS is polynomial-time solvable.
Contrast this with the variant where, instead of axis-parallel
cuts, we allow linear cuts of arbitrary slopes. This problem
is NP-hard already for d = 3 (Goodrich et al. 1995).

Second, complementing the first result, we show that the
dependency on d in the exponent cannot be substantially
reduced. More precisely, a running time of f(d) ·no(d/ log d)

would contradict widely accepted complexity-theoretic as-
sumptions (Theorem 4.1). This implies that the running time

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8343

of algorithms for DTS has to scale exponentially with d. In
other words, any provably efficient algorithm for DTS has
to exploit other properties of the input or desired solution.

Third, a pair of results that determines more closely what
parameters influence the combinatorial explosion, offering
two tractability results. A crucial property of a construc-
tion that we use in Theorem 4.1 is that the size of the op-
timal decision tree is unbounded. Informally, this result thus
shows intractability only in situations where the smallest de-
cision tree for our input data is rather large. This may be
the case for practical data (partially overlapping classes of
Gaussian-distributed data), but it begs the question whether
we can find particularly small decision trees provably ef-
ficiently if the data allow for it. As Ordyniak and Szeider
showed, without further restrictions, this is not possible as
DTS is W[2]-hard with respect to the solution size s (Or-
dyniak and Szeider 2021). In contrast, we show that in the
small-dimension regime we do obtain a prospect for an effi-
cient algorithm with running time O((s3d)s ·n1+o(1)) (The-
orem 3.2). An intermediate result towards this is inspired by
and improves upon an algorithm by Ordyniak and Szeider
(2021) for determining a smallest decision tree that cuts only
a given set of features; we decrease the running time from
2O(s2) ·n1+o(1) · log n to 2O(s log s) ·n1+o(1) for our purpose.

Finally, we show that in the tractability result with respect
to s and d, the size s can be replaced by an a priori even
smaller parameter: Let R be an upper bound on the num-
ber of leaves in the decision tree labeled with any one class.
Equivalently, R is an upper bound on the number of parts in
the partition induced by the tree that contain only examples
of the first class, or that contain only examples of the second
class, whichever number is smaller. Then, DTS is solvable
in (dR)O(dR) · n1+o(1) time (Theorem 3.6). This is interest-
ing from a theoretical perspective because DTS is NP-hard
even for R = 1 in the unbounded-dimension regime (Or-
dyniak and Szeider 2021). We believe that restricting a deci-
sion tree to have a small number R of leaves labeled with one
class can also be reasonable in practice: In some cases the
distribution of the data may not allow for particularly small
decision trees, hampering interpretability. It may then be
useful to consider trees in which one class labels few leaves.

Summarizing, while nO(d)-time algorithms for DTS are
achievable, they cannot be substantially improved in gen-
eral, but when restricting to small solution sizes or a class to
have few leaves, there are prospects for efficient algorithms.

2 Preliminaries
For n ∈ N we use [n] := {1, 2, . . . , n}. For a vector x ∈ Rd

we denote by x[i] the ith entry of x.
Let E ⊆ Rd and λ : E → {blue, red}. Let the do-

main Di := {x[i] | x ∈ E} of E consist of all distinct co-
ordinate values for dimension i occurring in examples of E.
We aim to define what a decision tree for (E, λ) is. Let T be
a rooted and ordered binary tree and let dim : V (T) → [d]
and thr : V (T) → R be labelings of each internal node t ∈
V (T) by a dimension dim(t) ∈ [d] and a threshold thr(t) ∈
R. For each internal node t of T there is a left and a right
child of t, labeled by ≤ and >, respectively; see Figure 1.

a

b
c

(x, a)

(y, b) (y, c)

>

> >

+− + −

≤

≤ ≤

Figure 1: Left: An instance (E, λ) of DTS with two dimen-
sions x (horizontal) and y (vertical). Points are examples and
the blue and red color represents their labels assigned by λ.
Right: A minimum decision tree T for (E, λ). Each internal
node t ∈ T is labeled by (dim(t), thr(t)).

We use E[fi ≤ t] = {x ∈ E | x[i] ≤ t}
and E[fi > t] = {x ∈ E | x[i] > t} to denote the set exam-
ples of E whose ith dimension is less or equal and strictly
greater than some threshold t, respectively. Each node
t ∈ V (T), including the leaves, defines a subset E[T, t] ⊆ E
as follows. For the root t of T , we define E[T, t] := E. For
each non-root node t let p denote the parent of t. We then
define E[T, t] := E[T, p] ∩ E[fdim(p) ≤ thr(p)] if t is the
left child of p and E[T, t] := E[T, p] ∩ E[fdim(p) > thr(p)]
if t is the right child of p. If the tree T is clear from the
context, we simplify E[T, t] to E[t].

Now T and the associated labelings are a decision tree
for (E, λ) if for each leaf ℓ of T we have that all examples
in E[ℓ] have the same label under λ. Below we will some-
times omit explicit reference to the labelings of the nodes
and edges of T and simply say that T is a decision tree for
(E, λ). The size of T is the number of its internal nodes. We
conveniently call the internal nodes of T and their associ-
ated labels cuts. The problem MINIMUM DECISION TREE
SIZE (DTS) is defined as in the introduction. For most of our
results, the number of classes of the labeling λ does not have
to be restricted to two. We therefore also introduce k-DTS
as the generalization of DTS in which λ : E → [k].

Our analysis is within the framework of parameterized
complexity (Gottlob, Scarcello, and Sideri 2002). Let
L ⊆ Σ∗ be a computational problem specified over some
alphabet Σ and let p : Σ∗ → N a parameter, that is, p assigns
to each instance of L an integer parameter value (which
we simply denote by p if the instance is clear from the
context). We say that L is fixed-parameter tractable (FPT)
with respect to p if it can be decided in f(p) · poly(n)
time where n is the input encoding length. A complement
to fixed-parameter tractability is W[t]-hardness, t ≥ 1; if
problem L is W[t]-hard with respect to p then it is thought
to not be fixed-parameter tractable; see (Flum and Grohe
2006; Niedermeier 2006; Cygan et al. 2015; Downey and
Fellows 2013) for details. The Exponential Time Hypothesis
(ETH) states that 3SAT on n-variable formulas cannot be
solved in 2o(n) time, see refs. (Impagliazzo and Paturi 2001;
Impagliazzo, Paturi, and Zane 2001) for details.

3 Algorithms
We now present our algorithmic results, that is, that k-
DTS is polynomial-time solvable for constant number of

8344

u

v v

u′

H

u

v′

Figure 2: 3D instance where hyperplane H cuts box(u, v)
into box(u, v′) and box(u′, v), and splits examples E ∩
box(u, v) into E ∩ box(u, v′) and E ∩ box(u′, v).

dimensions, an improved algorithm for the case where
we are restricted to a given set of dimensions to cut, a
fixed-parameter algorithm for d + s and one for d + R. For
simplicity, we give our algorithms for the decision problem
(k-)DTS, but with standard techniques they are easily
adaptable to also producing the corresponding tree if it
exists and to the corresponding size-minimization problem.

For the first result we use the order of the examples E
in each dimension. In a dimension i, let c1, c2, . . . , cn be
the coordinate values in Di in ascending order. We use the
set Si of splits, that is, cuts that each partition E in a com-
binatorially distinct way. Specifically, we can define the set
Si := {(cj + cj+1)/2 | j ∈ [n− 1]} ∪ {−∞,∞}. When at
most Dmax different values are used in each dimension, we
find the bound: |Si| = |Di| − 1 + 2 ≤ Dmax + 1 = O(n).

Theorem 3.1. k-DTS is solvable in O(D2d
maxdn) =

O(n2d+1d) time.

Proof. Observe that, by adjusting the thresholds, a mini-
mum decision tree for E can be modified such that for each
node t we get thr(t) ∈ Sdim(t). Let S = S1 ×S2 × . . .×Sd.

We do dynamic programming on hyperrectangles defined
by two points: for u, v ∈ S, let box(u, v) be an axis-aligned
hyperrectangle with u and v as antipodal corners. We re-
quire that each coordinate of u is smaller than the respective
coordinate of v. We are interested in computing a minimum
decision tree T for the examples in E ∩ box(u, v). This
solution can be found by cutting box(u, v) with an axis-
aligned hyperplane H , and combining the minimum-size
decision trees T1, T2 for the examples on either side of the
hyperplane. Since hyperplane H is defined by a dimension i
and threshold t ∈ Si, we can find two new points u′ and v′,
whose coordinates coincide with u and v, respectively, but
in dimension i they have coordinate t. Since no example lies
on H , by definition of Si, E∩box(u, v′) and E∩box(u′, v)
partition the examples in E ∩ box(u, v) (see Figure 2).

We can therefore use hyperplane H to define the root
node (i, t) of decision tree T , with T1 and T2 as subtrees.
These subtrees are found by recursively computing a solu-
tion for E ∩box(u, v′) and E ∩box(u′, v). Since there are i
dimensions, and each of them admits at most Dmax + 1 dis-
tinct hyperplanes that we can use to split, an optimal solution
for E∩box(u, v) can be computed by trying all O(Dmax ·d)
hyperplanes defined by distinct splits in each dimension.

Formally, let T be a dynamic programming table, in

which for each u, v ∈ S with u ≤ v, entry T [u, v] holds the
minimum size of a decision tree for E∩box(u, v). Define the
volume of box(u, v) as the number of grid points contained
within it, that is, |S∩box(u, v)|. We fill the table in a bottom-
up fashion from smaller-volume boxes to larger-volume
boxes. We iterate over the range of possible volumes ρ from
one to |S| and we compute T [u, v] for all u, v ∈ S such that
box(u, v) has volume ρ. For each such u, v, we first take
O(nd) time to check whether the examples in box(u, v) all
have the same label. If so, then we put T [u, v] = 0. Other-
wise, T [u, v] is defined by the following recurrence:

T [u, v] = min
i∈[d]

min
σ∈Si

T [u, vi(σ)] + T [ui(σ), v] + 1.

Thus, for each coordinate i of u and v, we use the values
Si as options. Note that each considered table entry on
the right-hand side corresponds to a box of strictly smaller
volume than the box on the left-hand side. To see that
the recurrence is correct, observe that a minimum-size
decision tree T for E ∩ box(u, v) requires at least one cut.
Consider the cut t at the root of T , shifted to a closest split
if necessary. At some point while taking the minimum we
have i = dim(t) and σ = thr(t). The subtrees of T rooted
at the children of t are decision trees for E ∩ box(u, vi(σ))
and E ∩ box(ui(σ), v), respectively. Thus, the left-hand
side upper bounds the right-hand side. For the other di-
rection, observe that combining any two decision trees for
E ∩ box(u, vi(σ)) and E ∩ box(ui(σ), v) with a cut at σ
in dimension i gives a decision tree for E ∩ box(u, v), as
required. Finally, the size of the minimum-size decision tree
for E can be found in T [u∗, v∗], where all coordinates of
u∗ and v∗ are −∞ and ∞, respectively.

As to the running time, table T has O(D2d
max) entries,

each of which each takes O(nd) time to fill: checking for
consistency and then trying each distinct split and looking
up the size of the respective minimum-size subtrees. We
proceed by increasing the domain in each dimension by
one split at a time, one coordinate at a time. Thus, the total
running time adds up to O(D2d

maxnd) = O(n2d+1d).

Before we elaborate on our next result, we first show
how to improve Theorem 4 in (Ordyniak and Szeider 2021),
which shows that, given an instance (E, λ, s) of DTS, and
given a subset D of the dimensions, it is possible to compute
in 2O(s2)|E|1+o(1) log |E| time the smallest decision tree
among all decision trees of size at most s (if they exists), that
use exactly the given subset D in their cuts — none may be
left out. The main idea is to first enumerate the structure of
all possible decision trees of size s, before finding thresholds
that work for the instance. Instead of enumerating all possi-
ble decision trees and finding the right thresholds afterwards,
we interleave the two processes, see Algorithm 1. Further-
more, we no longer take as input a subset D of dimensions,
which will be used for labeling internal nodes in the decision
tree, but we simply bound the number d of dimensions in the
instance. By iterating over a subset D instead of all d dimen-
sions, Algorithm 1 can be adapted towards the initial setting.

Theorem 3.2. k-DTS is solvable in O((s3d)s|E|1+o(1))
time, and is FPT parameterized by s+ d.

8345

Algorithm 1: SMALLESTDECISIONTREE(E, d, s)

Input: Example set E and numbers s and d
Output: Decision tree T for E with at most s

internal nodes using d dimensions to label
internal nodes.

1 Set sdt to nil, with |nil| = ∞;
2 if s = 0 then
3 if E is uniform then return leaf, with |leaf| = 0;
4 else return nil, with |nil| = ∞;
5 for i = 1 to d do
6 for j = 0 to s− 1 do
7 t = BINARYSEARCH(E, i, j);
8 r = SMALLESTDECISIONTREE(E[fi >

t], d, s− j − 1);
9 l = SMALLESTDECISIONTREE(E[fi ≤

t], d, j);
10 dt = (fi = t) ∪ (l, r), with

|dt| = |l|+ |r|+ 1;
11 if |dt| < |sdt| then sdt = dt;

12 return sdt;

Algorithm 2: BINARYSEARCH(E, i, j)

Input: Example set E and numbers i and j
Output: Largest threshold t for which E[fi ≤ t] has

a decision tree of size j

1 Set D to be an array containing Di in ascending
order;

2 Set L = 0, R = |Di| − 1, b = 0;
3 while L ≤ R do
4 m = ⌊(L+R)/2⌋;
5 if SMALLESTDECISIONTREE(E[fi ≤

D[m]], d, j) is not nil then L = m+ 1, b = 1;
6 else R = m− 1, b = 0;
7 if b = 1 then return D[m];
8 return D[m− 1], with D[−1] = D[0]− 1

Proof sketch. Similar to the algorithm by Ordyniak and
Szeider (Ordyniak and Szeider 2021), we binary search for
the largest threshold value t in dimension i for which the left
subtree can still have a decision tree of size j on the example
set E[fi ≤ t]. If we can find a decision tree of size at most
s−j−1 for the remaining examples in the right subtree, then
we have found a decision tree. However, if we cannot find
such a decision tree for the right subtree, then we could not
find a decision tree even for smaller threshold values of the
root: there would be even more examples left for the right
decision tree, which should still be of size at most s− j− 1.
However, instead of enumerating all trees and assignments
of dimension labels to internal nodes, we loop over these
options during the main procedure in Algorithm 1.

We now prove the running-time bound. Algorithms 1
and 2 together build a recursion tree in which the nodes cor-
respond to calls of Algorithm 1. In each node, corresponding

to a call to Algorithm 1 with some set E and numbers s, d,
there are at most sd(2 + log |E|) = sd log(4|E|) recursive
calls to Algorithm 1: For each iteration of the two loops in
Algorithm 1 there are two direct recursive calls and at most
log |E| in Algorithm 2. In each recursive call the parame-
ter s decreases by at least one. Hence, the overall size of the
recursion tree is O((sd log(4|E|))s). For each node N of the
recursion tree, we spend O(|E|) time, as the main running
time incurred by the call to Algorithm 1 (corresponding to
N) is in the uniformity check of E (Line 3 of Algorithm 1);
the running time of the remaining bookkeeping tasks in
Algorithm 1 and 2 can be charged to the child nodes of N .

Finally, bounding (log(4|E|))s uses the following well-
known technique: We claim that (logm)s = O(s2s ·m1/s).
To see this, observe that the claim is trivial for m < s2s

(as then (logm)s < (2s log s)s = ss(2 log s)s ≤ s2s).
Otherwise, if m ≥ s2s, then we have logm ≤ s2m1/s2

because this holds for m = s2s (observe that dividing
both sides by s yields 2 log s ≤ s1+2/s which clearly
holds) and the derivative wrt. m of the left-hand side is at
most as large as the derivative (wrt. m) of the right-hand
side, that is, 1/(ln(2)m) < m1/s2−1. Thus, in this case
(logm)s ≤ s2sm1/s, showing the claim. Substituting
4|E| for m in (logm)s = O(s2s · m1/s) we get the
overall running time bound of O((sd)s · s2s · |E|1+1/s) =
O((s3d)s · |E|1+o(1)).

The strategy employed by Ordyniak and Szeider to solve
DTS is to first find a subset D of dimensions which should
be cut to find a smallest decision tree (Ordyniak and Szeider
2021). Once the set D has been determined, they use their
Theorem 4 to find a smallest decision tree. In our case, Al-
gorithm 1 works directly towards the final goal, both select-
ing dimensions to cut and finding a smallest decision tree at
the same time. We can adapt the algorithm to Ordyniak and
Szeider’s setting of cutting only within a specified set of di-
mensions by restricting the dimensions to select in Line 5 of
Algorithm 1, to obtain a more efficient running time.

Corollary 3.3. Given a subset D of dimensions, with |D| ≤
s, where we are allowed to cut only (a subset of) dimensions
in D, DTS is solvable in 2O(s(log s))|E|1+o(1) time.

We now consider the parameter R. For simplicity, we will
in the following assume that R restricts the number of red
leaves in a decision tree, and we assume that there are at
least as many blue leaves as red leaves. Observe that this is
without loss of generality, because to solve the general case
we may simply try both options. Below, we call an internal
node that has red leaves in both subtrees an essential node.

Lemma 3.4. A minimum-size decision tree T with R red
leaves has at most R− 1 essential nodes.

Proof. Consider the subtree T ′, whose root is the essential
node closest to the root of T . There is only one such node,
as either the root of T is essential, or one of its subtrees con-
tains only blue leaves. Remove from T ′ all nodes that have
only blue leaves as descendants or are blue leaves them-
selves. The resulting tree contains degree-2 nodes, which

8346

n0

n1

n2

dimension i

t1 t2

n4

E[T, n4]

Figure 3: Construction of Lemma 3.5: path p in yellow, and
nodes n1 and n2 with thresholds t1 and t2 in dimension i.

must be non-essential. Contracting the degree-2 nodes, we
again obtain a binary tree T ∗. Note that the internal nodes
of T ∗ one-to-one correspond to the essential nodes of T .
Tree T ∗ still has all R red leaves of T (and no blue ones),
and thus consists of at most R− 1 internal nodes.

Lemma 3.5. In a minimum-size decision tree T with R red
leaves, each root-to-leaf path has at most 2d consecutive
non-essential nodes, where d is the number of dimensions.

Proof. Assume for a contradiction that a minimum-size de-
cision tree T exists for example set E that has 2d + 1 con-
secutive non-essential nodes on a root-to-leaf path p. Let
n0 be the essential node that is the child of the 2d + 1-th
consecutive non-essential node in p. Since there are 2d + 1
non-essential nodes, there are three nodes n1 = (i, t1),
n2 = (j, t2), and n3 = (l, t3) such that i = j = l. Ad-
ditionally, at least two of those nodes have a blue leaf as
their child. Assume w.l.o.g. that n1 and n2 have a blue leaf
as their right child, t1 < t2, and either t3 < t1 or t2 < t3.
Thus, n1 is closer to n0 than n2 on the path p (see Figure 3).

Consider a decision tree T ∗ that is identical to T , except
it does not contain n2, nor the blue leaf n4 attached at n2 (as
its right child) — the parent of n2 is directly connected to
the internal node that is the left child of n2. The node n∗

0 in
T ∗, corresponding to n0 in T , is unaffected by this change,
meaning that E[T, n0] = E[T ∗, n∗

0], for the following
reason. All blue examples in E[T, n4] which follow the
root-to-leaf path to n∗

1 in T ∗ (corresponding to n1 in T), will
not reach n∗

0, since in dimension i = j each such example
e has a coordinate ce, for which holds that t1 < t2 < ce.
Thus, such examples belong in the leaf node connected to
n∗
1. As a result, T ∗ is a smaller decision tree for E than T ,

contradicting the assumption that T has minimum size.

Lemmas 3.4 and 3.5 together show that a minimum size
decision tree has at most 2d non-essential nodes before each
essential node and each red leaf, and hence has at most R−1
essential internal nodes and at most 2d(2R−1) non-essential
internal nodes. We can therefore apply Theorem 3.2 to prove
that DTS is FPT with d and R as parameters.

Theorem 3.6. DTS is solvable in O((s3d)s|E|1+o(1)) time,
with s = 2d(2R − 1) + R − 1, and hence DTS is FPT
parameterized by d+R.

G
H

φ

Figure 4: A subgraph isomorphism ϕ (in gray) is a mapping
from the vertices of H to vertices of G.

4 Running-Time Lower Bound
We now prove a lower bound for computing decision trees.

Theorem 4.1. MINIMUM DECISION TREE SIZE (DTS) is
W[1]-hard with respect to the number d of dimensions. As-
suming the Exponential Time Hypothesis there is no algo-
rithm solving DTS in time f(d)no(d/ log d) where n is the
input size and f is a computable function.

The remainder of this section is devoted to the proof of
Theorem 4.1. Below, for a graph G we use V (G) to denote
its vertex set and E(G) for its edge set. We give a reduction
from the PARTITIONED SUBGRAPH ISOMORPHISM (PSI)
problem. Its input consists of a graph G with a proper K-
coloring col : V (G) → [K], that is, no two adjacent vertices
share a color, and a graph H with vertex set [K] that has no
isolated vertices. The question is whether H is isomorphic
to a subgraph of G that respects the colors, i.e., whether
there exists a mapping ϕ : V (H) → V (G) such that (i) each
vertex of H is mapped to a vertex of G with its color, i.e.,
col(ϕ(c)) = c for each c ∈ V (H) and (ii) for each edge
{c, c′} in H , {ϕ(c), ϕ(c′)} ∈ E(G) is an edge of G. See
Figure 4 for an example of such a mapping. In that case, we
also say that ϕ is a subgraph isomorphism from H into G.
In the following, we let mG = |E(G)|, nH = |V (H)| and
mH = |E(H)|. Observe that nH ≤ 2mH since H has no
isolated vertices. For each color k ∈ [K], we denote by
Vk = {v ∈ V (G) | col(v) = k} the vertices of G with
color k. We assume without loss of generality that there is
n ∈ N such that for all k ∈ [K] we have |Vk| = n (otherwise
add additional isolated vertices to G as needed) and that if
there is no edge in H between two vertices u, v ∈ V (H),
then there are no edges between Vu and Vv in G.

Since PSI contains the MULTICOLORED CLIQUE prob-
lem (Fellows et al. 2009) as a special case, PSI is W[1]-hard
with respect to mH . Moreover, Marx (Marx 2010, Corol-
lary 6.3) observed that an f(mH) · no(mH/ logmH)-time
algorithm for PSI would contradict the Exponential Time
Hypothesis. Our reduction will transfer this property to
DTS parameterized by the number of dimensions.

Outline. Given an instance (G,H) of PSI we now de-
scribe how to construct an equivalent instance (E, λ) of
DTS. Our construction consists of two types of gadgets.
First, for each edge {c, c′} ∈ E(H), we use a two-
dimensional edge-selection subspace to model the choice for
an edge {u, v} ∈ E(G) with col(u) = c, col(v) = c′. Sec-
ond, for each vertex c ∈ V (H), we use a one-dimensional
vertex-verification subspace to check whether the chosen
edges with an endpoint of color c consistently end in the
same vertex u ∈ V (G) with col(u) = c. Furthermore, we
classify examples in our construction into two types: pri-

8347

mary and dummy examples. We use primary examples to
model vertices and edges in G, while dummy examples are
used only to force certain cuts in the constructed instance.

We first describe the constructed instance (E, λ) of DTS
by giving the labeled point sets that we obtain when pro-
jecting the examples in E to the edge-selection and vertex-
verification subspaces. Later, we define the examples in E
by giving the points they project to in each of the subspaces.
We specify labels for most of these points, and primary
examples may project only to points with a matching label
(red or blue), whereas dummy examples can project to any
point. In each subspace there will be several points that will
be used by examples in order to achieve the correct behavior
of each gadget. On the other hand, most examples will play
a role only in very few subspaces and the other dimensions
shall not be relevant for them. To achieve this property, we
reserve in each subspace one unlabeled point (usually with
the minimum or the maximum coordinate) that can be used
by all examples that shall not be separated from each other
in this specific subspace. The vertex-verification subspaces
have a second unlabeled point that can only be used by
dummy vertices. We call an example that projects to the un-
labeled point of some subspace irrelevant for this subspace
and, conversely, the subspace is irrelevant for this example.

We need some more tools to describe the points in the
edge-selection and vertex-verification subspaces: In one-
dimensional subspaces, the precise coordinates of the points
do not matter and we rather specify their order. The main
ingredient in the construction are pairs of a red and a blue
point that need to be separated: An rb-pair is a pair (r, b) of
points that are consecutive in the linear order with the red
point preceding the blue point. To avoid that rb-pairs inter-
fere with each other, we separate them with forced cuts. To
achieve this, we use what we call dummy tuples. A dummy
tuple consists of 2(mG+2) points (dummy points) to which
only dummy examples can project. The first two are red, the
second two are blue, and so on, and the last two are blue
(without loss of generality, we assume that mG is even);
see Figure 5. Dummy tuples are placed between consecu-
tive rb-pairs. We later project dummy examples to the points
in a dummy tuple so to ensure the following two proper-
ties. First, only examples with labels matching the respective
point in the tuple can project to such a point. Second, these
examples force mG + 3 cuts in the corresponding subspace
as follows. A number of mG+1 cuts must be placed between
each pair of equally labeled and adjacent middle dummy
points, since we ensure that the examples that project here
differ only in the subspace of this dummy tuple and in no
other subspace. Additionally, two cuts must be placed be-
tween the outer dummy points and the adjacent rb-pair, since
we ensure that the dummy examples that project to the outer
points differ from an example projecting to the neighboring
point in the rb-pair only in the subspace of the dummy tuple.

Edge-selection. We now describe a two-dimensional
edge-selection subspace Se for an edge e of H , see Figure 6
for an illustration. We refer to the two dimensions of Se

by x and y-dimension of Se. Except for the unlabeled
point, each point p has coordinates of the form (cp, cp),
and we therefore simply specify the linear point order.

Figure 5: Two rb-pairs (disks) and dummy tuples (squares)
between them, which force the yellow cuts. Examples pro-
jecting to connected points differ only in this dimension.

Figure 6: An edge-selection subspace. Consecutive red-blue
pairs are shown as disks; dummy examples are squares. The
unlabeled point is white. The yellow cuts show how one pair
will be left unseparated, and cuts can be placed such that this
pair is not separated from the unlabeled point either.

Let e1, e2, . . . , ej denote the edges of G whose endpoints
have the same colors as e. For each edge ei, we place an
rb-pair called ei’s edge pair. Between any two edge pairs
we put a dummy tuple. We place an unlabeled point whose
x-coordinate is smaller than that of any other point and
whose y-coordinate is larger than that of any other point. We
allocate a budget of (j−1) ·(mG+4) cuts that shall be used
for performing cuts in these two dimensions. The idea is
that, by using (j−1) · (mG+3) cuts, it is possible to have a
cut between every edge pair and the dummy tuples adjacent
to it (2(j− 1) cuts) and the inner pairs of each dummy tuple
((j − 1) · (mG + 1) cuts), and the remaining j − 1 cuts
can then be used to cut all but one of the edge pairs, which
corresponds to choosing the edge whose edge pair is not
cut. Conversely, for each edge e of H , there is a decision
tree of size (j−1) · (mG+4) for the points in the subspace,
for which only the example set of a single leaf contains both
red and blue points, and it contains precisely the edge pair
of the edge ei of G and the unlabeled point; see Figure 6.

Vertex-verification. Next, we describe a vertex-
verification subspace for a vertex v of H . The vertex-
verification subspace of v is one-dimensional, and we again
describe its projection by giving the order of the labeled
points. We first place a left unlabeled point, then one rb-pair,
called a vertex pair, for each vertex of G whose color is v,
and then a right unlabeled point; see Figure 7. We allocate
a budget of a single cut for each vertex-verification space.
This budget allows to place a cut that separates one vertex
pair as well as the left unlabeled and the right unlabeled
point. The idea is that all but the vertex pair that corresponds
to the vertex of G that has been selected shall be separated

8348

by cuts in the edge-selection subspaces, and therefore a
single cut suffices in the vertex-verification subspace.

Synthesis and examples. We now describe the in-
stance (E, λ, s) of DTS that we construct for a given
instance (G,H) of PARTITIONED SUBGRAPH ISOMOR-
PHISM. Our examples are elements of a space that contains
mH two-dimensional edge-selection subspaces and nH one-
dimensional vertex-verification subspaces, i.e., our points
are in dimension d = 2mH + nH . According to the bud-
gets of cuts for the subspaces given above, we put the up-
per bound s on the size of the desired decision tree to be
s = (mG + 4) · (mG −mH) + nH .

Our construction contains two red and two blue primary
examples for each edge of G. For each edge e = {u, v}
of G, let Suv denote the edge-selection subspace corre-
sponding to the edge {col(u), col(v)} of H and let Su and
Sv denote the vertex-verification subspaces corresponding
to col(u) and col(v), respectively. We create two primary
example pairs U and V , each consisting of a red and a blue
example, which project to the vertex pair corresponding
to u and v in Su and in Sv , respectively. They both project
to the edge pair of e in Suv . In all other dimensions, these
pairs project to the (right) unlabeled point.

We now describe the dummy examples. We create for
each dummy tuple D contained in an edge-selection sub-
space S a number of 2(mG + 1) + 1 pairs of examples
L1, L2, . . . , LmG+1, R1, R2, . . . , RmG+1, P that each con-
sist of a red and a blue dummy example. In subspace S, each
pair Li and Ri project to a pair of adjacent red and blue
points in the middle of D. In all other edge-selection sub-
spaces, they project to the unlabeled point. In each vertex-
verification subspace, the pairs Li and Ri project to the left
and the right unlabeled point, respectively. The red example
of the pair P projects in S to the outer red point of D, and
it coincides in all other subspaces with some fixed blue pri-
mary example b that projects to the blue point preceding it
in S. Likewise, the blue example of P projects in S to the
outer blue point of D, and it coincides in all other subspaces
with some fixed red primary example r that projects to the

21212

G

1

1

1

2

2

2

1-1

1-2

2-2

2-2

1-1

2-1

1

H

Figure 7: An instance (E, λ, s) for graphs G and H . Gray
squares show edge-selection subspaces. Edges of H and
indices of colored vertices in G are shown left of each
subspace. Colored rectangles show vertex-verification sub-
spaces for the corresponding colors. Unlabeled points are
white. We connect points in different subspaces to show the
projection of examples in those subspaces. The yellow cuts
form a solution to DTS corresponding to a solution to PSI
for (G,H, col); dashed cuts indicate omitted dummy tuples.

red point succeeding it in S. Observe that examples of P can
be separated from r and b only in subspace S, and therefore
force the presence of two cuts. Similarly, each Li and Ri and
the remaining examples are separable only in S.

Finally, we create for each vertex-verification subspace S
one dummy pair U whose red and blue examples project to
the left and to the right unlabeled point in S, respectively.
In all other dimensions, they project to the (right) unlabeled
point. A key technicality is that pair U enforces at least one
cut in S. However, if we separate U by some cut C before
separating both of the pairs L and R of some dummy tu-
ple D, then L and R end up on different sides of C, increas-
ing the necessary cuts in the edge-selection subspace of D.
Lemma 4.2. Instance (G,H, col) of PSI is a yes-instance,
if and only if instance (E, λ, s) of DTS is a yes-instance.

Proof sketch. ⇒: If (G,H, col) is a yes-instance for PSI,
then there is a subgraph isomorphism ϕ from H to G. We
construct a decision tree for (E, λ, s) as follows. First place
(mG + 4) · (n− 1) cuts in each edge-selection subspace Se

for each edge e ∈ E(H). Only one pair of primary examples
is left unseparated (see Figure 6), for an edge ei of G, with
ϕ(e) = ei. We place (mG + 4) · (mG −mH) cuts in total.

Afterwards, for each vertex c of H , we cut between
the vertex pair of the vertex ϕ(c) ∈ V (G) in the vertex-
verification subspace S of c. This separates both the dummy
example D of S and one of the two pairs of examples that
corresponds to the selected edges incident to ϕ(c) (the other
one is separated in the subspace of the other endpoint; see
Figure 7). In total we get (mG+4) · (mG−mH)+nH = s
cuts to separate the red from the blue examples. ⇐: Now
assume that (E, λ) admits a decision tree T with s cuts. Ob-
serve that (mG+3)·(mG−mH)+nH cuts between dummy
examples are always required. We argue that in each edge-
selection subspace at most one primary pair can be left un-
separated and those edges induce a subgraph isomorphism
from H to G (Kobourov et al. 2022).

Since the reduction takes polynomial-time, and
d = 2mH + nH ≤ 4mH , Theorem 4.1 readily follows.

5 Conclusion
We have begun charting the tractability for learning small
decision trees with respect to the number d of dimensions.
While exponents in the running time need to depend on d,
this dependency is captured by the number of leaves la-
beled with the first class, the class with the fewest leaves.
It would be interesting to analyse what other features can
capture the combinatorial explosion induced by dimension-
ality; this can be done by deconstructing our hardness re-
sult (Komusiewicz, Niedermeier, and Uhlmann 2011). Pa-
rameters that are necessarily unbounded for the reduction to
work include the number of examples that have the same
feature values and the maximum number of alternations be-
tween labels when sorting examples in a dimension.

Acknowledgements
Main ideas for the results of this paper were developed in
the relaxed atmosphere of Dagstuhl Seminar 21062 on Pa-

8349

rameterized Complexity in Graph Drawing, organized by
Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg,
and Meirav Zehavi. Stephen Kobourov acknowledges fund-
ing by the National Science Foundation, grant number NSF-
CCF-2212130. Fabrizio Montecchiani acknowledges fund-
ing by University of Perugia, Fondi di Ricerca di Ate-
neo, edizione 2021, project “AIDMIX - Artificial Intelli-
gence for Decision making: Methods for Interpretability and
eXplainability”. Manuel Sorge acknowledges funding by
the Alexander von Humboldt Foundation. Jules Wulms ac-
knowledges funding by the Vienna Science and Technology
Fund (WWTF) under grant ICT19-035.

References
Bessiere, C.; Hebrard, E.; and O’Sullivan, B. 2009. Min-
imising Decision Tree Size as Combinatorial Optimisation.
In Proc. 15th International Conference on Principles and
Practice of Constraint Programming (CP), 173–187.
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Chapman &
Hall/CRC.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.
Downey, R. G.; and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Fayyad, U. M.; and Irani, K. B. 1990. What Should Be Min-
imized in a Decision Tree? In Proc. 8th National Conference
on Artificial Intelligence (AAAI), 749–754.
Fellows, M. R.; Hermelin, D.; Rosamond, F.; and Vialette, S.
2009. On the parameterized complexity of multiple-interval
graph problems. Theoretical Computer Science, 410(1): 53–
61.
Flum, J.; and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.
Goodrich, M. T.; Mirelli, V.; Orletsky, M.; and Salowe, J.
1995. Decision Tree Construction in Fixed Dimensions: Be-
ing Global is Hard but Local Greed is Good. Technical Re-
port TR-95-1, Department of Computer Science, Johns Hop-
kins University.
Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in AI and nonmonotonic reasoning.
Artif. Intell., 138(1-2): 55–86.
Hu, X.; Rudin, C.; and Seltzer, M. I. 2019. Optimal Sparse
Decision Trees. In Proc. 33th Annual Conference on Neural
Information Processing Systems (NeurIPS), 7265–7273.
Hyafil, L.; and Rivest, R. L. 1976. Constructing optimal bi-
nary decision trees is NP-complete. Information Processing
Letters, 5(1): 15–17.
Impagliazzo, R.; and Paturi, R. 2001. On the Complexity of
k-SAT. Journal of Computer and System Sciences, 62(2):
367–375.
Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which Prob-
lems Have Strongly Exponential Complexity? Journal of
Computer and System Sciences, 63(4): 512–530.

Kobourov, S. G.; Löffler, M.; Montecchiani, F.; Pilipczuk,
M.; Rutter, I.; Seidel, R.; Sorge, M.; and Wulms, J. 2022.
The Influence of Dimensions on the Complexity of Com-
puting Decision Trees. CoRR, abs/2205.07756.
Komusiewicz, C.; Niedermeier, R.; and Uhlmann, J. 2011.
Deconstructing intractability—A multivariate complexity
analysis of interval constrained coloring. Journal of Dis-
crete Algorithms, 9(1): 137–151.
Marx, D. 2010. Can You Beat Treewidth? Theory of Com-
puting, 6(1): 85–112.
Molnar, C. 2020. Interpretable Machine Learning. Indepen-
dently published.
Moshkovitz, M.; Dasgupta, S.; Rashtchian, C.; and Frost, N.
2020. Explainable k-Means and k-Medians Clustering. In
Proc. 37th International Conference on Machine Learning
(ICML), 7055–7065.
Murthy, S. K. 1998. Automatic Construction of Decision
Trees from Data: A Multi-Disciplinary Survey. Data Mining
and Knowledge Discovery, 2(4): 345–389.
Narodytska, N.; Ignatiev, A.; Pereira, F.; and Marques-Silva,
J. 2018. Learning optimal decision trees with SAT. In
Proc. 27th International Joint Conference on Artificial In-
telligence (IJCAI), 1362–1368.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford.
Ordyniak, S.; and Szeider, S. 2021. Parameterized Complex-
ity of Small Decision Tree Learning. In Proc. 35th AAAI
Conference on Artificial Intelligence (AAAI), 6454–6462.
Schidler, A.; and Szeider, S. 2021. SAT-based Decision Tree
Learning for Large Data Sets. In Proc. 35th AAAI Confer-
ence on Artificial Intelligence (AAAI), 3904–3912.
Steinberg, D. 2009. CART: Classification and Regression
Trees. In Wu, X.; and Kumar, V., eds., The Top Ten Algo-
rithms in Data Mining, 179–201. Chapman & Hall/CRC.
Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.;
Motoda, H.; McLachlan, G. J.; Ng, A.; Liu, B.; Yu, P. S.;
Zhou, Z.-H.; Steinbach, M.; Hand, D. J.; and Steinberg, D.
2008. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1): 1–37.

8350

