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Abstract

Clustering is at the very core of machine learning, and its ap-
plications proliferate with the increasing availability of data.
However, as datasets grow, comparing clusterings with an ad-
justment for chance becomes computationally difficult, pre-
venting unbiased ground-truth comparisons and solution se-
lection. We propose FastAMI, a Monte Carlo-based method
to efficiently approximate the Adjusted Mutual Information
(AMI) and extend it to the Standardized Mutual Information
(SMI). The approach is compared with the exact calculation
and a recently developed variant of the AMI based on pair-
wise permutations, using both synthetic and real data. In con-
trast to the exact calculation our method is fast enough to
enable these adjusted information-theoretic comparisons for
large datasets while maintaining considerably more accurate
results than the pairwise approach.

Introduction
Clustering comparison measures such as the mutual in-
formation or the Rand index are most commonly used
to validate clusterings when ground truth information is
available (Aggarwal and Reddy 2014). In the context of
graphs, the mutual information of the neighborhoods of
two nodes indicates their similarity and can predict missing
links (Hoffman, Steinley, and Brusco 2015; Shakibian and
Moghadam Charkari 2017). Another application is multiple-
clustering algorithms, which measure the mutual informa-
tion or one of its variants to identify multiple qualitatively
different clustering solutions for a single dataset (Müller
et al. 2010; Wei et al. 2021). Other uses include categori-
cal feature selection, where each feature is understood as a
cluster or for the solution selection in consensus clustering
(Lancichinetti and Fortunato 2012).

A well-known problem with these clustering comparison
measures is that they do not assume a constant baseline
value when comparing two random clustering partitions. In-
stead, they tend to be larger when the number of clusters ap-
proaches the number of data points (Nguyen, Epps, and Bai-
ley 2009), leading to a bias towards smaller clusters when
used as an external validation criterion. To obtain a constant
baseline, these measures have been adjusted by their expec-
tation value under random permutations of the cluster labels
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in the Adjusted Rand index (ARI) (Hubert and Arabie 1985)
and the Adjusted Mutual information (AMI) (Nguyen, Epps,
and Bailey 2010).

Romano et al. (2016) created an overview of those cluster-
ing comparison measures mentioned above and others. They
analyzed the relationships between these measures and for-
mulated a guideline for which one to use in which situation.
Quoting directly from the abstract, the authors conclude that

ARI should be used when the reference clustering has
large equal-sized clusters; AMI should be used when
the reference clustering is unbalanced and there exist
small clusters.

However, it has been shown that the computational complex-
ity of the adjusted mutual information is O(max(R,C)N),
where R,C are the numbers of clusters in the clusterings
to be compared and N is the number of data points (Ro-
mano et al. 2014). For large datasets with many small clus-
ters and few bigger clusters, which is exactly the domain
where the AMI should be used, its computation becomes dif-
ficult and often impractical. Many datasets originating from
different domains exhibit these characteristics, such as social
networks, collaboration networks, or web graphs (Leskovec
and Krevl 2014). In practice, many authors resort to the non-
adjusted normalized mutual information (Tian et al. 2019;
Chunaev 2020; Karim et al. 2021), which is faster to com-
pute, but does not account for random coincidences.

As a workaround, Lazarenko and Bonald (2021) proposed
to consider only pairwise permutations in the adjustment for
chance, i.e., to only adjust for clusterings where two indi-
vidual samples exchanged their cluster labels. While this ap-
proach allows for faster computations (O(RC)), these pair-
wise permutations lead to a higher amount of shared infor-
mation. In Figure 1 we show that the actual expected mutual
information (EMI) is overestimated by the pairwise EMI.
Consequently, the pairwise AMI systematically underesti-
mates the AMI, and the results cannot be compared with
existing values. Even the relative order of cluster similarity
is affected, as shown in Table 1.

With FastAMI, we propose a Monte Carlo-based ap-
proach to enable AMI comparisons for large datasets with
small clusters1. The presented method allows for fine-
grained control over its accuracy and addresses the short-

1Code at https://github.com/mad-lab-fau/fastami-benchmark
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comings of the pairwise approach. We prove a pessimistic
upper bound to the expected runtime that is on par with the
pairwise approach. We demonstrate, on synthetic and real
data, that FastAMI is considerably faster in practice while
producing more accurate results. FastAMI also works when
both the exact and the pairwise implementation fail due to
memory requirements or impractical runtimes. In the pro-
cess, we identify and fix a common flaw in synthetic cluster-
ing comparison benchmarks.

While the AMI is unbiased when comparing two ran-
dom clusterings, it has been shown that it still exhibits a
bias towards selecting larger clusters when comparing mul-
tiple random clusterings against a fixed ground truth (Ro-
mano et al. 2014). As a solution, it was suggested to account
also for the variance in the Standardized Mutual Informa-
tion (SMI), which, according to the authors, should be em-
ployed when N/RC < 5 and more than three clusterings are
compared. However, adoption of the SMI is lagging behind
the AMI, and a potential reason might be its steep compu-
tational cost O(RCN3). We extend our Monte Carlo-based
approach to the SMI, making it a computationally feasible
alternative for small to medium-sized datasets.

Background and Related Work
Let S be a set of N data points {s1, s2, . . . sN}, and
two clusterings the surjections u : S → {1, 2, . . . , R} and
v : S → {1, 2, . . . , C} that partition the dataset S into
R and C clusters respectively. We denote with ai :=
|u−1(i)|, bj := |v−1(j)| the cluster sizes and nij :=
|u−1(i)∩ v−1(j)| the number of shared data points between
two clusters.

The mutual information (Edwards 2008) of the two clus-
terings is given by

I(u, v) :=
R∑
i=1

C∑
j=1

nij

N
log

(
N · nij

ai · bj

)
, (1)

where nij/N log (Nnij/(aibj)) is defined to be zero for
nij = 0. For example, the mutual information of two cluster-
ings that assign every point in the dataset to a single cluster
is zero. In the other extreme, when every point is an indi-
vidual cluster in both clusterings, the mutual information is
maximal logN . These simple examples already illustrate a
problem for the use as a cluster evaluation metric: The mu-
tual information is expected to increase with the number of
clusters (Figure 1), which induces a bias towards more gran-
ular clusterings.

Therefore, the mutual information is adjusted with its ex-
pected value under random permutations of the cluster as-
signments, while the number and size of the clusters A =
{a1, . . . aR}, B = {b1, . . . bC} is kept constant (random
permutation model) (Nguyen, Epps, and Bailey 2009)

E{I |A,B} =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(0,
ai+bj−N)

nij

N
log

(
Nnij

aibj

)
P{nij |ai, bj , N}. (2)

Here P{nij |ai, bj , N} denotes the probability that nij of the
ai data points in the cluster u−1(i) also lie in the cluster
v−1(j) of size bj after random permutation and is given by
the hypergeometric distribution.

The adjusted mutual information can subsequently be de-
fined as

AMI(u, v) :=
I(u, v)− E{I|A,B}

avg(H(u), H(v))− E{I|A,B} , (3)

where avg(H(u), H(v)) is an upper bound to the mutual
information given A,B that serves as a normalizer, with the
entropy

H(u) :=
R∑
i=1

ai
N

log
ai
N

. (4)

The arithmetic and geometric mean, the minimum, and max-
imum can be used for avg (Nguyen, Epps, and Bailey 2010).
In this work, we choose the arithmetic mean following the
default choice of sklearn (Pedregosa et al. 2011).

To reduce the computational complexity of the expected
mutual information, Lazarenko and Bonald (2021) restricted
its computation to pairwise permutations only
EMIpair(u, v) := E{I(u, σ◦v) |σ ∈ SN : σ pairwise}. (5)

A permutation σ ∈ SN is pairwise when there exist i, j ∈
{1, . . . , N} such that σ(i) = j, σ(j) = i, and σ(t) = t ∀t ̸=
i, j. While the original authors defined the pairwise AMI
without normalization, we normalize it as in equation 3 to
enable a direct comparison with the exact results.

The AMI has a constant baseline when comparing two
clusterings directly. However, when comparing clusterings
via a constant ground truth reference, the AMI is biased to-
wards larger numbers of clusters (Romano et al. 2014). The
definition of the standardized mutual information as

SMI(u, v) :=
I(u, v)− E{I |A,B}√

Var{I |A,B}
(6)

accounts for that bias. The SMI indicates by how many stan-
dard deviations two clusterings deviate from each other un-
der the hypothesis of random and independent clusterings.

Method
The AMI exhibits poor runtimes, mainly because the EMI is
computationally expensive. The calculation of Var{I|A,B}
for the SMI is even more demanding. Therefore we approx-
imate the EMI and the variance of the mutual information
via Monte Carlo sampling.

Monte Carlo Estimate of the EMI
We observe that the shared information of two clusters, i.e.,
the summands in Equation 2, is fully determined by the clus-
ter sizes a, b, their overlap n and the total number of samples
N . Hence, the expected mutual information can be reformu-
lated in terms of the probability P{a|A} of a cluster size a
in the marginals A

E{I|A,B} =RC
∑
a

∑
b

P{a|A}P{b|B}

∑
n

n

N
log

(
Nn

ab

)
P{n|a, b,N}. (7)
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Figure 1: The mutual information is expected to increase
as the number of clusters R = C in the clusterings to be
compared approaches the number of data points N . The ex-
pected value under pairwise permutations overestimates the
expected mutual information, while our Monte Carlo (MC)
approach reproduces the exact results. The figure shows the
average values for 200 pairs of clustering marginals A,B,
where each marginal is chosen uniformly at random from
all partitions of N = 5000 into R = C parts.

We can now proceed to draw samples for a, b and n and ap-
proximate the sum through the sample mean. We can readily
generate variates for a and b in constant time via Walker’s
method of alias (Walker 1974, 1977) after an initial setup
cost of O(R logR + C logC) for determining the cluster
size frequencies of A and B.

Directly drawing the overlap of two clusters n from the
hypergeometric distribution would lead to a high occurrence
of no overlap n = 0 in the case of small cluster sizes. How-
ever, these terms do not contribute to the mutual informa-
tion. To exploit that sparsity, we absorb the linear term of
the mutual information into the probability density function

nP{n|a, b,N} = n

(
b
n

)(
N−b
a−n

)(
N
a

) . (8)

The binomial coefficients are rewritten as

n

(
b

n

)
=

b!

(n− 1)! (b− n)!
= b

(
b− 1

n− 1

)
, (9)

allowing us to draw variates n− 1 according to the hyperge-
ometric distribution with a− 1, b− 1 and N − 1

nP{n|a, b,N} =a · b
N

(
b−1
n−1

)(
N−b
a−n

)(
N−1
a−1

)
=
a · b
N

P{n− 1|a− 1, b− 1, N − 1}.
(10)

Several methods to draw hypergeometric variates in
on average constant time exist (Kachitvichyanukul and
Schmeiser 1985; Hörmann 1994), here we chose a ratio
of uniforms approach introduced by Stadlober (1990). The

Algorithm 1 The core of FastAMI is a Monte Carlo approx-
imation to the expected mutual information. We use a nu-
merically stable variant of Welford’s online algorithm for
calculating the mean and sample variance and define a stop-
ping criterion when the desired precision is reached.

Require: Cluster sizes A,B, EMI precision p, minimum
number of samples imin > 1

Ensure: EMI ∼ N
(
E{I|A,B}, s2EMI

)
where

min{sEMI/EMI, sEMI} ≤ p
N ←∑

a∈A a
i← 0, EMI← 0, M2 ← 0
Setup Walker random sampling for A,B
while i < imin or M2 > (pmax{1,EMI})2 · i · (i−1) do
i← i+ 1
Draw a, b via Walker’s Alias method
Draw m ∼ P{m|a − 1, b − 1, N − 1} via Stadlober’s
method
x← ab log [(m+ 1)N/(ab)]
∆0 ← x− EMI
EMI← EMI+∆0/i
∆1 ← x− EMI
M2 ←M2 +∆0∆1

end while
sEMI =

√
M2/(i · (i− 1))

approximation of Equation 7 terminates, when the rela-
tive error estimate of the EMI reaches a desired precision
sEMI/EMI ≤ p. To ensure termination when the EMI ap-
proaches zero, the algorithm switches to an absolute error
criterion sEMI ≤ p when EMI < 1.

Summarizing all the steps above, we formulate Algo-
rithm 1, a Monte Carlo estimate for the EMI. Samples can
be drawn in constant time after an initial setup cost of
O(R logR + C logC), such that in practice, the number of
Monte Carlo samples governs the runtime.

Upper Bound to the Expected EMI Runtime
Given that samples can be drawn on average in constant
time, we derive an asymptotic upper bound to the expected
number of samples required for convergence of the EMI.

Theorem 1. The expected number of samples required for
Algorithm 1 with precision p to terminate on two clusterings
with R and C clusters and N ≥ 3 data points is asymptoti-
cally bounded by O

(
RC/p2

)
.

Proof. The absolute error of the Monte Carlo approximation
sEMI for a given number of samples Nsamples is

s2EMI =
Var

{
RC
N2 ab log

(
Nn
ab

)
|A,B

}
Nsamples

, (11)

in the limit of many samples, according to the central limit
theorem. Conversely, the expected number of samples to
reach a particular error is

Nsamples =
Var

{
RC
N2 ab log

(
Nn
ab

)
|A,B

}
s2EMI

. (12)
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The Bhatia-Davis inequality (Bhatia and Davis 2000) pro-
vides an upper bound to the variance when the variates are
bounded m ≤ RC

N2 ab log
(
N ·n
ab

)
≤M

Var

{
RC

N2
ab log

(
Nn

ab

)
|A,B

}
≤ (M − EMI) (EMI−m) .

(13)
Equality holds when the probability mass function is con-
centrated on the extremes of the interval. The information
contained in the overlap of two clusters is larger or equal
than zero (m = 0), where equality is reached when one of
the clusterings has only a single cluster a = N or b = N .
For the upper bound, note that the overlap of two clusters
is maximally the size of the smaller cluster n ≤ min{a, b}.
Without loss of generality, assume a ≤ b

ab log
nN

ab
≤ Nb log

N

b
≤ N2

e
= M for N ≥ e, (14)

With Equation 13 this gives the following upper bound to
the expected number of required Monte Carlo samples

Nsamples ≤
(RC − EMI)EMI

s2EMI

(15)

The convergence criterion in Algorithm 1 requires sEMI ≤ p
for EMI ≤ 1 and sEMI ≤ pEMI for EMI > 1, such that

Nsamples ≤ O
(
RC

p2

)
. (16)

This amounts to the same asymptotic runtime as the pair-
wise adjusted EMI for a fixed precision p. However, the
Bhatia-Davis inequality gives only a crude theoretical limit
and the experiments will shed more light on the algorithm’s
runtime.

Monte Carlo Estimation of the Variance
We compare two approaches for approximating the variance
of the mutual information:
• Separate Monte Carlo - We split the variance into two

terms Var{I |A,B} = E{I |A,B}2 − E{I2 |A,B},
where the first term is approximated as in Algorithm 1.
We apply Equation 10 and related identities to the ex-
plicit formula for E{I2 |A,B} as given in theorem 1 in
(Romano et al. 2014), and approximate it via an analo-
gous algorithm.

• Direct Monte Carlo - Instead of generating individual
values for nij , we randomly sample the space of all con-
tingency matrices (nij)

j∈{1,...,C}
i∈{1,...,R} at once with a method

developed by Patefield (1981) and observe the mutual in-
formation. The estimators for the EMI and the variance
are then simply the sample mean and variance.

The direct Monte Carlo approach can also be applied to the
EMI. However, the whole contingency matrix would be kept
in memory. This is not practical for the approximation of the
AMI, since memory footprint was one of the limiting factors
we optimized (see Table 2).

Experiments
In the previous section, we introduced a method to approx-
imate the EMI and variance via Monte Carlo sampling. We
now proceed to evaluate how quickly these methods con-
verge. Different parameter regimes for R,C, and N are ex-
plored using synthetic data, and we demonstrate the practi-
cal use of the method on real datasets from a wide range of
fields.

A Laptop with an Intel i7-10750H with 32GB RAM was
used for the synthetic experiments and the experiments on
the Benchmark Suite for Clustering Algorithms. The experi-
ments with the larger datasets from the Stanford Large Net-
work Dataset Collection were performed on an Intel Xeon
E5-2680 v4 system with 512GB RAM.

Synthetic Data
Previous works usually generated random clusterings by as-
suming a fixed number of clusters and then assigning each
data point to a random cluster uniformly (Nguyen, Epps, and
Bailey 2009; Romano et al. 2014). This method overem-
phasizes balanced clusterings, where all clusters have sim-
ilar sizes. Choosing a random probability distribution in-
stead of the uniform assignment allows more variance in
the cluster sizes (Lazarenko and Bonald 2021). However,
both methods do not guarantee the fixed number of clusters
they were intended to generate. In the first case, exactly one
cluster gets assigned zero data points with a probability of
C ((C − 1)/C)

N and using the inclusion-exclusion princi-
ple, the probability of at least one empty cluster is

P{∃i : i ̸∈ Im v} =
C∑
i=1

(−1)i−1

(
C

i

)(
C − i

C

)N

. (17)

Im v denotes the image of clustering v, i.e. the set of all
labels. For a fixed number of data points N , the chance of
an empty cluster grows with the number of clusters, such
that for example for N = 100 and C = 30 this probability
is already ≈ 66.5%. This chance is even amplified when
selecting the probabilities at random since cluster labels can
have arbitrarily low probability.

Instead, we propose a maximum entropy approach: Given
a fixed number of data points N and fixed numbers of clus-
ters R,C, we randomly sample the space of all possible clus-
ter size distributions A and B that fulfill these constraints,
i.e., we uniformly sample the integer partitions of R and C.
We use a rejection sampling method that was outlined by Ar-
ratia and Desalvo (2016) and originally developed by Frist-
edt (1993). Sampling cluster size distributions is enough for
the EMI, which depends only on A,B, whereas the SMI de-
pends on two concrete clusterings. In this case, we create an
ordered cluster from the marginals and shuffle it randomly,
guaranteeing fixed R,C.

EMI The computationally demanding part of computing
the adjusted mutual information is obtaining the expected
value of the mutual information (EMI). Therefore, we com-
pare the methods to compute the EMI for R = C and a
fixed N = 5000. We focus on R = C since the asymptotic
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Figure 2: We compute the EMI of 200 pairs of random cluster size distributions with R = C clusters and N data points,
comparing three different methods. (a) The exact EMI as implemented in sklearn (Pedregosa et al. 2011) and the pairwise
EMI take increasingly longer to run as the number of clusters R = C approaches the number of data points N . Our Monte
Carlo method not only outperforms the latter two, but it performs best for larger numbers of clusters. (b) The Monte Carlo
implementation reaches the prescribed precision of 0.01 (dashed, red line) on average, while the pairwise adjustment introduces
model-dependent errors. In (c) we repeat the experiment but now varying N whilst fixing R = C = ⌊0.9N⌋. The performance
gap grows with increasing dataset size.

runtime for the pairwise and our Monte Carlo algorithm in-
creases the most for that configuration. Both the exact cal-
culation and the pairwise EMI exhibit a nearly 100-fold in-
crease in runtime, as the number of clusters increases from
500 to 4500 (Figure 2a). This slowdown is problematic since
it is the regime where the AMI is preferable to the Rand In-
dex, as stated by Romano et al. (2016). On the other hand,
our Monte Carlo method performs best in the case of many
clusters. The reason is that when smaller clusters dominate
as R = C increases, the variance of the number of shared
data points n between clusters decreases, and fewer Monte
Carlo samples are required for convergence. In the case of
only a few larger clusters, there are fewer cluster size val-
ues the variates a and b can assume, and hence the runtime
peaks somewhere between those extremes. This empirical
result confirms that the upper bound in theorem 1 overesti-
mates the runtime.

In the regime of many singleton clusters, i.e., high R,C,
many permutations do not affect the contingency matrix
(nij) and hence the mutual information. These permutations
contribute to the slowdown of the exact and the pairwise ap-
proach, but it also means that leaving them out only slightly
affects the pairwise EMI and the relative error is low in
that regime (Figure 2b). On the other hand, the pairwise ap-
proach has high model-dependent errors, where the method
is fast. Our approach allows for tunable relative errors across
the parameter range (dashed red line in Figure 2b).

In a second experiment, we show that the runtime of the
exact and pairwise method gets even worse as the number of
data points N increases (Figure 2c).

SMI We compare the exact SMI implemented by Romano
et al. (2014) with the separate and direct Monte Carlo ap-
proach for estimating the variance. We terminate the calcu-
lation when the estimated absolute or relative error estimate
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N = 150

exact SMI
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Figure 3: We compute the SMI of 10 pairs of clusterings
with a given number of clusters R = C to a precision of 0.1.
Both Monte Carlo approaches outperform the exact calcula-
tion, but the direct approach is multiple orders of magnitude
faster in the regime of many smaller clusters.

of the SMI is below the precision p = 0.1. Both approxi-
mate algorithms outperform the exact SMI, but the separate
approach slows down as the number of clusters increases. In
contrast, the direct approach provides a speed-up of multi-
ple orders of magnitude across the whole parameter range
(Figure 3). A possible explanation could be that the direct
approach naturally incorporates the constraint that the vari-
ance is larger or equal than zero. The sample variance of the
mutual information is always positive, but the difference of
two separate estimators for E{I |A,B}2 and E{I2 |A,B}
can also be negative. In the following we chose the direct
approach for FastSMI.
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Variant Result Mean Spearman
returned runtime [s] (incomplete)

sklearn AMI 100% 3.6 · 10−3 -
FastAMI 100% 1.3 · 10−2 1.000
pairwise AMI 100% 1.6 · 10−3 0.577

exact SMI 38.3% 4.8 -
FastSMI 99.2% 2.4 · 10−2 (0.997)

Table 1: Benchmark results on the Benchmark Suite for
Clustering Algorithms (Gagolewski et al. 2020) for FastAMI
with precision p = 0.01 and FastSMI with precision p =
0.1. Both pairwise AMI and FastAMI improve the runtime
of the exact version, and FastAMI nearly perfectly matches
the relative ranking of the exact result. However, with a max-
imum R/N of 0.03, the Benchmark suite is not in the im-
balanced domain where the exact AMI is impractical (Fig-
ure 2a). The exact SMI timed out after 20 s on 61.7% of
the 66 004 comparisons in the Benchmark (column result re-
turned). FastSMI returned more results before the timeout in
less time per comparison and achieved a high Spearman cor-
relation with the exact results where they were available.

Real Data
The previous section demonstrated how Monte Carlo ap-
proximation speeds up the EMI and SMI for random clus-
terings. This section shows how that speed-up translates to
the practically more relevant AMI, on clusterings that arise
from real datasets of various domains.

Lazarenko and Bonald (2021) used 79 datasets from the
Benchmark Suite for Clustering Algorithms (Gagolewski
et al. 2020) to compare the solutions of several clustering
algorithms via the AMI and pairwise AMI. They used the
Spearman rank correlation to measure the quality of the re-
sults. As a first benchmark, we reproduce these results in
Table 1 and extend them to evaluate FastAMI. While our
method has a significantly higher Spearman correlation with
the exact solution than the pairwise AMI, it was slower
compared to the pairwise approach. For the SMI on the
other hand, 61.7% of the comparisons timed out after 20 s.
FastSMI (p = 0.1) completed 99.2% of the benchmark with
a high Spearman correlation with the exact results, enabling
SMI comparisons for medium sized datasets. However, with
an average runtime of 0.013 s per comparison, the bench-
mark suite is not in the domain where an approximation of
the AMI is necessary due to runtime constraints.

Instead, we propose a benchmark based on a collection
of large real-world datasets, taken from the Stanford Large
Network Dataset Collection (Leskovec and Krevl 2014). We
select the datasets designated to community detection from
that collection (See Table 2) and apply the following six
methods to find clusterings (Staudt, Sazonovs, and Meyer-
henke 2016): 1) Connected Components, 2) Degree Ordered
Label Propagation, 3) Label Propagation, 4) Leiden, 5) Lou-
vain, and 6) Louvain Map Equation.

The benchmark then consists of a pairwise comparison of
the six clusterings, using AMI, pairwise AMI, and FastAMI.

We measure the total runtime and peak memory consump-
tion for the 15 comparisons in each dataset and limit ev-
ery individual comparison to a maximum of 2000 s and
503.6GiB of memory. If any of these limits is exceeded,
we report the respective lower bound in Table 2 and omit the
result from further calculations. Following Lazarenko and
Bonald (2021), we report the Spearman rank correlation be-
tween the exact results and the respective approximations,
excluding the cases where the exact calculation was aborted.
Additionally, we report the mean absolute error where ex-
act values are available and substitute it with the according
Monte Carlo estimate otherwise.

The AMI is preferable to the ARI when the clusterings
are imbalanced (Romano et al. 2016). In the synthetic ex-
periments, we only fixed the number of clusters without ex-
plicitly specifying the imbalance. For the real datasets, we
measure the balance using the mean normalized entropy

Balance(U) =
∑
uk∈U

H(uk)

|U | log | Imuk|
, (18)

where U denotes the set of clustering solutions, obtained via
the six different methods for the same dataset. A value of
one indicates that all the clusterings are perfectly balanced,
i.e., every cluster i within a clustering u has the same size.
A value of zero on the other hand means that all clusterings
consist of a single large cluster and are thus maximally im-
balanced.

As expected from the synthetic experiments, our method
outperforms the others in terms of runtime. FastAMI also
has a much lower memory footprint than the sklearn im-
plementation and the pairwise AMI, since it does not keep
the (sparse) contingency table in memory. While FastAMI
does slow down for datasets with more nodes N , it does not
struggle with imbalanced datasets in contrast to sklearn
and the pairwise AMI. FastAMI performs comparably to
the pairwise adjustment regarding the Spearman correlation.
The real benefit in terms of quality is that the FastAMI re-
sults can directly be compared with the traditional AMI as
demonstrated by the mean absolute error, whereas the pair-
wise AMI is systematically lower and somewhat harder to
interpret.

Conclusion
This paper presents an effective and practical method for
approximating the Adjusted Mutual Information. FastAMI
takes advantage of the sparsity and low variance of con-
tingency tables of clusterings, enabling AMI comparisons
on datasets that were computationally inaccessible before.
We analyzed the behavior of our approximation scheme
based on synthetic data and demonstrated state-of-the-art
performance on a suite of real datasets. In future work, one
could readily parallelize Algorithm 1 to improve its perfor-
mance further. We extended our algorithm to the standard-
ized mutual information, rendering variance-adjusted clus-
tering comparisons computationally feasible for moderately
sized datasets.
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Result Total Peak MAE Spearman
Dataset Nodes Balance Method returned time [s] memory (est.) (incompl.)

Email 1.0 · 103 3.5 · 10−2
sklearn 15/15 0.6 208KiB - -
pairwise 15/15 0.4 184KiB 0.357 0.943
FastAMI 15/15 0.6 164KiB 0.001 0.989

DBLP 3.2 · 105 4.3 · 10−3
sklearn 13/15 > 7539.9 - - -
pairwise 15/15 361.0 89.6GiB (0.310) (0.972)
FastAMI 15/15 4.5 106.4MiB (0.003) (0.986)

Amazon 3.3 · 105 3.8 · 10−3
sklearn 13/15 > 8988.4 - - -
pairwise 15/15 329.9 57.6GiB (0.421) (0.966)
FastAMI 15/15 4.5 26.8MiB (0.005) (0.972)

Youtube 1.1 · 106 2.4 · 10−4
sklearn 9/15 > 15 967.7 - - -
pairwise 13/15 - > 503.6GiB (0.260) (0.913)
FastAMI 15/15 7.4 119.4MiB (0.005) (0.957)

Wikipedia 1.8 · 106 2.6 · 10−2
sklearn 15/15 714.3 12.0GiB - -
pairwise 15/15 32.7 8.4GiB 0.210 0.975
FastAMI 15/15 7.8 140.7MiB 0.001 0.973

Orkut 3.1 · 106 2.7 · 10−2
sklearn 15/15 2072.0 27.3GiB - -
pairwise 15/15 69.9 19.2GiB 0.276 0.967
FastAMI 15/15 15.4 341.0MiB 0.001 0.991

LiveJournal 4.0 · 106 2.7 · 10−4
sklearn 10/15 > 14 496.1 - - -
pairwise 13/15 - > 503.6GiB (0.149) (0.937)
FastAMI 15/15 23.9 340.8MiB (0.003) (0.937)

Friendster 6.6 · 107 1.3 · 10−5
sklearn 0/15 - > 503.6GiB - -
pairwise 6/15 - > 503.6GiB (0.031) -
FastAMI 15/15 439.3 4.6GiB (0.003) -

Table 2: Benchmark of the AMI (sklearn), the pairwise AMI and FastAMI, regarding time and memory complexity. We
evaluated these methods on the results of six different community detection algorithms for large graph datasets, taken from the
Stanford Large Network Dataset Collection (Leskovec and Krevl 2014). In the column result returned, we report how often an
algorithm successfully terminated and how often it exceeded the time or memory limit of 2000 s and 503.6GiB. Our method
outperforms sklearn and Lazarenko’s pairwise algorithm both in the runtime and the memory footprint, enabling AMI
comparisons for dataset sizes that were previously inaccessible. While the pairwise AMI is comparable in terms of Spearman
correlation, our method has the additional benefit of tunable absolute errors, allowing for a direct comparison with the exact
metric. The mean absolute error is given as Monte Carlo estimate and the Spearman correlation was calculated on a subset
when the exact solution was not available.
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