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Abstract

Most existing Spiking Neural Network (SNN) works state that
SNNs may utilize temporal information dynamics of spikes.
However, an explicit analysis of temporal information dynam-
ics is still missing. In this paper, we ask several important
questions for providing a fundamental understanding of SNNs:
What are temporal information dynamics inside SNNs? How
can we measure the temporal information dynamics? How do
the temporal information dynamics affect the overall learning
performance? To answer these questions, we estimate the
Fisher Information of the weights to measure the distribution
of temporal information during training in an empirical
manner. Surprisingly, as training goes on, Fisher information
starts to concentrate in the early timesteps. After training,
we observe that information becomes highly concentrated in
earlier few timesteps, a phenomenon we refer to as temporal
information concentration. We observe that the temporal
information concentration phenomenon is a common learning
feature of SNNs by conducting extensive experiments on
various configurations such as architecture, dataset, optimiza-
tion strategy, time constant, and timesteps. Furthermore, to
reveal how temporal information concentration affects the
performance of SNNs, we design a loss function to change
the trend of temporal information. We find that temporal
information concentration is crucial to building a robust SNN
but has little effect on classification accuracy. Finally, we
propose an efficient iterative pruning method based on our
observation on temporal information concentration. Code
is available at https://github.com/Intelligent-Computing-
Lab-Yale/Exploring-Temporal-Information-Dynamics-in-
Spiking-Neural-Networks.

Introduction
Within the last decade, Spiking Neural Networks (SNNs)
have received huge attention as a low-power alternative to
Artificial Neural Networks (ANNs) (Roy, Jaiswal, and Panda
2019; Christensen et al. 2022; Lobo et al. 2020; Wang, Lin,
and Dang 2020). SNNs process visual information in an
event-driven manner using sparse binary spikes over multi-
ple timesteps that make them an attractive option for low-
power neuromorphic hardware implementation (Akopyan
et al. 2015; Davies et al. 2018; Furber et al. 2014). Recent
years have witnessed a surge in SNN algorithmic works that
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aim to improve accuracy of SNNs on standard image recog-
nition tasks while maintaining higher efficiency than ANNs
(Wu et al. 2019; Comsa et al. 2020; Mostafa 2017; Li et al.
2021a; Deng et al. 2022).

Although most of the existing works on SNN assert that
they might improve (or leverage) the temporal dynamics
of spikes (Wu et al. 2018; Fang et al. 2021b; Kim and
Panda 2020; Masquelier, Albantakis, and Deco 2011; Neftci,
Mostafa, and Zenke 2019), yet, an explicit analysis of tem-
poral information dynamics is still missing. In this paper,
we ask several important questions for understanding such
fundamental characteristics of SNNs: What are temporal in-
formation dynamics inside SNNs? How can we measure the
temporal information dynamics? How do the temporal infor-
mation dynamics affect the overall learning performance?
Understanding the dynamics will enable us to apprehend the
learning representations inside SNNs which may help to de-
velop better temporal training algorithms, find new use-cases
for SNNs for conventional AI (and possibly computational
neuroscience) applications, and also explore new theoretical
directions for SNN research.

To this end, we present a first-of-its-kind study to under-
stand temporal information dynamics in SNNs through the
lens of Fisher information. In this study, we select a ResNet
model with Leak-Integrated-and-Fire spiking neuron as a
baseline, which is widely used in classification task (Zheng
et al. 2020; Li et al. 2021b; Fang et al. 2021a). We measure
the Fisher information of an SNN at each timestep, where we
find the temporal information distribution varies as training
goes on. Specifically, we find that information in an SNN
shifts from latter timesteps to earlier timesteps as training
progresses. We call this phenomenon as temporal informa-
tion concentration (TIC). This is a novel observation, and
therefore, we investigate whether the TIC phenomenon is a
function of specific training variables such as architecture,
dataset, and optimization strategy. Through extensive exper-
iments, we found that TIC is a common characteristic of
SNNs during training.

Furthermore, we explore the impact of TIC on the per-
formance of networks (i.e., accuracy and robustness). To
this end, we design a loss function that can manipulate the
Fisher information at each timestep. The results show that
TIC significantly affects the robustness of SNN against both
adversarial perturbations and standard input noise (such as
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Gaussian and Blur). Unlike robustness, changes in temporal
information due to TIC manipulation do not show any mean-
ingful effect on classification accuracy. Finally, we propose
an efficient iterative pruning strategy for SNNs using TIC,
where we found the pruning performance is almost preserved
with less number of timesteps.

In summary, our key contributions are as follows: (1) For
the first time, we quantitatively analyze the temporal dy-
namics of SNNs. (2) Using Fisher information, we find that
temporal information concentration (TIC) is a general trend
in SNNs during training. (3) By designing a loss forcing
SNNs to have a different trend of TIC, we find that TIC plays
a crucial role in imparting robustness to SNNs. (4) Finally,
we apply the TIC observation to propose an efficient iterative
pruning method for SNNs.

Modeling Spiking Neural Networks
In this section, we briefly introduce the neuron type and input
encoding technique used in our analysis. We use Spiking
Neural Networks (SNNs) with discretized Leaky Integrate-
and-Fire (LIF) neurons (Roy, Jaiswal, and Panda 2019; Wu
et al. 2019; Fang et al. 2021b; Kim et al. 2022b) using simu-
lation step dt = 1, which can be formulated by

U t
l = (1− 1

τ
)U t−1

l +
1

τ
WlO

t
l−1, (1)

where U t
l denotes membrane potential at time-step t for layer

l, and Ot
l−1 stands for the spike output from the previous

layer. Also, Wl represents weight connections at layer l, and
τ is a time constant for decaying the membrane potential.
Note, capital letters (e.g., U t

l and Ot
l−1) represent matrices.

The neuron generates a spike output if its membrane poten-
tial exceeds a firing threshold. Then, the membrane potential
is reset to zero after firing. For training weight parameters,
we use spatio-temporal back-propagation (STBP), which ac-
cumulates the gradients over all timesteps (Wu et al. 2018;
Neftci, Mostafa, and Zenke 2019). We can formulate the
gradients at the layer l by chain rule, given by
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)
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(2)
While computing backward gradients, we use an approxi-
mate piece-wise linear function gradient 1

πarctan(πx) +
1
2

in order to address non-differentiability of LIF neurons (Fang
et al. 2021b). Overall, according to gradient descent, the net-
work parameters are updated as Wl = Wl − η∆Wl, where η
represents learning rate.

In this work, we focus on static image recognition where
the majority of prior SNN works have focused so far (Roy,
Jaiswal, and Panda 2019). We choose to generate spikes in an
end-to-end manner, i.e., directly encode the images in the first
layer, due to its simplicity, flexibility, and high performance
on large-scale datasets (Wu et al. 2019; Zheng et al. 2020;
Zhang and Li 2020; Fang et al. 2021b; Lee et al. 2020; Li
et al. 2021a; Kim et al. 2022a). A given image is shown for T
timesteps {1, 2, . . . , T} to an SNN, and the final prediction
is computed by accumulating the spikes at the output layer
across T steps.

Fisher Information Analysis in Time Dimension
The Fisher Information Matrix (FIM) quantifies the amount
of information inside a model obtained from a given data,
when the model parameters are perturbed (Fisher 1925). If
weight perturbation brings small (or large) change in the
model’s prediction, we can say that the model contains small
(or large) information with respect to the corresponding
data. FIM can be interpreted as the second-order gradient
of KL divergence between the original model and the weight-
perturbed model (Achille, Rovere, and Soatto 2018). Mathe-
matically, given a network’s approximate posterior distribu-
tion fθ(y|x) with weight parameters θ, input image x sam-
pled from data distribution D, output variable y, FIM can be
formulated as follows:

M = Ex∼D,y∼fθ(y|x)[∇θlogfθ(y|x)∇θlogfθ(y|x)T ]. (3)

Existing works have utilized FIM to explore the characteristic
of the loss landscape (Keskar et al. 2016; Liang et al. 2019;
Soen and Sun 2021), model capacity (Ly et al. 2017), and
model training dynamics (Achille, Rovere, and Soatto 2018).

Different from the conventional ANN model, SNN predicts
class probabilities by accumulating a given input through mul-
tiple timesteps. Our objective is to analyze the information
dynamics of the model across time. Therefore, we introduce
a metric to measure the amount of accumulated FIM in SNN
from timestep 1 to timestep t:

Mt = E[∇θlogfθ(y|xi≤t)∇θlogfθ(y|xi≤t)
T ], (4)

where, i ∈ {1, 2, ..., T} is a positive integer that represents
the index of timestep. Note that it is difficult to measure the
amount of information in one timestep independently since
the posterior distribution of SNNs is based on the information
from all previous timesteps with LIF neurons. One major
problem of FIM on deep neural networks is the size of the
matrix, which is too large to compute completely. To address
this, following previous works (Achille, Rovere, and Soatto
2018; Kirkpatrick et al. 2017), we use the trace of FIM to
measure the accumulated information It stored in weight
parameters from timestep 1 to t:

It = Tr(Mt) = Ex∼D,y∼fθ(y|xi≤t)[∥∇θlogfθ(y|xi≤t)∥2].
(5)

Given N training samples, the expectation in Eq. 5 can
be replaced by the empirical mean across observed data
(Amari, Park, and Fukumizu 2000; Martens and Grosse 2015;
Karakida, Akaho, and Amari 2019):

It =
1

N

N∑
n=1

∥∇θlogfθ(y|xn
i≤t)∥2. (6)

Across all experiments, we use Eq. 6 for quantifying the
amount of Fisher information (or sometimes we use informa-
tion interchangeably) across different timesteps.

In ANN literature, the empirical FIM trace (Eq. 6) can be
interpreted as a measure for the importance of weight con-
nections (Achille, Rovere, and Soatto 2018; Kirkpatrick et al.
2017) with respect to training data. For example, Kirkpatrick
et al. (Kirkpatrick et al. 2017) address catastrophic forgetting
in continual learning (i.e., a network learns different tasks
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Figure 1: Illustration of temporal dynamics across training epochs. Starting from the left panel, we present information centroid
(Eq. 7) across epochs. We also report Fisher information in temporal dimension (Eq. 6) at four different epochs (marked with
different colors). As training goes on, the early timesteps obtain more information, while the information decreases in the latter
timesteps. Accordingly, the information centroid (vertical dotted line) moves towards early timesteps as training progresses.

Adding deficits on timestep [t ~ t+2]

t = 1 t = 2 t = 10

SNN

Training Process

Inference with noisy input image

Ep1

Ep20

Ep40 Ep140 Ep300

t = 3

…

Figure 2: Additional experiments support TIC observation at
inference. We use a ResNet19 architecture on the CIFAR10
dataset. We select five different SNN models during training
(with clean data): The early training phase (epoch 1, 20),
the intermediate phase (epoch 40, 140), and the final trained
model (epoch 300). Then, we measure the test accuracy of the
model at each point by adding deficits (i.e., Gaussian noise)
to the input image for time window [t ∼ t+ 2]. We change
t from 1 to 8. In the right panels, we report the relative test
accuracy w.r.t. noise in [8 ∼ 10], i.e., Acc[t∼t+2]−Acc[8∼10].
We provide experimental details in Appendix.

sequentially) by maintaining connections having high FIM
trace from the prior tasks. Achille et al. (Achille, Rovere, and
Soatto 2018) use empirical FIM trace in order to discover the
important training epochs for standard deep neural networks,
where they show that epochs having a higher FIM trace im-
pact more on the accuracy. Similarly, in our work, the SNN
model having a high FIM trace at timestep t represents that
the weight connections inside the SNN contain important
information for the given input until timestep t.

Temporal information concentration in SNN. To reveal
the temporal information dynamics in SNNs, we first present
temporal Fisher information of SNNs across training epochs.
In Fig. 1, we visualize temporal Fisher information of a
ResNet19 architecture on CIFAR10 dataset. Interestingly, as
training goes on, the amount of Fisher information in the
latter timesteps steadily decreases while the early-time infor-
mation increases. In the final trained SNN model (epoch 300),
Fisher information concentrates on the first few timesteps,
and maintains a near-zero value till the end of timesteps. We
call this phenomenon as temporal information concentration
(TIC) - an information shift from latter timesteps to the early
timesteps as training progresses.

Further, to provide better visualization of the overall trend
of information dynamics across epochs, we introduce a met-
ric called Information Centroid (IC). Given SNNs with T

timesteps, IC can be formulated by

IC =

∑
t∈{1,...,T} tIt∑
t∈{1,...,T} It

. (7)

Thus, high IC means Fisher information (It) increases with
timestep t (e.g., epoch 20 in Fig. 1). In Fig. 1, SNN at epoch
20 yields highest IC value which can be understood from
its increasing It trend across different timesteps. Small IC
denotes that information concentrates in the early timesteps
(e.g., epoch 300 in Fig. 1 where It is highest at t = 1 and
becomes nearly 0 for t = 2, .., 10).

Moreover, we found that TIC is closely related to perfor-
mance degradation with deficits at inference. As shown in Fig.
2, we select models from five different epochs, and add the
deficits to the input image for a certain time window. If the ac-
curacy degrades significantly in a specific time window, those
timesteps are likely to convey critical information for predic-
tion (Achille, Rovere, and Soatto 2018). At the beginning of
the training phase (or early epochs), all timesteps show simi-
lar noise sensitivity. However, interestingly, as training goes
on, early timesteps show higher noise sensitivity compared
to the later timesteps. The results support our observation on
TIC, where the early timesteps contain important information
as training evolves.

Layer-wise analysis with Fisher Information. Previous
works (Kirkpatrick et al. 2017; Achille, Rovere, and Soatto
2018) use Fisher information to measure the importance of
layers (or weight connections). If a layer contains high Fisher
information, the layer has a high contribution to the predic-
tion for the given data. Here, we conduct layer-wise Fisher
information analysis to observe the importance of each layer
across timesteps. To this end, we measure Fisher information
contained in each residual block of a ResNet19 SNN model
(Fig. 3). The overall trend of temporal information dynamics
in each layer follows the TIC trend. Intriguingly, we find
that, after the SNN model is trained for several epochs (e.g.,
epoch 120 and 300), shallow and deep layers contain high
Fisher information at the latter and early timesteps, respec-
tively. Such observation can be interpreted through the role of
shallow and deep layers in feature representation. The prior
ANN and SNN works (Selvaraju et al. 2017; Kim and Panda
2021) have revealed that shallow and deep layers of a model
contain low-level (e.g., texture) and high-level (e.g., seman-
tic) features, respectively. Thus, high Fisher information in
shallow/deep layers means that weight connections related to
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Figure 3: Normalized Fisher information contained in each
residual block (in ResNet19 trained on CIFAR10) as a func-
tion of timestep. We visualize Fisher information at Epoch 20,
120 and 300. Here, we provide the normalized Fisher infor-
mation for better visualization on relative Fisher information
across all layers.

low/high-level features are important for prediction. Accord-
ingly, we conclude that the SNN model focuses on high-level
features at the early timesteps, while low-level features are
important at the latter timesteps for prediction.

Is temporal information concentration trend always
shown in SNNs? Having observed that TIC emerges in SNNs,
we next study whether such phenomenon can be varied by
various configurations such as different timesteps, time con-
stant, learning rate, dataset and different architectures. We
visualize the change of Information Centroid (IC) across
epochs in Fig. 4. The default setting for all experiments is as
follows: timestep 10, time constant 2, SGD optimizer with
learning rate 3e-1, weight decay 5e-4, CIFAR10 dataset, and
ResNet19 architecture.

Timestep: We first train SNN on CIFAR10 with timesteps
4, 6, 8, and 10. We observe that all timestep configurations
show a similar trend, i.e., decreasing IC values as training
goes on. Note that longer timesteps have a higher initial IC
value at the beginning of training. One interesting observation
is that a longer timestep starts late IC transition from high
to low. For example, IC value of t=4 (green curve) starts
to drop fast at the very early epochs, however, t=10 (red
curve) shows IC transition near epoch 80. This implies that
a longer timestep contains more information, thus requires
more training epochs to concentrate them in early timesteps.

Time constant: As shown in Eq. 1, time constant τ controls
the decaying intensity of the membrane potential of an LIF
neuron. A higher time constant means that the LIF neuron re-
lies more on the previous information rather than the current
input. To evaluate the impact of time constant τ on TIC be-
havior, we train an SNN model with different time constants
0.75, 2, and 4. The results show that the smaller time con-
stants (τ = 0.75 and τ = 2) achieve low IC in the middle of
training (see the yellow curves in the right panels of Fig. 4(b)).
On the other hand, the higher time constants (τ = 4) shows
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Figure 4: Information Centriod (IC) change with different fac-
tors. We observe that most cases show TIC at the later epochs,
where the early timesteps show higher Fisher information.

relatively higher IC compared to the others. This is because,
with high time constant, information is slowly propagated
through layers, thus the information concentration begins in
late timesteps (see the red curves in the right panels).

Weight decay and Learning rate: We also analyze how
learning rate affects TIC. To this end, we use four different
learning rate (lr) configurations: optimal lr (1e-3), lower lr
(3e-2 and 8e-2), and higher lr (8e-1). Compared to an optimal
lr setting (blue curve), a lower lr (green and yellow curves)
shows late IC transition from late timesteps to early timesteps.
Similarly, a larger lr (red curve) also does not show quick
IC transition. We also illustrate temporal Fisher information
change for lr=3e-2 and lr=3e-1 in the right panels of Fig. 4(d).
This results suggest that the early IC transition can be an indi-
cator for choosing a proper learning rate in training process.
On the other hand, in Fig. 4(c), we further conduct weight
decay analysis, which shows weight decay does not make
significant change on the temporal concentration behavior in
SNN.

Dataset and Architecture: In Fig. 4(e) and Fig. 4(f), we
show IC transition with different datasets and architectures.
For dataset ablation studies, we use CIFAR10 (Krizhevsky
and Hinton 2009) and SVHN (Netzer et al. 2011) that contain
natural RGB images, as well as gray-scale Fashion-MNIST
dataset (Xiao, Rasul, and Vollgraf 2017). All datasets show IC
transition from late timesteps to early timesteps across train-
ing epochs. Furthermore, we analyze on CNN architectures
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without skip connections (AlexNet (Krizhevsky, Sutskever,
and Hinton 2012)), with skip connections (ResNet19 (He
et al. 2016)), and deeper architecture (ResNet34 (He et al.
2016)) with skip connections. AlexNet shows quick IC tran-
sition in the early epochs, however, it does not show very
low IC value at the end of epochs. This phenomenon also
can be shown with temporal Fisher information visualization
(right panels, Fig. 4(f)) where AlexNet shows slow Fisher in-
formation decrease across time at epoch 300. Different from
AlexNet, ResNet34 shows quick information concentration
in timesteps 1∼3. This suggests that AlexNet capacity is
limited compared to ResNet34, therefore they require more
timesteps to concentrate information.

Overall, we conclude that TIC is a common characteristic
of SNNs, but IC transition speed can be changed according
to various factors such as optimization settings, architecture,
and datasets.

Analysis on TIC: Robustness Perspective
While the previous section shows temporal information con-
centration (TIC) is widely shared in SNNs, a key open ques-
tion remains: what is the role of temporal concentration in
SNN? does it bring higher accuracy or better robustness? To
find the answer, in this section, we force the SNN to have
specific Fisher information trend across timesteps. In this
way, we can investigate the characteristics and role of Fisher
information in timesteps.

To this end, we design a loss function to control the Fisher
information trend in SNN. Before designing the loss, we first
define the approximated relation between a loss function and
Fisher information, as shown in the following definition.
Definition 1. The log posterior logfθ(y|xi≤t) can be rep-
resented as a loss function Lt(θ), e.g., cross-entropy loss,
where the final layer’s outputs are accumulated t timesteps
before they are converted to probabilities (e.g., with a softmax
layer). Thus, we can rewrite Eq. 6 as:

It(θ) = E[∥∇Lt(θ)∥2]. (8)

Here, decreasing loss Lt(θ) will bring Fisher information
It(θ) degradation because gradient ∇Lt(θ) goes smaller as
the loss converges to local minima. On the other hand, if we
disturb the model to converge a loss value, Fisher information
cannot become smaller. According to the aforementioned
hypothesis, we control the Fisher information value at each
timestep, by manipulating the loss function during training.
Specifically, we force the loss function to have a value around
α:

Lt(θ, α) = |Lt(θ)− α|. (9)
The above equation represents that, if the loss function goes
below α, weights are updated with gradient ascent, otherwise
a standard gradient descent is applied. Here, adding or sub-
tracting α does not affect gradients for weight parameters.
We apply Eq. 9 across T timesteps in order to make sure that
Fisher information shows a similar trend for all timesteps,
which can be formulated as:

L(θ, α) =
1

T

T∑
t=1

Lt(θ, α). (10)
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Figure 5: (a) Fisher information across all layers after training
(b) Training loss (c) Test accuracy of three α configurations.
We train ResNet19 architecture on CIFAR10 dataset. We ob-
serve that Fisher information successfully changes according
to the magnitude of α. Also, (b) and (c) show our loss func-
tion provides stable convergence. For loss visualization, we
show the value of original loss Lt(θ) in Eq. 9. We present
the SVHN and CIFAR100 results in the Appendix.

By changing α value, we can approximately control rela-
tive magnitude of Fisher information. We find that our loss
L(θ, α) can successfully control Fisher information, i.e.,
smaller α shows less Fisher information across timesteps,
as shown in Fig. 5. In our experiments, three types of
SNNs trained with different α values are investigated: αlow,
αintermediate, and αhigh (αlow < αintermediate < αhigh).
We select αcifar10=[1e-3, 1e-2, 7e-2], αsvhn=[1e-4, 1e-2,
7e-2], αcifar100=[1e-4, 1e-3, 1e-2], for [αlow, αintermediate,
αhigh ]. The α hyperparameter selection is based on dataset
complexity where they have different sensitivity w.r.t to α.

Compared to αlow, using αintermediate forces SNN to
slightly increase the amount of Fisher information. αhigh

further forces the model to have high Fisher Information,
therefore the Fisher information increases as time goes on.
By comparing these configurations, we can reveal what is
the advantage if Fisher information becomes smaller through
time i.e., TIC. Note, the loss function (Eq. 10) applied for Fig.
5 and Table 1 is different from the other experiments where
we only apply CrossEntropy loss on the accumulated spike
activation in the last layer. Our objective here is to manipulate
Fisher information to explore their impact on the robustness
of an SNN model.

Classification Accuracy. We first measure the accuracy of
SNNs trained with three different α (with the same number
of epochs) on CIFAR10, CIFAR100 (Krizhevsky and Hinton
2009), and SVHN (Netzer et al. 2011), and report the results
in Table 1. We use ResNet19 as a baseline architecture. All
α configurations achieve similar accuracy across all datasets,
regardless of dataset complexity. This implies that TIC is not
an essential factor for SNNs to obtain high accuracy. In fact,
in the TIC ablation experiments in Fig. 4, we found that IC
transition speed changes based on different configurations,
but, there was no conspicuous effect on accuracy. Table 1
results on the relation between TIC and accuracy further cor-
roborate Fig. 4 (except for architecture and data experiments)
results, where we achieve almost similar accuracy for all
configurations.

Robustness against Noise / Adversarial sample. We an-
alyze the relation between robustness and TIC. Specifically,
we first corrupt the input image using two types of noise:
Gaussian noise and Blur. For Gaussian noise experiments,
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Method Dataset Clean Acc. (%) Gaussian Noise Blur FGSM PGD

low α SVHN 96.03 93.48 (-2.55) 95.56 (-0.47) 91.69 (-4.34) 90.87 (-5.16)
inter. α SVHN 96.01 93.24 (-2.77) 95.56 (-0.56) 77.93 (-18.08) 49.84 (-46.17)
high α SVHN 95.91 92.85 (-3.06) 95.12 (-0.79) 55.39 (-40.52) 4.46 (-91.45)

low α CIFAR10 92.04 69.01 (-23.03) 58.11 (-33.93) 77.22 (-14.82) 74.63 (-17.41)
inter. α CIFAR10 91.89 68.09 (-23.80) 56.88 (-35.01) 69.29 (-22.60) 58.65 (-33.24)
high α CIFAR10 91.87 61.01 (-30.86) 54.55 (-37.32) 53.50 (-38.37) 32.58 (-59.29)

low α CIFAR100 68.17 37.60 (-30.57) 51.18 (-16.99) 44.62 (-23.55) 38.64 (-29.52)
inter. α CIFAR100 68.47 36.98 (-31.49) 51.02 (-17.45) 43.39 (-25.08) 35.03 (-33.43)
high α CIFAR100 67.95 35.56 (-32.39) 49.09 (-18.86) 38.36 (-29.59) 30.33 (-37.62)

Table 1: Classification accuracy and robustness of SNNs trained with three different α. We train ResNet19 architecture on
three public datasets including SVHN, CIFAR10, CIFAR100. For robustness experiments, we report both accuracy and relative
accuracy drop w.r.t. clean accuracy.

we add Gaussian noise whose l2 norm is set to 50% of the
norm of the given input. For generating Blur effect to the
image, we follow the method used in (Achille, Rovere, and
Soatto 2018) - images are downsampled to smaller resolution
(e.g., 16× 16) and then upsampled back to its original reso-
lution (e.g., 32× 32) with bilinear interpolation, which is an
efficient implementation for destroying small-scale details in
images. To further evaluate the robustness, we also evaluate
the robustness of SNN models against two representative
adversarial attacks. FGSM attack (Goodfellow et al. 2014) is
a single-step attack based on backward gradients where the
noise is the sign of gradients scaled by ϵ. Projected Gradient
Descent (PGD) attack (Madry et al. 2017) is an iterative ad-
versarial attack characterized by three parameters- maximum
perturbation ϵ, perturbation step size α and the number of
iterations n. In our experiments, we use ϵ = 8

255 for FGSM
attack, and [ ϵ = 8

255 , α = 4
255 , n = 10] for PGD attack.

In Table 1, we report the corrupted accuracy with respect
to each noise. Interestingly, for all noise configuration, SNNs
trained with low α show less performance drop compared
to SNNs trained with high α. This difference is especially
huge for adversarial attacks. This results can be explained by
connecting the KL divergence to Fisher information matrix
(FIM). Given that a small perturbation δ is added to input
x, it will make a difference in the probability fθ(y|xt + δ).
Then, we can measure the difference in the output probabili-
ties using KL divergence, where we can apply second-order
Taylor approximation as

DKL(fθ(y|xt)||fθ(y|xt + δ)) ≈ 1

2
δTMtδ. (11)

The above equation shows that the output perturbation from
the given input noise can be represented by the function of
FIM. If the eigen values of the FIM have larger values, the
output perturbation is likely to be severe. Thus, the trace of
FIM (i.e., sum of eigen values) should be small in order to
suppress the noise. Therefore, the SNN model that shows
temporal concentration behavior (smaller Fisher trace as time
goes on) might have better robustness.

Application: Efficient SNN Pruning Using TIC
We further explore the usage of TIC for applications. Here,
we apply a standard iterative magnitude-based pruning (Han
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Figure 6: (a) Iterative pruning method (Han et al. 2015) for
SNNs. Here, we assume the SNN are trained with timestep
5. (b) We propose the concept of efficient pruning using TIC
(colored with red). For a retraining-pruning cycle, the SNN
model is trained with a less number of timesteps.
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Figure 7: Accuracy vs. sparsity of (a) VGG16 (b) ResNet19
architectures on CIFAR10. In these experiments, we use
timestep 5 for the first training stage, then we change Tretrain

in retraining-pruning cycles.

et al. 2015) to SNNs and propose an efficient pruning process
using TIC. Basically, as shown in Fig. 6(a), the original prun-
ing method (Han et al. 2015) starts with training SNNs using
timestep T. After training, p% of low-magnitude weight con-
nections are pruned by thresholding, followed by retraining
the remaining parameters. It was found that the iterative prun-
ing strategy (i.e., multiple pruning-retraining cycles) brings
better pruning results. Following this, in our experiments,
we prune 50% of connections for 5 cycles. As such iterative
pruning causes non-trivial training time, we aim to reduce
the computational cost using the TIC phenomenon in SNNs.

To bring efficiency, we focus on the observation that the
information is concentrated in early timesteps after the first
training stage. In Fig. 6(b), we illustrate the amount of Fisher
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information w.r.t timesteps, which shows near-zero values
after T=3. This allows us to use less number of timesteps
Tretrain for pruning-retraining cycles since we will not lose
information with a smaller number of timesteps. In Fig.
7, we compute the accuracy across various sparsity levels
with different Tretrain values. For Tretrain that shows near-
zero Fisher information values (i.e., Tretrain=[3, 4, 5]), we
achieve similar pruning performance. On the other hand,
Tretrain=2 shows huge performance degradation.

Using small Tretrain brings energy-efficiency. Suppose
we train the SNN model for N epochs in the first training
round, and Nretrain epochs for R rounds of the pruning-
retraining process. With the original approach (Han et al.
2015), the computational cost is approximately proportional
to NT +NretrainRT , where T is the number of timesteps.
If we apply Tretrain for the pruning-retraining process based
on TIC observation, the computational cost is approximately
proportional to NT +NretrainRTretrain. Overall, the com-
pute efficiency can be obtained as: NretrainR(T−Ttrain)

NT+NretrainRT ×100.
In our experiment, we set N = 300, Nretrain = 60, R = 5,
T = 5. In this case, if we apply Tretrain = 3, we will obtain
20% compute efficiency improvement.

Discussion and Conclusion
In our work, we observe temporal information concentration
(TIC) in SNNs, an information shift from latter timesteps to
the early timesteps as training progresses. This new obser-
vation enables us to understand the learning representations
inside SNNs, providing several discussions on the connection
to previous studies and future research directions for SNNs.

Connection with bio-plausibility of SNNs. TIC reveals
some connections between SNNs and biological features
observed in human brain. Firstly, TIC also can be founded
in the human visual cortex. Previous neuroscience research
(Stigliani, Jeska, and Grill-Spector 2017; Boynton et al. 1996)
presented that the V1 activity responses to stimuli increase
steeply at the early time and show little change afterward.
Also, layer-wise Fisher analysis (Fig. 3) implies that the SNN
model focuses on high-level features (e.g., semantic meaning
of the given image) at the early timesteps, while low-level
features (e.g., texture) are important at the latter timesteps
for prediction. Such new observation in SNN is similar with
primate vision where they focus on the semantic context of a
given image at the early time, and then, look into finer details
(Brady et al. 2009; Hollingworth and Henderson 2002).

Shrinking timesteps in SNN. Several works (Chowdhury,
Rathi, and Roy 2021; Chowdhury, Garg, and Roy 2021) pro-
gressively reduce the number of timesteps as training goes
on. Although those works significantly reduce the latency of
SNN while almost maintaining accuracy, there is a lack of ex-
planation why timestep shrinking is possible in SNN. Based
on our observation, we can explain that SNNs can process
most information in the early few timesteps, therefore achiev-
ing a high accuracy without the later timesteps. We hope our
observation (i.e., TIC, Fig. 1) leads to interpretation of other
temporal-related techniques in SNNs such as temporal batch
norm (Zheng et al. 2020; Kim and Panda 2020) and learnable
leak factor (Fang et al. 2021b).

Connection between model capacity and timesteps. In
ANN literature, it is a well-known trend that a larger model
usually achieves better accuracy (Alzubaidi et al. 2021; Doso-
vitskiy et al. 2020). Similarly, SNN works (Hu, Tang, and
Pan 2018; Fang et al. 2021a) also present that larger archi-
tectures achieve a better performance, showing that model
capacity plays an important role in SNNs. As our work fo-
cuses on understanding the relation between temporal dy-
namics and model learning, we conjecture that model capac-
ity might affect the number of timesteps required for stable
training. Such hypothesis can be supported by observations
in Fig. 4(f), where high-capacity model (ResNet19) shows
quick TIC compared to low-capacity model (AlexNet). Thus,
the results imply high-capacity model can concentrate in-
formation within short timesteps. To empirically validate
this, as pilot experiments, we measured the accuracy of
ResNet19 and AlexNet trained with various timesteps. Inter-
estingly, we found that, ResNet19 shows performance satura-
tion at timestep 4, whereas AlexNet saturates at timestep 8,
which supports our statement that high-capacity model can
be trained with short timesteps. The results suggest that the
trend of TIC can affect the minimum number of timesteps
for performance saturation. We present experiment settings
and results in Appendix.

Robustness of SNNs with respect to noise and adver-
sarial attacks. Recent SNN works (Sharmin et al. 2020;
Liang et al. 2021) highlight that SNNs have better robustness
against adversarial and natural noise compared to standard
ANNs. In our study, we further provide the analysis how
temporal information dynamics affects robustness. As we
show that early timesteps are important for inference (thus,
vulnerable), one can devise a more efficient attack/defense
algorithm for SNN by adding noise at the early few timesteps.
We hope our study fosters future work understanding the
robustness of SNNs.

Impact of data type, loss function, coding scheme, and
learning algorithm. In our experiments, we study the most
general case of an SNN model (cross-entropy loss, direct
coding, backpropagation for training) used in state-of-the-art
works on image classification task. We clarify that the trend
TIC might be different with different SNN training configu-
rations such as data type, loss function, coding scheme, and
learning algorithm, which points out interesting future work
to further understand SNNs. Here we ask several research
questions: How information dynamics change with respect to
sequential input such as DVS dataset (Calabrese et al. 2019;
Li et al. 2017)? Will modifying cross-entropy loss in time
axis help SNN training? Will different coding scheme (such
as temporal coding (Mostafa 2017; Comsa et al. 2020)) show
TIC trend? We hope our work will become a starting point
for thinking about a new direction in temporal representation
for SNNs.
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