
Inverse-Reference Priors for Fisher Regularization of Bayesian Neural Networks

Keunseo Kim1*, Eun-Yeol Ma2, Jeongman Choi2, Heeyoung Kim2

1 Samsung Advanced Institute of Technology, Suwon, Republic of Korea
2 Department of Industrial and Systems Engineering, KAIST, Daejeon, Republic of Korea

keunseo.kim@samsung.com, {eyma1127, jmchoi14, heeyoungkim}@kaist.ac.kr

Abstract

Recent studies have shown that the generalization ability of
deep neural networks (DNNs) is closely related to the Fisher
information matrix (FIM) calculated during the early train-
ing phase. Several methods have been proposed to regularize
the FIM for increased generalization of DNNs. However, they
cannot be used directly for Bayesian neural networks (BNNs)
because the variable parameters of BNNs make it difficult to
calculate the FIM. To address this problem, we achieve reg-
ularization of the FIM of BNNs by specifying a new suit-
able prior distribution called the inverse-reference (IR) prior.
To regularize the FIM, the IR prior is derived as the inverse
of the reference prior that imposes minimal prior knowledge
on the parameters and maximizes the trace of the FIM. We
demonstrate that the IR prior can enhance the generalization
ability of BNNs for large-scale data over previously used pri-
ors while providing adequate uncertainty quantifications us-
ing various benchmark image datasets and BNN structures.

Introduction
The generalization of deep neural networks (DNNs) with a
large number of parameters has received considerable atten-
tion in recent studies for complex data analysis (Neyshabur
2017; Jiang et al. 2019; Zhang et al. 2021). Widely used
methods include implicit regularization techniques such as
dropout (Srivastava et al. 2014), batch normalization (Ioffe
and Szegedy 2015), and early stopping of training (LeCun
et al. 2012), as well as explicit regularization techniques
such as ℓ2 regularization (Drucker and Le Cun 1992). How-
ever, for the past years it has been unclear why and how these
regularization methods affect the generalization of DNNs.

Recent studies have found that the generalization of
DNNs is highly affected by the local curvature of the loss
function in the early training phase (Jastrzebski et al. 2019,
2021; Cohen et al. 2020). Jastrzebski et al. (2021) found that
the trace of the Fisher information matrix (FIM) becomes
excessively high during the early phase of training when the
hyperparameters of stochastic gradient descent (SGD) are
misspecified, which results in poor generalization. To pre-
vent poor generalization, Jastrzebski et al. (2021) proposed
the Fisher penalty, which regularizes the trace of the FIM.

*Work done while a student at KAIST.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous methods that explicitly regularized the norm of the
loss gradient (Varga, Csiszárik, and Zombori 2017; Barrett
and Dherin 2020) can also be interpreted as regularizing the
local curvature of the loss function.

Similar to DNNs, Bayesian neural networks (BNNs) can
suffer from the poor generalization problem caused by the
misspecification of the hyperparameters of SGD. However,
the generalization issue has not been studied for BNNs, de-
spite their wide use in risk-sensitive applications as they can
quantify uncertainties in DNN predictions by placing prior
distributions over the network weights (Jospin et al. 2022).
BNNs are typically trained by maximizing the evidence
lower bound (ELBO) using variational inference. However,
the inherent noisy estimation of the ELBO during training
makes the specification of the hyperparameters more criti-
cal for BNNs (Jospin et al. 2022). Moreover, their use of
the ELBO for inference makes the direct application of the
Fisher penalty (Jastrzebski et al. 2021) intractable.

Indeed, the generalization ability of BNNs can easily de-
teriorate for large-scale data depending on the specifica-
tion of priors and the choice of hyperparameters such as
the learning rate and batch size (Ghosh, Yao, and Doshi-
Velez 2019; McGregor et al. 2019; Farquhar, Osborne, and
Gal 2020). For instance, recent studies have shown that
the Gaussian distribution, despite being the most frequently
used, may be inappropriate as a prior distribution for BNNs
(Nalisnick and Smyth 2018; Farquhar, Osborne, and Gal
2020) because it degrades the generalization of BNNs. In
particular, Wenzel et al. (2020) pointed out that the Gaus-
sian prior distribution is not suitable for BNNs because it
is unintentionally informative and the unwanted effect of
the prior amplifies as the network scale increases. We also
empirically show in Section that the validation accuracy
decreases significantly when a BNN with a Gaussian prior
distribution is trained using a comparatively small learning
rate. Although various priors have been proposed for better-
performing BNNs (Ghosh, Yao, and Doshi-Velez 2019; Mc-
Gregor et al. 2019; Farquhar, Osborne, and Gal 2020), iden-
tifying a prior that guarantees good generalization is still a
problem to be solved.

In this study, we achieve regularization of the FIM of
BNNs by specifying a new suitable prior distribution called
the inverse-reference (IR) prior. Specifically, we derive the
IR prior by manipulating the reference prior, inspired by the
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fact that the closed-form reference prior is proportional to
the determinant of the FIM (Consonni et al. 2018). The ref-
erence prior, which is a noninformative prior, maximizes
the difference between a prior and the posterior (Bernardo
1979). The reference prior increases the trace of the FIM
because it imposes minimal regularization on the model pa-
rameters by definition. Using this fact, we define the IR prior
as the inverse of the reference prior to regularize the FIM.

The computation of the IR prior by taking the inverse of
the reference prior is not tractable in general, because the
closed-form of the reference prior is only available for the
one-dimensional case. Instead, we compute the IR prior di-
rectly by obtaining a prior that minimizes the difference be-
tween the prior and posterior, inspired by the fact that the
IR prior performs regularization in the direction opposite to
that of the reference prior. Then, the IR prior is obtained
as a prior that makes the prior and posterior distributions
equal. Consequently, a variational posterior distribution can
be used as an IR prior without an additional computational
burden. We also provide a discussion on how the IR prior
performs Fisher regularization.

We show that the IR prior helps BNNs achieve stable per-
formance regardless of the model and hyperparameter spec-
ifications in Section . We also show that the IR prior can
also be viewed as a suitable prior that improves the adver-
sarial robustness of a BNN in Section . Here, adversarial ro-
bustness refers to the property of maintaining performance,
even for adversarial examples, which are inputs intention-
ally crafted to deceive the model (Madry et al. 2018). It is
widely known that BNNs, similar to DNNs, are vulnerable
to adversarial examples (Goodfellow, Shlens, and Szegedy
2014; Yuan, Wicker, and Laurenti 2020). We describe the
relationship between the FIM and the robustness of a BNN
against adversarial examples and provide a detailed explana-
tion of how the IR prior improves the adversarial robustness.

In summary, the contributions of this study are as follows:
• We propose a new prior, called the IR prior, that enhances

the generalization ability of BNNs by regularizing the
FIM.

• We validate the generalization ability of BNNs in terms
of the validation accuracy and adversarial robustness
compared to previously studied priors (Ghosh, Yao, and
Doshi-Velez 2019; McGregor et al. 2019; Farquhar, Os-
borne, and Gal 2020) using various benchmark image
datasets and BNN structures.

Background
Bayesian Neural Networks (BNNs)
A BNN is a probabilistic version of a neural network with
a prior distribution on network weights. BNNs are trained
by Bayesian inference, which estimates the posterior dis-
tribution of the network weights conditional on the data.
To formulate the BNNs, we denote a training dataset con-
sisting of n observations of random variables (x, y) as
D = {(x1, y1), ..., (xn, yn)}, where xn is the nth input fea-
ture and yn is the corresponding label. We also denote the
DNN embedded in the BNN as f(x, θ), where θ is the set
of the network weights with a prior distribution p(θ). Let

ℓ(x, y; θ) denote the cross-entropy loss calculated for the in-
put x and label y. We then define the log-likelihood for ob-
serving y given x and θ as the negative cross-entropy loss,
i.e., log p(y|x, θ) = −ℓ(x, y; θ). Bayesian inference esti-
mates the posterior distribution p(θ|D), which can be ob-
tained using Bayes’ rule. However, the direct calculation of
the posterior distribution is intractable, and variational infer-
ence is instead widely used for the inference of BNNs (Blun-
dell et al. 2015; Nazarovs et al. 2021). Variational inference
uses a variation posterior distribution qϕ(θ) with variational
parameters ϕ, which approximates the true posterior distri-
bution p(θ|D). The variational parameters are estimated by
maximizing the evidence lower bound (ELBO):

log p(y|x) ≥ Eqϕ(θ)[log p(y|x, θ)]−KL(qϕ(θ)||p(θ))
(1)

= ELBO,

where KL denotes the Kullback-Leibler divergence.

Reference Prior
A reference prior is a type of noninformative prior that
can be useful in the absence of prior information. Bernardo
(1979) defined the reference prior as a prior that maxi-
mizes the KL divergence between the prior and the poste-
rior, E

[
log p(θ|D)

p(θ)

]
, and can be interpreted as a prior that

maximizes the mutual information between the parameters
and data as follows:

p∗(θ) = argmax
p(θ)

∫ ∫
log

p(θ|D)

p(θ)
p(θ|D)m(D)dθdD (2)

= argmax
p(θ)

I(θ,D),

where I(θ,D) denotes the mutual information between θ
and D, and m(D) denotes the marginal distribution of D.
The FIM is defined as the covariance of the score function,
which is the gradient of the log-likelihood, as follows:

FIM(θ) = E
[
∇θ log p(y|x, θ)∇θ log p(y|x, θ)T

]
. (3)

Bernardo (1979) showed that the reference prior is propor-
tional to the positive square root of the determinant of the
FIM, p∗(θ) ∝ |FIM(θ)|1/2.

Fisher Regularization
In general, explicit regularization methods introduce a spe-
cific regularization term to the objective function. For exam-
ple, the ℓ1 and ℓ2 norms of the parameters have been widely
used as regularization terms. Recently, gradient regulariza-
tion, which regularizes the gradient norm of the likelihood
with respect to its inputs, has gained significant attention
(Drucker and Le Cun 1992; Czarnecki et al. 2017; Gulrajani
et al. 2017; Varga, Csiszárik, and Zombori 2017). Specifi-
cally, gradient regularization penalizes the squared ℓp norm
of the gradient of the likelihood, given by

∥ ∂

∂x
log p(y|x, θ)∥2p. (4)
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Gradient regularization forces the model to produce similar
outputs for nearby inputs. Thus, gradient regularization pre-
vents the rapid change in the outputs in some directions and
enforces the smoothness of the model outputs against the in-
put noise (Varga, Csiszárik, and Zombori 2017).

Recently, Jastrzebski et al. (2021) proposed a regulariza-
tion method that enforces smoothness in the optimization
trajectory of the parameters. Jastrzebski et al. (2021) found
that generalization of the DNNs is closely related to the op-
timization trajectory, which is affected by the local curva-
ture of the loss surface. To regularize the optimization tra-
jectory, Jastrzebski et al. (2021) introduced Fisher regular-
ization, which regularizes the trace of the FIM, given by

Tr(FIM(θ)) = Ey∗∼p(y∗|x,θ)

[
∥ ∂

∂θ
log p(y∗|x, θ)∥22

]
,

(5)
where Tr denotes the trace.

Inverse-Reference Priors for Fisher
Regularization

Previous studies have shown that Fisher regularization ef-
fectively enhances the generalization of DNNs and results
in state-of-the-art generalization performance compared to
other regularization methods. However, it is difficult to apply
Fisher regularization directly to BNNs, because the param-
eters of BNNs are assumed to be random variables, which
makes it difficult to differentiate the likelihood with respect
to the parameters. Instead, we achieve Fisher regularization
by imposing a suitable prior on the network parameters,
rather than directly calculating the FIM.

We propose a new prior distribution, called the inverse-
reference (IR) prior, that naturally achieves Fisher regular-
ization for BNNs. We compute the IR prior by minimizing
the mutual information between the parameters and data,
based on the fact that the IR prior performs Fisher regular-
ization as opposed to the reference prior that maximizes the
mutual information, as follows:

pIR(θ) = argmin
p(θ)

∫ ∫
log

p(θ|D)

p(θ)
p(θ|D)m(D)dθdD

(6)
= argmin

p(θ)

E [KL(p(θ|D)||p(θ))] .

Because the KL divergence term in the last equality of
Eq. (6) is always non-negative, we can solve the optimiza-
tion problem by finding a prior that makes the KL diver-
gence equal to zero. Then, the solution becomes the prior
that makes the posterior distribution and the prior distribu-
tion equal, i.e., pIR(θ) = p(θ|D).

However, we cannot obtain the true posterior distribution
p(θ|D) directly during training of BNNs. To circumvent the
direct computation of the posterior distribution, we use a
variational distribution qϕ as an approximation of the true
posterior distribution as follows:

pIR(θ) = p(θ|D) = qϕ∗(θ), (7)
where ϕ∗ is obtained by maximizing the ELBO given by

ELBO = Eqϕ [log p(D|θ)]−KL(qϕ(θ)||pIR(θ)). (8)

The training algorithm for a BNN with the IR prior is sum-
marized in Algorithm 1.

The ELBO in Eq.(8) aids understanding of how the IR
prior approximated by qϕ∗(θ) regularizes the FIM. Let qϕt

denote the variational distribution updated at training iter-
ation t in the training process. At training iteration t + 1,
with pIR(θ) = qϕt(θ), we find the variational distribution
qϕt+1(θ) that maximizes the ELBO given by

Eqϕt+1 [log p(D|θ)]−KL(qϕt+1(θ)||qϕt(θ)), (9)

where the KL divergence term can be reexpressed as

KL(qϕt+1(θ)||qϕt(θ)) = Eqϕt+1

[
log qϕt+1(θ)− log qϕt(θ)

]
.

(10)
Using the Taylor expansion of log qϕt+1(θ) around ϕt+1 =
ϕt, we can approximate KL(qϕt+1(θ)||qϕt(θ)) in Eq.(10) as

(∆ϕ)T FIM(ϕt)(∆ϕ), (11)

where FIM(ϕt) = Eqϕt

[
(∇ϕt log qϕt(θ))(∇ϕt log qϕt(θ))T

]
is the FIM of qϕt and ∆ϕ = ϕt+1 − ϕt. From Eq. (8) to
Eq.(11), we can see that the ELBO can be represented as
the expectation of the log-likelihood regularized by the
FIM of qϕ. We can also easily show the convergence of the
training process for BNNs with the IR prior because the KL
divergence term goes to zero as qϕt+1(θ) approaches qϕt(θ).

Experimental Evaluation
In this section, we evaluate the performance of the BNNs
with the IR prior. Specifically, we analyze the results of ex-
periments conducted using various benchmark datasets to
demonstrate that the IR prior effectively reduces the trace
of the FIM during training and improves the validation ac-
curacy.

Experimental Setup
Datasets and Neural Network Architectures We used
three benchmark image datasets, CIFAR-10, CIFAR-100,
and SVHN, for the experiments. Each image was resized
to 32 × 32 pixels with three channels. For the architec-
tures of the BNNs, we employed three well-known image
classification neural network structures: DenseNet (Huang
et al. 2017), ResNet (He et al. 2016), and VGG (Liu and
Deng 2015). Considering the size of the datasets, we used
the DenseNet121, ResNet18, and VGG16 structures, which
utilize approximately 7.8 million, 11 million, and 138
million parameters, respectively. We considered structures
of various scales to verify whether the IR prior exhibits
effective performance regardless of the scale of the BNNs.

Implementation Details We considered the same exper-
imental settings as those in Nazarovs et al. (2021). To
estimate the KL divergence term in the ELBO in Eq. (1),
we used the graph reparameterization trick (Nazarovs et al.
2021), which is a scalable method to compute the ELBO of
large-scale BNNs. We used a radial distribution (Farquhar,
Osborne, and Gal 2020) as the variational posterior distri-
bution and used the Adam optimizer (Kingma and Ba 2014)
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Algorithm 1: Algorithm for training the BNN with the IR prior

1: Input: Input model p(D|θ), variational distribution qϕ(θ), number of iterations T
2: Output: Variational distribution qϕT (θ)

3: Initialize the variational parameters ϕ = ϕ0 and prior distribution pIR(θ) = qϕ0(θ).
4: for t = 0, . . . , T − 1 iterations do
5: Update ϕt to ϕt+1 by maximizing the ELBO in Eq.(9).
6: Update pIR(θ) = qϕt+1(θ).
7: end for

with learning rate set to 0.001.

Alternative Priors for Comparison We employed three
previously studied priors for large-scale BNNs as base-
lines for comparison: the horseshoe prior (Ghosh, Yao, and
Doshi-Velez 2019), self-stabilizing prior (McGregor et al.
2019), and the classical Gaussian prior.

Experimental Results
Validation Accuracy Comparison with Other Priors We
evaluated the validation accuracy of the BNNs with the four
considered priors using the CIFAR-10, SVHN, and CIFAR-
100 datasets. We compared the average validation accuracy
over five repeated experiments using different initial values
of the BNNs in Table 1 with standard errors in parentheses.
We employed the validation accuracy as a metric of the gen-
eralization ability because it measures the performance on
unseen data points. The validation accuracy reported in Ta-
ble 1 represents the maximum validation accuracy recorded
during 100 training epochs. The three image classification
models, DenseNet121, ResNet18, and VGG16, were used
to verify the performance of the BNNs with various scales
of embedded neural networks.

In all the experiments, the IR prior achieved the best gen-
eralization performance. For example, when tested on the
CIFAR-10 dataset, the BNN with the IR prior achieved the
best validation accuracy of 85.5%, 84.6%, and 84.1% using
DenseNet121, ResNet18, and VGG16, respectively, outper-
forming the other models. Similarly, the BNN with the IR
prior achieved the best validation accuracy when tested on
SVHN and CIFAR-100 as well (Table 1).

In addition, the IR prior showed the most stable validation
accuracy in terms of standard error among the priors consid-
ered. For example, the standard error of validation accuracy
of the DenseNet121-embedded BNN with the IR prior on
the CIFAR-10 dataset (Table 1) was 0.49. In contrast, the
standard errors of validation accuracy were 0.55, 0.86,
and 0.60 when using the Gaussian, self-stabilizing, and
horseshoe priors, respectively. Consistently, the standard
errors of the validation accuracy were the lowest for the
BNNs with the IR prior for all architectures and datasets
considered.

Robustness against Hyperparameter Misspecification
The generalization ability of DNNs easily deteriorates de-
pending on the network architecture and specification of hy-
perparameters, such as the learning rate (Jastrzebski et al.
2021). Through additional experiments, we show that the

same problem occurs with BNNs. Moreover, we empirically
show that Fisher regularization with the IR prior can effec-
tively solve this problem.

Figure 1 shows the validation accuracy of the BNNs based
on DenseNet121 and ResNet18 with various priors trained
using different learning rates. Regardless of the network
architecture and learning rate, the BNN with the IR prior
showed the best validation accuracy among the BNNs con-
sidered, suggesting that using the IR prior provides robust
estimation regardless of model specifications. Even when
the learning rate was misspecified as extremely low (e.g.,
0.00001 or 0.00005), the BNN with the IR prior consis-
tently achieved better validation accuracy than the BNNs
with other priors. Furthermore, the BNN with the IR prior
performed well for both relatively small (DenseNet121) and
big (ResNet18) network capacities.

For an in-depth analysis, we analyzed the maximum
value of the trace of the FIM during training with various
learning rate values. The left and right panels of Figure 2
show the results of the ResNet18-embedded BNN and the
DenseNet121-embedded BNN, respectively. As expected,
for both ResNet- and DenseNet-embedded BNNs, the max-
imum value of the trace of the FIM increased as the learning
rate decreased for all priors considered. However, whereas
the trace of the FIM exploded when a small learning rate
was used for all competing priors (Gaussian, self-stabilizing,
horseshoe), the increase in the trace was significantly sup-
pressed when the IR prior was used (green). The effective
regularization of the trace of the FIM using the IR prior en-
abled good validation accuracy even with a small learning
rate, as shown in Figure 1.

Furthermore, we compare the IR and the Gaussian priors
in terms of the validation accuracy and trace of the FIM
over different training epochs in Figure 3. As shown in
the left panel, the BNN with the Gaussian prior exhibited
significantly different performances depending on the
specification of the learning rate (violet, cyan). In particular,
the Gaussian prior resulted in a rapid increase in the trace of
the FIM in the early training phase (right panel), which may
have resulted in the inferior validation accuracy when the
learning rate was as low as 0.0001 (left panel). In contrast,
when the IR prior (orange) was used, the trace of the FIM
remained stable even with a small learning rate of 0.0001
(right panel), which probably resulted in a significantly
higher validation accuracy (left panel).

Uncertainty Quantification One of the main advantages
of using BNNs is their ability to quantify uncertainty about

8267



CIFAR-10 CIFAR-100 SVHN
Priors DenseNet ResNet VGG DenseNet ResNet VGG DenseNet ResNet VGG
Horseshoe 76.5

(0.60)
76.4
(1.01)

77.9
(0.69)

41.2
(0.80)

41.5
(0.91)

43.3
(0.82)

91.9
(0.32)

92.1
(0.35)

91.7
(0.45)

Self-
stabilizing

77.2
(0.86)

76.4
(0.50)

79.4
(0.72)

47.9
(0.58)

47.6
(0.78)

47.3
(0.74)

92.5
(0.40)

91.8
(0.26)

91.8
(0.21)

Gaussian 81.9
(0.55)

82.6
(0.49)

81.1
(0.53)

48.3
(0.52)

48.9
(0.62)

48.1
(0.59)

94.9
(0.08)

94.8
(0.10)

94.3
(0.11)

IR 85.5
(0.49)

84.6
(0.49)

84.1
(0.48)

52.0
(0.39)

51.1
(0.28)

50.8
(0.53)

96.1
(0.08)

95.4
(0.08)

95.4
(0.08)

Table 1: Validation accuracy (%) of the BNNs based on DenseNet121, ResNet18, and VGG16 tested on various datasets

Figure 1: Validation accuracy on the CIFAR-10 dataset obtained using the ResNet18-embedded BNN (left panel) and the
DenseNet121-embedded BNN (right panel) with various prior distributions. We measured the validation accuracy with various
learning rates.

Figure 2: The maximum value of the trace of the FIM on the CIFAR-10 dataset obtained using the ResNet18-embedded BNN
(left panel) and the DenseNet121-embedded BNN (right panel) with various prior distributions. We measured the maximum
value of the trace with various learning rates.

their predictions. Figure 4 shows the epistemic uncertainty
quantified by a 3-layer BNN with the Gaussian prior (or-
ange) and a 3-layer BNN with the IR prior (green) on two toy
regression datasets. Both networks similarly underestimated
uncertainties as expected for BNNs trained with mean-field
variational inference (Foong et al. 2019), while the BNN
with the IR prior quantified the uncertainty to be slightly
larger for unseen regions compared to the BNN with the
Gaussian prior for both datasets. The IR prior tended to pro-
vide at least as good predictive uncertainty quantification as
the popular Gaussian prior. Considering the superior predic-
tive performance of the BNN with the IR prior (Table 1),
the IR prior can be considered a well-suited prior that yields

both good predictive performance and uncertainty quantifi-
cation.

IR Priors Increase Robustness against
Adversarial Attacks

In this section, we briefly describe the relationship between
Fisher regularization using the IR prior and the adversar-
ial robustness. In general, it is desirable that a model yields
similar results for a clean sample and its perturbed version.
However, it is well known that DNNs generally produce very
different outputs when confronted with adversarial examples
(Kurakin, Goodfellow, and Bengio 2016). To improve the
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Figure 3: The validation accuracy (left panel) and the trace of the FIM (right panel) obtained using the ResNet18-embedded
BNNs with the IR and Gaussian priors on the CIFAR-10 dataset with different learning rates (LR) over training epochs.

Figure 4: The epistemic uncertainty quantified by the BNNs with the Gaussian prior (orange) and IR prior (green) on two toy
regression datasets.

adversarial robustness of DNNs, many studies have investi-
gated the factors that affect adversarial robustness. In par-
ticular, Moosavi-Dezfooli et al. (2019) and Yu et al. (2018)
showed that the trace of the FIM has a significant impact on
adversarial robustness.

Adversarial robustness is defined as the difference in per-
formance between a model with pure examples and a model
with adversarial examples. Suppose that an adversarial ex-
ample x′ is generated by adding the ℓp norm-bounded per-
turbation δ to the pure example x. The adversarial perturba-
tion δ can be defined as follows:

argmin
δ

log p(y|x+ δ, θ), where ∥δ∥p < ϵ, (12)

where ϵ is a perturbation radius that controls the size of per-
turbation. Then, adversarial robustness can be measured as

log p(y|x′, θ)− log p(y|x, θ). (13)

Using the Taylor expansion of log p(y|x′, θ) around x′ = x,
we can approximate Eq. (13) as

∇ log p(y|x, θ)T δ + 1

2
δT FIM(θ)δ, (14)

where δ = x′ − x is the adversarial attack size. Note that
in Eq.(14), the 0th order term disappears because it is can-
celed out by the negative 0th order term in Eq.(13). When the

model is fully trained, the expectation of the gradient of the
log-likelihood ∇ log p(y|x, θ) converges to 0, simplifying
Eq. (14) as δT FIM(θ)δ. The δ̂ that maximizes the adversar-
ial attack, i.e., δ̂ = argmaxδ δ

T FIM(θ)δ, can be obtained
by taking the derivative of the Lagrangian of δT FIM(θ)δ and
equating it to 0. This yields FIM(θ)δ̂ = λδ̂, where the La-
grangian λ is the eigenvector of FIM(θ) by definition. The
adversarial attack δ̂T FIM(θ)δ̂ then becomes the maximum
of the eigenvalues, which can be easily calculated through
the trace of FIM(θ). Therefore, the IR prior regularizing the
trace of the FIM can also be interpreted as the prior improv-
ing the adversarial robustness.

We conducted additional experiments to evaluate the ro-
bustness of using the IR prior against adversarial attacks. To
evaluate the robustness, we evaluated the classification accu-
racy of BNNs for adversarial examples. We generated adver-
sarial examples using the fast gradient sign method (Good-
fellow, Shlens, and Szegedy 2014) by adding bounded per-
turbations of size ϵ = 0.001 and ϵ = 0.0001 to pure test
examples.

We compared the mean (standard error) validation accu-
racy of the BNNs with the four different priors over five
repeated experiments considered in Section using the ad-
versarially manipulated CIFAR-10 and CIFAR-100 datasets
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ϵ Size Horseshoe Self-
stabilizing

Gaussian IR

0.0001 75.6
(0.67)

76.7
(0.81)

80.1
(0.78)

84.9
(0.50)

0.001 74.5
(0.71)

75.1
(0.86)

78.9
(0.65)

84.7
(0.70)

Table 2: Validation accuracy (%) of DenseNet-embedded
BNNs on CIFAR-10 dataset with adversarial perturbations
of different sizes of ϵ = 0.0001 and ϵ = 0.001.

ϵ Size Horseshoe Self-
stabilizing

Gaussian IR

0.0001 39.8
(0.31)

45.4
(0.28)

47.6
(0.32)

50.2
(0.29)

0.001 39.1
(0.55)

44.3
(0.33)

46.1
(0.41)

49.9
(0.35)

Table 3: Validation accuracy (%) of DenseNet-embedded
BNNs on CIFAR-100 dataset with adversarial perturbations
of different sizes of ϵ = 0.0001 and ϵ = 0.001.

in Tables 2 and 3, respectively. For both datasets, the IR
prior resulted in the highest accuracy among the priors. With
the larger adversarial perturbation (ϵ = 0.001), the accu-
racy decreased for all considered priors, as expected. For
example, the accuracy with the IR prior decreased from
84.9% to 84.7% when the perturbation size increased from
ϵ = 0.0001 to ϵ = 0.001. However, the decrease in the ac-
curacy due to the larger perturbation was the smallest for the
IR prior.

Related Work
Previous studies have highlighted that a right prior that re-
flects the characteristics of both the network structure and
task purpose is essential in improving the predictive perfor-
mance of the BNNs (Fortuin et al. 2022; Fortuin 2022). In
general, Gaussian distributions have been a popular prior
over the parameters of BNNs. By assuming independence
between the parameters, a simple Gaussian prior can be in-
troduced as p(θi) = N (θi; 0, σ

2), which can also be inter-
preted as the ℓ2 norm regularization of the parameters. For
more flexible prior distributions, Blundell et al. (2015) pro-
posed a scale mixture prior, which is a mixture of two Gaus-
sian distributions with varying standard deviations (σ1 ≥ σ2

and σ2 ≪ 1). A near-zero choice of σ2 forces the network
weights to be near zero, which can be interpreted as impos-
ing dropout (Srivastava et al. 2014).

However, recent studies have found that the typical choice
of Gaussian priors can be problematic in many cases. For ex-
ample, Gaussian priors may overinform the network, espe-
cially when the data size is small (Ghosh, Yao, and Doshi-
Velez 2019). Moreover, Gaussian priors can result in high
variance estimation, as BNNs are typically highly sensitive
to prior and hyperparameter specifications (McGregor et al.
2019). Furthermore, conventional mean-field variational in-
ference of Gaussian posteriors results in unrepresentative

weights sampled from a “soap-bubble” or a narrow region
distant from the mean, resulting in rapid deterioration of the
validation performance of large-scale BNNs (Farquhar, Os-
borne, and Gal 2020).

To address these problems, various priors for BNNs have
been proposed. Ghosh, Yao, and Doshi-Velez (2019) pro-
posed the horseshoe prior as a shrinkage prior to alleviate
the overparametrization in BNNs. McGregor et al. (2019)
proposed the self-stabilizing prior, which updates the prior
per gradient step to preserve the variance during the for-
ward signal propagation and achieve robust training. Far-
quhar, Osborne, and Gal (2020) proposed the radial BNN,
which samples network weights from a distribution in a hy-
perspherical coordinate system that ensures high probabil-
ity densities around the mean. However, despite their efforts
to solve specific problems induced by Gaussian priors, no
prior study has addressed the essential problem of large-
scale BNNs suffering from a lack of generalization ability.
While noninformative priors may be the most appropriate
priors when prior knowledge is insufficient (Nalisnick and
Smyth 2017), no suitable prior for BNNs has yet been pro-
posed to enhance generalization without imposing unneces-
sary information on the network parameters.

Conclusion
We proposed a new prior distribution for BNNs, called the
IR prior, which achieves Fisher regularization and thus in-
creases the generalization ability of BNNs. The IR prior
was derived to regularize the FIM based on the fact that the
closed-form reference prior is proportional to the determi-
nant of the FIM. We empirically verified that the IR prior
achieves superior validation accuracy compared with previ-
ously proposed priors through experiments using BNNs with
DenseNet121, ResNet18, and VGG16 on the CIFAR-10,
CIFAR-100, and SVHN datasets. Moreover, through exper-
iments with various learning rate values, we demonstrated
that the IR prior can effectively perform Fisher regulariza-
tion, reducing the trace of the FIM in the training phase. In
this study, we approximated the reference prior as a varia-
tional distribution. In future research, we will theoretically
study the approximation error caused by the difference be-
tween the true and variational posterior distributions.
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