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Abstract

Text-based motion generation models are drawing a surge of
interest for their potential for automating the motion-making
process in the game, animation, or robot industries. In this pa-
per, we propose a diffusion-based motion synthesis and edit-
ing model named FLAME. Inspired by the recent successes
in diffusion models, we integrate diffusion-based generative
models into the motion domain. FLAME can generate high-
fidelity motions well aligned with the given text. Also, it can
edit the parts of the motion, both frame-wise and joint-wise,
without any fine-tuning. FLAME involves a new transformer-
based architecture we devise to better handle motion data,
which is found to be crucial to manage variable-length mo-
tions and well attend to free-form text. In experiments, we
show that FLAME achieves state-of-the-art generation per-
formances on three text-motion datasets: HumanML3D, BA-
BEL, and KIT. We also demonstrate that FLAME’s editing
capability can be extended to other tasks such as motion pre-
diction or motion in-betweening, which have been previously
covered by dedicated models.

Introduction
Given the difficulty of 3D motion generation, automating
text-based motion synthesis and editing has been considered
a difficult problem despite their usefulness in industries. The
process of text-to-motion synthesis and text-based motion
editing motion should not only deliver the clear intention of
motion but also be able to convey the naturalnesss of human
motion at the same time. This effort can be reduced consid-
erably if one can generate motion through language or edit
existing motion to desirable motion simply by language. In
this study, we present a method that can perform motion syn-
thesis and editing using free-form texts.

Recently, research on generating motion from language
has been actively conducted. Many previous studies (Guo
et al. 2020; Petrovich, Black, and Varol 2021; Song et al.
2022) have explored methods to synthesize motion from be-
havioral labels, such as ‘walking’, ‘jumping’, or ‘dancing’
and demonstrated promising results on text-to-motion syn-
thesis tasks. However, synthesizing motion from behavioral
labels lacks descriptive power, which limits both diversity
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(a) Text-to-motion synthesis result from FLAME with prompt:
“A person walks forward and bends down to pick up some-
thing.”

(b) (Green) Reference motion. (Blue) Text-based motion editing
result from FLAME with prompt: “A person dribbles a ball.”;
The editing model is allowed to edit upper body parts while
fixing lower body parts in this example.

Figure 1: Overview of text-to-motion synthesis and text-
based motion editing. Motion flows from left to right.

and controllability in motion synthesis. As large-scale pre-
trained language models (PLMs) advance, there are studies
(Ghosh et al. 2021; Petrovich, Black, and Varol 2022) take
the advantage of using PLMs to generate motion from free-
form texts, overcoming the limited expressiveness of simple
labels. Although these methods present promising results in
synthesizing motion from free-form texts, they lack capabil-
ity in a flexible conditional generation.

In this paper, we introduce a versatile motion synthe-
sis method that can generate motion well-aligned with the
provided prompts and perform editing of a reference mo-
tion from textual descriptions. As we aim to present a
method that can generate and edit motion, we employ the
diffusion model (Ho, Jain, and Abbeel 2020; Dhariwal and
Nichol 2021; Nichol et al. 2021), which has been present-
ing many successful results in image generation and in-
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painting (Nichol et al. 2021; Ramesh et al. 2022) these days.
With this, our proposed method can conduct text-to-motion
synthesis and text conditional motion generation, including
editing, forecasting, and in-betweening without any fine-
tuning or modification of a trained model.

Architectures for diffusion models have been actively
studied (Ho, Jain, and Abbeel 2020; Nichol and Dhariwal
2021; Dhariwal and Nichol 2021) in the image domain, but
have not yet been explored in the motion domain. In or-
der to introduce the diffusion model into the motion do-
main, we focus on the following differences between motion
and image. First, unlike the image, which has spatial infor-
mation without temporal information, motion is inherently
spatio-temporal data. Secondly, the length of motion can
vary from short motion to long-horizon motion, which re-
quires a model that can handle arbitrary length. To this end,
we introduce a transformer decoder-based architecture that
can handle temporal aspects and variable lengths. Our pro-
posed method takes diffusion time-step token, motion length
token, language tokens, and motion tokens as inputs. Ad-
ditional language-side information is extracted from PLM
and fed to the transformer using cross-attention. Model is
trained to learn the denoising process, which gradually re-
constructs motion from isotropic Gaussian noise. To sample
motion from free-form text, we use classifier-free guidance
(Ho and Salimans 2021). We refer to our model as FLAME,
which stands for Free-form LAnguage-based Motion Syn-
thesis and Editing. To the best of our knowledge, FLAME
is the first to adopt a diffusion-based generative framework
for synthesizing and editing motion.

Our main contributions are summarized as follows:

• We propose FLAME, a unified model for motion synthe-
sis and editing with free-form language description.

• Our model is the first attempt applying diffusion models
to motion data; to handle the temporal nature of motion
and variable-length, we devise a new architecture.

• We show FLAME can generate more diverse motions
corresponding to the same text.

• We demonstrate FLAME can solve other classical
tasks—prediction and in-betweening—through editing,
without any fine-tuning.

Related Work
Diffusion Models & Text-conditional Generation
Diffusion models (Ho, Jain, and Abbeel 2020) are recently
proposed generative models that are shown to be good at
synthesizing highly-complex image datasets. Compared to
GANs (Goodfellow et al. 2014; Karras, Laine, and Aila
2019; Karras et al. 2020; Sauer, Schwarz, and Geiger 2022)
and VAEs (Kingma and Welling 2013; Van Den Oord,
Vinyals et al. 2017), they have been presenting improved
quality in generating multi-modal outputs, advantageous to
text-to-image generation and text-to-motion generation of
our interest—there can be various modes of images/motions
corresponding to a single text description.

Diffusion models are originally proposed in Sohl-
Dickstein et al. (2015) and developed in Ho, Jain, and

Abbeel (2020) and Song, Meng, and Ermon (2020), showing
high-quality image generation. After, they are extended to
work on conditional generation settings, demonstrating even
better performances. Class-conditional models are studied
in Dhariwal and Nichol (2021), and text-conditional mod-
els are proposed by adapting the conditioning scheme for
text (GLIDE; (Nichol et al. 2021)). unCLIP1 (Ramesh et al.
2022) and Imagen (Saharia et al. 2022) further show that
conditioning on pre-trained high-level embedding gives im-
proved result. Our model shares some similarity with the
GLIDE model, but has crucial differences in that it has a
new design to handle temporal sequences of variable length.

To achieve the best performance, several techniques have
been proposed and applied to the aforementioned mod-
els. Improved DDPM (Nichol and Dhariwal 2021) sug-
gests learning the reverse-diffusion variances. Classifier-free
guidance (Ho and Salimans 2021) has been introduced to en-
able conditional generation without the need for a separate
classifier model. We employ both of these techniques in the
proposed model.

3D Human Motion Generation
Motion prediction is a task to forecast subsequent frames
from a given frame or multiple frames, and motion in-
betweening is a boundary value problem that generates a
natural motion sequence while satisfying the given start-
ing and target poses. Motion prediction models (Fragkiadaki
et al. 2015; Guo and Choi 2019) and in-betweening models
(Harvey et al. 2020; Kim et al. 2022a; Duan et al. 2022)
have been developed, but the models lack the ability to per-
form multiple tasks with a single model and cannot synthe-
size motion from textual descriptions.

In the text-to-motion domain, early models (Lin et al.
2018; Ahn et al. 2018) approach the text-to-motion synthesis
task with the sequence-to-sequence model. After that, Guo
et al. (2020) and Petrovich, Black, and Varol (2021) intro-
duce a variational autoencoder (VAE) to create motion from
behavioral labels to improve motion quality and produce a
diversified range of motions. Recent models (Ghosh et al.
2021; Petrovich, Black, and Varol 2022) advance the text-to-
motion task by composing 3D human motion from free-form
texts, instead of simple action labels, to cover more expres-
sive human motions. They demonstrate free-form language-
based motion generation by taking advantage of pre-trained
language model. However, these models have limitations in
extensibility to conventional motion tasks or text-based mo-
tion editing.

In this study, we propose a model to perform high-
quality text-to-motion synthesis with flexible editing capa-
bility, which can conduct text-based motion editing includ-
ing traditional motion prediction and motion in-betweening
without any fine-tuning or modification on a trained genera-
tive model.

Proposed Method: FLAME
We first review the diffusion-based modeling scheme. Then,
we explain the model architecture, designed to handle mo-
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Figure 2: Overview of the architecture: FLAME learns the denoising process pθ from Mt to Mt−1 at diffusion time-step t. Input
motion is projected and concatenated with language pooler token (CLS), motion-length token (ML), and diffusion time-step
token (TS) as input tokens for the transformer decoder. Additional language-side information is fed from a pre-trained frozen
language encoder as a cross-attention context. FLAME outputs a 2 ·Dmo-dimensional sequence of vectors as it predicts both
the mean and variance of noise at each diffusion time-steps.

tion data. In the last two subsections, we explain how to do
the inference in the synthesis and the editing scenarios using
the trained FLAME model.

Diffusion-Based Model
The generative modeling scheme of FLAME is inspired by
the denoising diffusion probabilistic model (DDPM) (Ho,
Jain, and Abbeel 2020) and its extension (Nichol and Dhari-
wal 2021). The general idea of DDPM is to design a dif-
fusion process that gradually adds small amounts of noise
to the data and train the model to reverse each of these dif-
fusion steps. The diffusion process eventually converts the
data into isotropic Gaussian noise, and thus the fully-trained
model would generate samples by repeating denoising steps,
starting from pure noise. Essentially, this scheme divides a
complex distribution-modeling problem into a set of simple
denoising problems.

In details, DDPM defines the diffusion process with the
following conditional distribution:

q(M t|M t−1) = N (M t;
√

1− βtM t−1, βtI), (1)

where M t denotes the diffused data at time-step2 t ∈
{0, 1, · · · , T}; M0 and MT denote the original data and
the fully-diffused Gaussian noise, respectively. In case of
motion data, M0 is the set of all the joint values of the
entire frames. βt ∈ (0, 1) are hyperparameters with re-
spect to the variance schedule, which is set to the cosine

2Time-steps in this paper denote the diffusion steps. To avoid
confusion, the times in motion are deliberately denoted as frames.

in FLAME, following (Nichol and Dhariwal 2021). With a
sufficiently large T (usually 1,000), this design guarantees
MT ∼ N (0, I). Also, it gives the marginal distribution in a
closed form: q(M t|M0) = N (M t;

√
ᾱtM0, (1 − ᾱt)I),

where ᾱt =
∏T

i=1 αi and αt = 1−βt. This allows connect-
ing M t and M0 with a single Gaussian noise, which is to
be used in formulating Eq. 3.

The model considers the reverse of the diffusion process
with the following parameterization:

pθ(M t−1|M t, c) = N (M t−1;µθ(M t, c, t),Σθ(M t, c, t)),
(2)

where c is an optional conditioning variable, language de-
scription in our problem. Once the model learns this distri-
bution, inference is done by first sampling MT ∼ N (0, I)
and then sampling from pθ(M t−1|M t, c), from t = T to
t = 1.

Training & Loss Functions Training the model parame-
ters, θ, is mostly the same as the VAE (Kingma and Welling
2013). Treating M t and M t−1 as the latent and the data
in VAEs, respectively, training is done by maximizing the
evidence lower bound (ELBO) for every t. In DDPM, it is
shown that the core terms in the ELBO loss can be far sim-
plified to the following after a proper re-weighting and repa-
rameterization (see Appendix B for the details):

Lsimple = Et,M0,ϵt

[
∥ϵt − ϵθ(M t(M0, ϵt), c, t)∥2

]
, (3)

where ϵt ∼ N (0, I) is the noise used to diffuse M0 to
make M t. Now, the model is parameterized to sort out the
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noise component ϵt from M t instead of considering the
mean µθ. Performing better in practice, this parameteriza-
tion still allows computing the mean indirectly from the pre-
dicted noise3, and we can sample from pθ(M t−1|M t, c).
Note, however, the reverse-process variance Σθ cannot be
learned with this loss as it has been deliberately removed.

To train the variance, Nichol and Dhariwal (2021) pro-
poses a hybrid loss and demonstrates better performance:

Lhybrid = Lsimple + λLvlb, (4)

where Lvlb is the original ELBO loss without the re-
weighting (see Appendix B for the details). We also use this
loss for training FLAME.

Model Architecture for Motion Data
Unlike images, motion involves temporal as well as spatial
patterns, and its length varies by samples. Thus, we can-
not use the U-Net-based architectures widely adopted in
the previous diffusion models; we instead propose a new
transformer-based architecture (see Figure 2).

Transformer Decoder As explained in the previous
section, the model learns the denoising distribution,
pθ(M t−1|M t, c), and we use transformer decoder to imple-
ment this. As an input to the transformer, the diffused motion
M t is presented as a sequence of Lmo frames, where each
frame consists of Dmo-dimensional joint angle values. To
be used as tokens, each frame passes through a linear layer,
converted to be Demb-dimensional (see Fig. 2). The condi-
tioning with a language description c is implemented as a
cross-attention context. The context is a sequence of token
embeddings computed from a pre-trained language model
(to be explained in the next paragraph). The output frames
are collected at positions where the motion tokens are pro-
cessed. Then they pass through a linear layer, but this time
converted to 2·Demb-dimensional vectors to learn both mean
and variance. The vectors are concatenations of ϵ and Σ,
which fully parameterize pθ(M t−1|M t, c) together. Vari-
able length is handled by masking in the transformer de-
coder.

Pre-trained Language Model (PLM) We use the pre-
trained RoBERTa model (Liu et al. 2019) to encode the tex-
tual description into a sequence of high-level token embed-
dings. PLMs have been showing their language understand-
ing capability can be transferred to a variety of tasks. Hence,
we also adopt the PLM to extract language features.

Time-Step (TS) and Motion-Length (ML) Tokens In
addition to the language and the motion tokens of length
Llang and Lmo, respectively, we introduce two special em-
bedding tokens as inputs to the transformer. The time-step
token (TS) is to give the time-step information t, and the
motion-length token (ML) is to give the motion-length in-
formation Lmo to the model. Since FLAME generates the
entire motion at once, unlike the autoregressive generation
using causal masks, these tokens can explicitly inform the
network about motions to be generated.

3µθ(Mt, c, t) =
1√
αt

(
Mt − βt√

1−ᾱt
ϵθ(Mt, c, t)

)

“a person lifts the left arm 
from in front of the torso to over head.”

“a person lifts the right arm 
from in front of the torso to over head.”

“someone practices ballet dance.”

“a person practices salsa dance.”

Figure 3: Qualitative results on text-to-motion synthesis
task. FLAME is able to synthesize motion from detailed tex-
tual descriptions. Motion sequences flow from left to right.

Inference for Motion Synthesis
When synthesizing motion from text, we use the classifier-
free guidance (Ho and Salimans 2021) technique for better
semantic alignment. While the guidance trades off the sam-
ple diversity by little, it uplifts the precision by large and is
used in many text-to-image generation models (Nichol et al.
2021; Ramesh et al. 2022).

In details, the guidance amplifies the effect of the condi-
tioning variable c when predicting the noise:

ϵ̂θ(Mt | c) = ϵθ(Mt | ∅) + s · (ϵθ(Mt | c)− ϵθ(Mt | ∅)) .
(5)

At each denoising step, a guided version ϵ̂θ(Mt | c) is used
instead of the original prediction ϵθ(Mt | c), which am-
plifies the conditioning effect by a scalar amount s > 1.
To get an unconditioned prediction as well from the model,
ϵθ(Mt | ∅), we randomly replace the text with an empty
string ∅ during training.

Inference for Motion Editing
In motion editing, we want to manipulate parts of data, ei-
ther frame-wise, joint-wise, or both. Similarly to image in-
painting (Banitalebi-Dehkordi and Zhang 2021), we take a
“diffuse then conditionally denoise” strategy to in-fill the ed-
itable parts with the given language condition. This way, we
can make a bridge between the unedited data and the edited
data distributions.

In details, we are given with data M ref
0 to edit and a binary

mask m that designates the parts for editing with zeros, and
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HumanML3D BABEL
Method R-Precision ↑ R-Precision ↑

mCLIP ↑ FD ↓ MID ↑ Top-1 Top-2 Top-3 mCLIP ↑ FD ↓ MID ↑ Top-1 Top-2 Top-3
Lin et al. (2018) 0.142 58.694 18.141 0.225 0.298 0.363 0.183 51.873 33.967 0.678 0.709 0.754
Language2Pose 0.145 55.365 18.982 0.233 0.305 0.381 0.199 42.209 39.360 0.685 0.713 0.788

Ghosh et al. (2021) 0.106 109.778 14.643 0.122 0.151 0.204 0.150 75.316 28.363 0.505 0.591 0.653
TEMOS 0.254 49.142 28.570 0.355 0.481 0.589 0.273 38.679 46.953 0.786 0.835 0.893

Guo et al. (2022) 0.281 27.950 27.744 0.452 0.611 0.675 0.301 24.882 44.758 0.832 0.894 0.911
FLAME (Ours) 0.297 21.152 29.935 0.513 0.673 0.749 0.318 18.234 53.003 0.888 0.926 0.939

Table 1: Text-to-motion benchmark on the HumanML3D and BABEL.

Average Positional Error ↓ Average Variance Error ↓
Method root joint global traj mean local mean global root joint global traj mean local mean global

Lin et al. (2018) 1.966 1.956 0.105 1.969 0.790 0.789 0.007 0.791
Language2Pose 1.622 1.616 0.097 1.630 0.669 0.669 0.006 0.672

Ghosh et al. (2021) 1.291 1.242 0.206 1.294 0.564 0.548 0.024 0.563
TEMOS 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

Guo et al. (2022) 0.949 0.937 0.108 0.940 0.510 0.507 0.007 0.552
FLAME (Ours) 0.881 0.869 0.110 0.899 0.497 0.495 0.007 0.500

Table 2: APE and AVE benchmark on the KIT dataset.

mCLIP↑ Joint Variance ↑ Multimodality ↑
TEMOS 0.252 0.017 11.901

FLAME (Ours) 0.298 0.072 31.500

Table 3: Diversity evaluation on HumanML3D. Each model
generates 10 samples per text in the test set for this evalua-
tion.

ones otherwise. We first diffuse M ref
0 in the same way as

done in training, obtaining M ref
t for every t. Then, the fully

diffused data M ref
T is denoised step-by-step using the trained

model; however, the masked parts (where m = 1) are now
overwritten with the unedited ground truth, or the reference
M ref

t−1:

M edit
t−1 = (1−m)⊙M pred

t−1 +m⊙M ref
t−1. (6)

Here, M pred
t−1 ∼ pθ(M t−1|M edit

t , cedit) is a predicted de-
noised sample by the model with a new condition cedit (note
M edit

T := M ref
T ).

Experiments
Datasets
In the experiments, we train and evaluate our model on the
following datasets. Detailed preprocessing is described in
Appendix A.

1. HumanML3DSMPL (Guo et al. 2022) is a recently pro-
posed large motion-text pair dataset containing 44,970
full-sentence text descriptions for 14,616 motions from
AMASS (Mahmood et al. 2019) and HumanAct12 (Guo
et al. 2020). We use SMPL motion data from AMASS
directly for the annotation set.

2. BABEL (Punnakkal et al. 2021) provides a language
description for AMASS. We use 63,353 frame-level an-
notations to precisely represent the semantics of motion.
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Figure 4: Quantitative results with different numbers of re-
duced sampling steps. The same trained model with T =
1000 diffusion time-steps is used.

3. KIT (Plappert, Mandery, and Asfour 2016) consists
of 3,911 motion sequences paired with 6,353 textual de-
scriptions. We follow the evaluation protocol used by
TEMOS (Petrovich, Black, and Varol 2022).

Motion Representation

HumanML3DSMPL and BABEL To represent motion, we
use the coordinates of the root joint rroot ∈ R3 and the
rotations of 24 SMPL-joints (Loper et al. 2015) with re-
spect to their parent joints. We use the SMPL pose param-
eters directly, instead of employing a customized skeleton
for simplicity and compatibility. We adopt 6D representa-
tion (Zhou et al. 2019) to describe rotations rather than
the axis-angle format. In total, a single pose p is repre-
sented with a 147-dimensional vector p ∈ R147=3+24×6,
and motion is represented with a sequence of pose vectors
M = [p1,p2, · · · ,pLmo

] ∈ RLmo×147.
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R-Precision ↑
Self-Attn ML Token X-Attn PLM Freeze mCLIP ↑ FD ↓ MID ↑ Top-1 Top-2 Top-3

✓ 0.239 60.142 20.980 0.405 0.445 0.460
✓ ✓ 0.239 59.254 21.301 0.410 0.441 0.465
✓ ✓ ✓ 0.290 27.157 29.010 0.439 0.580 0.654
✓ ✓ ✓ ✓ 0.297 21.152 29.935 0.513 0.673 0.749

Table 4: Ablation study on four components of FLAME on the HumanML3D.

Sampling Steps 5 25 50 100 500 1,000
Time Elapsed (s) 0.72 1.31 2.17 3.70 16.66 32.81

Table 5: Elapsed time for sampling a motion. Performance
is recorded on a single NVIDIA’s Tesla V100 SXM2 32GB
machine.

KIT For consistency with the prior work, we follow the
motion representation used by TEMOS on the KIT dataset.
The human pose is encoded with a 64-dimensional feature
vector p ∈ R64 composed of coordinates for 20 joints, an
angle between the local and global coordinate system, and
translation.

Evaluation Metrics
APE and AVE The Average Position Error (APE) mea-
sures the mean positional difference for a generated motion
against the ground-truth motion, and the Average Variance
Error (AVE) measures the difference of variances between
the generated and ground-truth motion. Ahuja and Morency
(2019), Ghosh et al. (2021), and Petrovich, Black, and Varol
(2022) used the APE and AVE as quantitative metrics for
text-to-motion task evaluation on the KIT dataset (see Ap-
pendix C for the details).

Feature Extractor Although APE and AVE are used in
the previous work, the metrics have a limitation in that they
only rely on the joint values of the reference motion in-
stead of high-level semantics. This problem has been com-
plemented by using CLIP (Radford et al. 2021) score or FID
in image-text domain. In a similar vein, we separately train
a motion and text encoder in a contrastive manner using In-
foNCE loss (Oord, Li, and Vinyals 2018). This model is
used to compute motion-text alignment (mCLIP), Fréchet
distance (FD), mutual information divergence (MID) (Kim
et al. 2022a), and R-Precision.

Motion CLIP Score (mCLIP) Motion CLIP score
(mCLIP) computes motion-text alignment by computing the
cosine similarity between motion and text embeddings from
the separately trained motion CLIP model and denote the
similarity as mCLIP.

Fréchet Distance (FD) FID (Heusel et al. 2017) has been
used in the image generation domain combined with the In-
ception model (Szegedy et al. 2016) to measure the distance
between the real and generated image feature vectors. We
use the same concept in this work by replacing image fea-
ture vectors with motion feature vectors.

Reference motion

Editing prompt: “a person waves his left hand.”

Editing prompt: “a person waves his right hand.”

Editing prompt:
“a person waves both his hands over his head.”

Figure 5: Qualitative results on text-based motion editing.
FLAME edits reference motion with given prompts. The
model is allowed to edit from both shoulders to hands in
this motion. Motion flows from left to right.

Mutual Information Divergence (MID) Similar to
mCLIP, the metric measures the alignment between differ-
ent modalities, but it measures the alignment based on cross-
mutual information instead of cosine similarity. MID (Kim
et al. 2022b) is recently proposed as a unified metric to eval-
uate multimodal generative models.

R-Precision R-precision is a metric to measure the align-
ment between the generated motion and prompt, proposed
by Guo et al. (2022). During sampling, it generates 32 tex-
tual descriptions composed of one ground truth and ran-
domly sampled 31 texts from the test annotation pool. R-
precision counts the average retrieval accuracy by ranking
the motion feature and text feature by Euclidean distance.

Training Details
Our FLAME model uses 1,000 diffusion time steps to learn
the reverse process with cosine beta scheduling (Nichol and
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Reference motion

Prediction without prompt

Prediction with prompt: “a person raises both hands.”

Time

Time

Reference motion

In-betweening without prompt

In-betweening with prompt:
“a person does jumping jacks.”

Figure 6: Application of FLAME on motion prediction and
motion in-betweening. Green poses are conditioning frames.

Dhariwal 2021). AdamW (Loshchilov and Hutter 2017) is
used for experiments with learning rate of 0.0001 and weight
decay of 0.0001. For classifier-free guidance, 25% of texts
are replaced with empty strings during training, and the clas-
sifier guidance scale of 8.0 is used for sampling. FLAME
is backed by 8 transformer decoder layers with 8 heads,
2,048 feedforward dimensions, and 768 embedding dimen-
sions (Demb) for both motion and text features (total 64M
trainable parameters, see Appendix D for the details). We
train the FLAME model using 4 × NVIDIA Tesla V100
SXM2 32GB for 600K steps on the HumanML3D, 1M steps
on the BABEL, and 200K steps on the KIT dataset.

Quantitative Results on Text-to-Motion
We compare our method to four state-of-the-art models: Lin
et al. (2018), Language2Pose (Ahuja and Morency 2019),
Ghosh et al. (2021), TEMOS (Petrovich, Black, and Varol
2022), and Guo et al. (2022). In case of comparing mod-
els using PLM, we replace the PLM with the same model,
RoBERTa, to prevent the selection of PLM from influenc-
ing the benchmark. Table 1 and Table 2 present the bench-
mark results on the three datasets. For fair comparison on
KIT dataset, we evaluate our model on the same pipeline
used in TEMOS. FLAME outperforms other models on all

metrics except for the variance metrics in Table 2. However,
large variance in motion does not necessarily mean low qual-
ity, for example, a prompt “a person dribbles a ball.” can
correspond to a diverse set of motions rather than a single
corresponding ground-truth motion. To validate this, we fur-
ther compare generated motions on three metrics. First, we
sample 10 motions per text annotation in the test set, then
we average the variance of joints for the 10 generated mo-
tions (Joint Variance). Multimodality of motion (Guo et al.
(2020)) is employed to measure the diversity of generated
motions. We also compute the average mCLIP score to sup-
port that generated motions are not only diverse but also
well-aligned to the prompt. Table 3 summarizes the results.
All reported metrics are averaged after three trials.

Ablation Study
An ablation study is conducted to validate the four com-
ponents in our proposed architecture: self-attention block,
motion length token, cross-attention block, and freezing of
the language model. We start our model from transformer
encoder architecture, which uses self-attention only. Next,
we add a motion length token to input tokens to explicitly
feed the model the number of frames to be generated. On
top of these, we employ the cross-attention mechanism, us-
ing the transformer decoder architecture. To make the cross-
attention context more expressive, we include the first 20 to-
kens from the PLM output along with the CLS token output.
Lastly, we freeze the PLM during the training stage, which
results in considerable improvement in performance. These
are provided in Table 4.

One of the major drawbacks of diffusion-based models is
the slow sampling speed. As provided in Table 5, sampling
using 1,000 diffusion steps takes more than 30 seconds per
sample, which hinders its use in practical application. To im-
prove sampling speed, we reduced sampling steps from the
same trained model and empirically observed the reduced
sampling steps can maintain sample quality unless the diffu-
sion step is extremely reduced (Figure 4).

Application on Other Motion Tasks
The proposed motion editing method can be extended to
other motion tasks: motion prediction and in-betweening.
Unlike most previous task-specific methods, FLAME can
perform various motion tasks due to its flexible conditional
generation capability (Figure 6).

Conclusion
In this study, we explored a unified model to perform text-to-
motion generation and text-based motion editing. To achieve
the objective, we proposed a diffusion-based motion gen-
erative model FLAME, which is distinguished from previ-
ous work in terms of sample quality and flexibility in con-
ditional generations. We expect our proposed model can
greatly streamline the laborious motion generation process
and lower the barrier to 3D motion synthesis. In the future,
we would like to improve the sampling strategy to enable
real-time application and make use of features learned in
other domains such as the image-vision domain.
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