
CertiFair: A Framework for Certified Global Fairness of Neural Networks

Haitham Khedr, Yasser Shoukry
University of California, Irvine
{hkhedr, yshoukry}@uci.edu

Abstract
We consider the problem of whether a Neural Network (NN)
model satisfies global individual fairness. Individual Fairness
(defined in (Dwork et al. 2012)) suggests that similar indi-
viduals with respect to a certain task are to be treated simi-
larly by the decision model. In this work, we have two main
objectives. The first is to construct a verifier which checks
whether the fairness property holds for a given NN in a clas-
sification task or provides a counterexample if it is violated,
i.e., the model is fair if all similar individuals are classified
the same, and unfair if a pair of similar individuals are clas-
sified differently. To that end, we construct a sound and com-
plete verifier that verifies global individual fairness properties
of ReLU NN classifiers using distance-based similarity met-
rics. The second objective of this paper is to provide a method
for training provably fair NN classifiers from unfair (biased)
data. We propose a fairness loss that can be used during train-
ing to enforce fair outcomes for similar individuals. We then
provide provable bounds on the fairness of the resulting NN.
We run experiments on commonly used fairness datasets that
are publicly available and we show that global individual fair-
ness can be improved by 96 % without a significant drop in
test accuracy.

1 Introduction
Neural Networks (NNs) have become an increasingly cen-
tral component of modern decision-making systems, in-
cluding those that are used in sensitive/legal domains such
as crime prediction (Brennan, Dieterich, and Ehret 2009),
credit assessment (Dua and Graff 2017), income predic-
tion (Dua and Graff 2017), and hiring decisions. However,
studies have shown that these systems are prone to biases
(Mehrabi et al. 2021b) that deem their usage unfair to un-
privileged users based on their age, race, or gender. The bias
is usually either inherent in the training data or introduced
during the training process. Mitigating algorithmic bias has
been studied in the literature (Zhang, Lemoine, and Mitchell
2018; Xu et al. 2018; Mehrabi et al. 2021a) in the context of
group and individual fairness. However, the fairness of the
NN is considered only empirically on the test data with the
hope that it represents the underlying data distribution.

Unlike the empirical techniques for fairness, we are inter-
ested to provide provable certificates regarding the fairness

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of a NN classifier. In particular, we focus on the “global
individual fairness” property which states that a NN clas-
sification model is globally individually fair if all similar
pairs of inputs x, x′ are assigned the same class. We use a
feature-wise closeness metric instead of an ℓp norm to eval-
uate similarity between individuals, i.e, a pair x, x′ is sim-
ilar if for all features i, |xi − x′

i| ≤ δi. Given this fairness
notion, the objective of this paper is twofold. First, it aims
to provide a sound and complete formal verification frame-
work that can automatically certify whether a NN satisfies
the fairness property or produces a concrete counterexam-
ple showing two inputs that are not treated fairly by the NN.
Second, this paper provides a training procedure for certified
fair training of NNs even when the training data is biased.

Challenge: Several existing techniques focus on gener-
alizing ideas from adversarial robustness to reason about
NN fairness (Yurochkin, Bower, and Sun 2020; Ruoss et al.
2020). By viewing unfairness as an adversarial noise that
can flip the output of a classifier, these techniques can cer-
tify the fairness of a NN locally, i.e., in the neighborhood
of a given individual input. In contrast, this paper focuses on
global fairness properties where the goal is to ensure that the
NN is fair with respect to all the similar inputs in its domain.
Such a fundamental difference precludes the use of existing
techniques from the literature on adversarial robustness and
calls for novel techniques that can provide provable fairness
guarantees.

This work: We introduce CertiFair, a framework for certi-
fied global fairness of NNs. This framework consists of two
components. First, a verifier that can prove whether the NN
satisfies the fairness property or produce a concrete coun-
terexample that violates the fairness property. This verifier
is motivated by the recent results in the “relational verifica-
tion” problem (Barthe, Crespo, and Kunz 2011) where the
goal is to verify hyperproperties that are defined over pairs
of program traces. Our approach is based on the observation
that the global individual fairness property (1) can be seen
as a hyperproperty and hence we can generalize the concept
of product programs to product NNs that accepts a pair of
inputs (x, x′), instead of a single input x, and generates two
independent outputs for each input. A global fairness prop-
erty for this product NN can then be verified using existing
NN verifiers. Moreover, inspired by methods in certified ro-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8237

bustness, we also propose a training procedure for certified
fairness of NNs. Thanks again to the product NN, mentioned
above, one can establish upper bounds on fairness and use it
as a regularizer during the training of NNs. Such a regular-
izer will promote the fairness of the resulting model, even
if the data used for training is biased and can lead to an un-
fair classifier. While such fairness regularizer will enhance
the fairness of the model, one needs to check if the fairness
property holds globally using the sound and complete veri-
fier mentioned above.

Contributions: Our main contributions are:
• We present a sound and complete NN verifier for global

individual fairness properties.
• A method for training NN classifiers with a modified loss

that enforces fair outcomes for similar individuals. We
provide bounds on the loss in fairness which constructs a
certificate on the fairness of the trained NN.

• We applied our framework to common fairness datasets
and we show that global fairness can be achieved with a
minimal loss in performance.

2 Preliminaries
Our framework supports regression and multi-class classifi-
cation models, however for simplicity, we only present our
framework for binary classification models h : Rn → {0, 1}
of the form h(x) = t(fθ(x)) where t is a threshold function
with threshold equals to 0.5. Moreover, we assume fθ is an
L-layer NN with ReLU hidden activations and parameters
θ = ((W1, b1), . . . , (WL, bL)) where (Wi, bi) denotes the
weights and bias of the ith layer. We also assume the acti-
vation function of the last layer of fθ is a sigmoid function.
The NN accepts an input vector x where the components
xi ∈ R (the set of real numbers) or xi ∈ Z (the set of inte-
ger numbers). This is suitable for most datasets where some
features of the input are numerical while others are categori-
cal1. In this paper, we are interested in the following fairness
property:
Definition 2.1 (Global Individual Fairness (Dwork et al.
2012; John, Vijaykeerthy, and Saha 2020)). A model fθ(x)
is said to satisfy the global individual fairness property ϕ if
the following holds:
∀x, x′ ∈ Dϕ s.t. d(x, x′) = 1 =⇒ h(fθ(x)) = h(fθ(x

′))
(1)

where d : Rn × Rn → {1, 0} is a similarity metric that
evaluates to 1 when x and x′ are similar and Dϕ is the input
domain of x for property ϕ defined as Dϕ := D0

ϕ × ... ×
Dn−1

ϕ with Di
ϕ := {xi | li ≤ xi ≤ ui} for some bounds li

and ui.
In this paper, we utilize the feature-wise similarity metric

d defined as:

d(x, x′) =

{
1 if |xi − x′

i| ≤ δi ∀i ∈ {1, . . . n}
0 otherwise

(2)

1More specifically, categorical inputs are one-hot encoded and
our framework splits the input space into partitions, each with a
constant value of the one-hot encoded vector. More details are ex-
plained in Section 5).

This feature-wise similarity metric allows the fairness prop-
erty ϕ in (1) to capture several other fairness properties as
special cases as follows:
Definition 2.2 (Individual discrimination (Aggarwal et al.
2019)). A model fθ(x) is said to be nondiscriminatory be-
tween individuals if the following holds:

∀x = (xs, xns), x
′ = (x′

s, x
′
ns) ∈ Dϕ

s.t. xns = x′
ns and xs ̸= x′

s =⇒ h(fθ(x)) = h(fθ(x
′)),

where xs and xns denotes the sensitive attributes and non-
sensitive attributes of x, respectively.

Indeed, the individual discrimination corresponds to a
global individual fairness property by setting δi = 0 in (2)
for the non-sensitive attributes and δi = ui − li for sensi-
tive attributes. Another definition of fairness (Ruoss et al.
2020) states that two individuals are similar if their numer-
ical features differ by no more than α. Again, this can be
represented by the closeness metric simply by setting δi = 0
for categorical attributes and δi = α for numerical attributes.

Based on Definition 2.1, we can formally verify whether
the fairness property ϕ holds by checking if the set of coun-
terexamples (or violations) C is empty, where C is:

C=

{
(x, x′)

∣∣∣x, x′ ∈ Dϕ,
n−1∧
i=0

|xi − x′
i| < δi, h(x) ̸= h(x′)

}
.

(3)

3 Global Individual Fairness as a
Hyperproperty

In this section, we draw the connection between the veri-
fication of global individual fairness properties (1) and hy-
perproperties in the context of program verification. On the
one hand, several local properties of NNs (e.g., adversarial
robustness) are considered trace properties, i.e., properties
defined on the input-output behavior of the NN. In this case,
one can search the input space of the NN to find a single
input (or counterexample) that leads to an output that vio-
lates the property. In the domain of adversarial robustness,
a counterexample corresponds to a disturbance to an input
that can change the classification output of a NN. On the
other hand, other properties, like the global fairness proper-
ties, can not be modeled as trace properties. This stems from
the fact that one can not judge the correctness of the NN by
considering individual inputs to the NN. Instead, finding a
counterexample to the fairness property will entail search-
ing over pairs of inputs and comparing the NN outputs of
these inputs. Properties that require examining pairs or sets
of traces (input-outputs of a program) are defined as hyper-
properties (Barthe, Crespo, and Kunz 2011).

Modeling global individual fairness as a hyperproperty
leads to a direct certification framework. In particular, a key
idea in the hyperproperty verification literature is the notion
of a product program that allows the reduction of the hyper-
property verification problem to a standard verification prob-
lem (Barthe, Crespo, and Kunz 2011). A product program is
constructed by composing two copies of the original pro-
gram together. The main benefit is that the hyperproperties

8238

Figure 1: Construction of the Product NN.

of the original program become trace properties of the prod-
uct program that can be verified using standard techniques.
Motivated by this observation, our framework CertiFair gen-
eralizes the concept of product programs into product NNs
(described in detail in Section 4.2 and shown in Figure 1)
that accepts a pair of inputs and generates a pair of two inde-
pendent outputs. We then use the product network to verify
fairness (hyper)properties using standard techniques.

4 CertiFair: A Framework for Certified
Fairness of Neural Networks

As mentioned earlier in section 3, the fairness property can
be viewed as a hyperproperty of the NN. We propose the
use of a product NN that can reduce the verification of such
hyperproperty into standard trace (input/output) property. In
this section, we first explain how to construct the product
NN followed by how to use it to encode the fairness verifi-
cation problem into ones that are accepted by off-the-shelf
NN verifiers. Next, we discuss how to use this product NN to
derive a fairness regualrizer that can be used during training
to obtain a certified fair NN.

4.1 Product Neural Network
Given a neural network fθ, the product network fθp is basi-
cally a side-to-side composition of fθ with itself. More for-
mally, the parameters vector θp of the product NN is defined
as:

θp =

(([
W1 0
0 W1

]
,

[
b1
b1

])
, . . . ,

([
WL 0
0 WL

]
,

[
bL
bL

]))
where (Wi, bi) are the weights and biases of the ith layer
of fθ. The input to the product network fθp is a pair of
concatenated inputs xp = (x, x′). Finally, we add an out-
put layer that results in an output hp ∈ {0, 1} defined as:
hp(xp) = |h(fθ(x)) − h(fθ(x

′))| where the absolute value
operator |.| can be implemented using ReLU nodes by notic-
ing that |a| = max(a, 0) + max(−a, 0). Figure 1 summa-
rizes this construction.

4.2 Fairness Verification
Using the product network defined above, we can rewrite the
set of counterexamples C in (3) as:

Cp =

{
xp

∣∣∣xp ∈ Dϕ ×Dϕ,
n−1∧
i=0

|xi − x′
i| < δi, hp(xp) > 0

}
(4)

which corresponds to the standard verification of NN input-
output properties (Liu et al. 2021), albeit being defined over
the product network inputs and outputs.

To check the emptiness of the set Cp in (4) (and hence
certify the global individual fairness property), we need to
search the space Dϕ ×Dϕ to find at least one counterexam-
ple that violates the fairness property, i.e., a pair xp = (x, x′)
that represent similar individuals who are classified differ-
ently by the NN. Finding such a counterexample is, in gen-
eral, NP-hard (Katz et al. 2017) due to the non-convexity of
the ReLU NN fθp . To that end, we use PeregriNN (Khedr,
Ferlez, and Shoukry 2021) as our NN verifier. Briefly, Pere-
griNN overapproximates the highly non-convex NN with
a linear convex relaxation for each ReLU activation. This
is done by introducing two optimization variables for each
ReLU, a pre-activation variable ŷ and a post-activation vari-
able y. The non-convex ReLU function can then be over-
approximated by a triangular region of three constraints;
y ≥ 0, y ≥ ŷ, and y ≤ u

u−l (ŷ − l), where l,u are the lower
and upper bounds of ŷ respectively. The solver tries to check
whether the approximate problem has no solution or itera-
tively refines the NN approximation until a counterexample
that violates the fairness constraint is found. PeregriNN em-
ploys other optimizations in the objective function to guide
the refinement of the NN approximation but the details of
these methods are beyond the scope of this paper. We refer
the reader to the original paper (Khedr, Ferlez, and Shoukry
2021) for more details on the internals of the solver.

Proposition 4.1. Consider a NN model fθ and a fairness
property ϕ—either representing a Global Individual Fair-
ness property (Definition 2.1) or an Individual Discrimina-
tion property (Definition 2.2). Consider a set of counterex-
amples Cp computed using a NN verifier applied to the prod-
uct network fθp . The NN satisfies the property ϕ whenever
the set Cp is empty.

Proof. This result follows directly from the equivalence be-
tween the sets C in (3) and Cp in (4) along with the NN ver-
ifiers (like PeregriNN) being sound and complete and hence
capable of finding any counterexample if one exists.

4.3 Certified Fair Training
In this section, we formalize a fairness regularizer that can
be used to train certified fair models. In particular, we pro-
pose two fairness regularizers that correspond to local and
global individual fairness. We provide the formal definitions
of both these regularizers below and their characteristics.

Local Fairness Regularizer Ll
f using Robustness around

Training Data: Our first proposed regularizer is moti-
vated by the robustness regularizers used in the literature
of certified robustness (Wong and Kolter 2018; Zhang et al.
2019). The regularizer, denoted by Ll

f , aims to minimize the
average loss in fairness across all training data. More for-
mally, given a training point (x, y) and NN parameters θ, let
L(fθ(x), y; θ) = −[y log(fθ(x)) + (1− y) log(1− fθ(x))]
be the standard binary cross-entropy loss. The fairness reg-
ularizer Ll

f can then be defined as:

8239

Ll
f (θ) = E

(x,y)∈(X,Y)

 max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ)

 (5)

In other words, the regularizer above aims to measure the
expected value (across the training data) for the worst-case
loss of fairness due to points x′ that are assigned to different
classes. Indeed, the regularizer (5) is not differentiable (with
respect to the weights θ) due to the existence of the max op-
erator. Nevertheless, one can compute an upper bound of (5)
and aims to minimize this upper bound instead. Such upper
bound can be derived as follows:

max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ) = max
x′∈Dϕ

d(x,x′)=1

{
− log(1− fθ(x

′)) if y=0

− log(fθ(x
′)) if y=1

≤

{
− log(1− θTwSϕ(x)) if y=0

− log(θTwSϕ(x)
) if y=1

(6)

where θTwSϕ(x) and θTwSϕ
are the linear upper/lower

bound of fθ(x
′) inside the set Sϕ(x) = {x′ ∈

Dϕ|d(x, x′) = 1}. Such linear upper/lower bound of fθ(x′)
can be computed using off-the-shelf bounding techniques
like Symbolic Interval Analysis (Wang et al. 2018a) and α-
Crown (Xu et al. 2020). We denote by L(y; θ) the right hand
side of the inequality in (6) which depends only on the la-
bel y and the NN parameters θ. Now the fairness property
can be incorporated into training by optimizing the follow-
ing problem over θ (the NN parameters):

minθ E(x,y)∈(X,Y)

(1− λf)L(fθ(x), y; θ)︸ ︷︷ ︸
natural loss

+λf L(y; θ)︸ ︷︷ ︸
local

fairness loss

 , (7)

where λf is a regularization parameter to control the trade-
off between fairness and accuracy.

Although easy to compute and incorporate in training, the
regularizer Ll

f (θ) (and its upper bound) defined above suf-
fers from a significant drawback. It focuses on the fairness
around the samples presented in the training data. In other
words, although the aim was to promote global fairness, this
regularizer is effectively penalizing the training only in the
local neighborhood of the training data. Therefore, its effec-
tiveness depends greatly on the quality of the training data
and its distribution. Poor data distribution may lead to the
poor effect of this regularizer. Next, we introduce another
regularizer that avoids such problems.

Global Fairness Regularizer Lg
f using Product Network:

To avoid the dependency on data, we introduce a novel fair-
ness regularizer capable of capturing global fairness during
the training. Such a regularizer is made possible thanks to
the product NN defined above. In particular, the global fair-
ness regularizer Lg

f (θ) is defined as:

Lg
f (θ) = max

(x,x′)∈Dϕ×Dϕ

d(x,x′)=1

|fθ(x)− fθ(x
′)| (8)

In other words, the regularizer Lg
f (θ) in (8) aims to penal-

ize the worst case loss in global fairness. Similar to (5), the
Lg
f (θ) is also non-differentiable with respect to θ. Neverthe-

less, thanks to the product NN, it can be bounded as:

Lg
f (θ) ≤ max

(x,x′)∈Dϕ×Dϕ

|fθ(x)− fθ(x
′)|

= max
xp∈Dϕ×Dϕ

fp(xp) ≤ θTwDϕ

(9)

where θTwDϕ
is the linear upper bound of the product net-

work among the domain Dϕ × Dϕ. Again, such bound can
be computed using Symbolic Interval Analysis or α-Crown
on the product network after replacing the output hp with
fp = |fθ(x) − fθ(x

′)|. It is crucial to note that the upper
bound in (9) depends only on the domain Dϕ. Hence, the
fairness property can now be incorporated into training by
minimizing this upper bound as:

min
θ

E
(x,y)∈(X,y)

(1− λf)L(fθ(x), y; θ)︸ ︷︷ ︸
natural

loss

+ λf θTwDϕ︸ ︷︷ ︸
global

fairness loss

,

(10)
where the fairness loss is now outside the E[.] operator.
In the next section, we show that the global fairness regu-

larizer Lg
f (θ) empirically outperforms the local fairness reg-

ularizer Ll
f (θ). We end up our discussion in this section with

the following result:

Proposition 4.2. Consider a NN model fθ and a fairness
property ϕ—either representing a Global Individual Fair-
ness property (Definition 2.1) or an Individual Discrimi-
nation property (Definition 2.2). Consider a NN model fθ
trained using the objective function in (10). If θTwDϕ

= 0
by the end of the training, then the resulting fθ is guaranteed
to satisfy ϕ.

Proof. The result follows directly from equation (9).

Indeed, the result above is just a sufficient condition. In
other words, the NN may still satisfy the fairness property ϕ
even if θTwDϕ

> 0. Such cases can be handled by applying
the verification procedure in Section 4.2 after training.

5 Experimental Evaluation
We present an experimental evaluation to study the effect of
our proposed fairness regularizers and hyperparameters on
global fairness. We evaluated CertiFair on four widely in-
vestigated fairness datasets (Adult (Dua and Graff 2017),
German (Dua and Graff 2017), Compas (Angwin et al.
2016), and Law School (Wightman 1998)). All datasets were
pre-processed such that any missing rows or columns were
dropped, features were scaled so that they are between [0, 1],
and categorical features were one-hot encoded.

Implementation: We implemented our framework in a
Python tool called CertiFair that can be used for training and
verification of NNs against an individual fairness property.
CertiFair uses Pytorch (Paszke et al. 2019) for NN training
and PeregriNN as a NN verifier. We run all our experiments

8240

δi 0.03 0.05 0.07 0.1
Certified Local Fairness 100.00 81.42 100.00 99.95
Certified Global Fairness 65.98 6.40 57.39 66.35

Table 1: Comparison between local and global fairness on
the Adult dataset for different networks and similarity con-
straints (distance δi). The training was done using the local
fairness regularizer.

using a single GeForce RTX 2080 Ti GPU and two 24-
core Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (only
8 cores were used for these experiments).

Measuring global fairness using verification: While the
verifier is capable of finding concrete counterexamples that
violate the fairness, it is also important to quantify a bound
on the fairness. In these experiments, the certified global
fairness is quantified as the percentage of partitions of the
input space with zero counterexamples. In particular, the in-
put space is partitioned using the categorical features, i.e.,
the number of partitions is equal to the number of different
categorical assignments and each partition corresponds to
one categorical assignment. Note that the numerical features
don’t have to be fixed inside each partition (property depen-
dent). To verify the property globally, we run the verifier on
each partition of the input space and verify the fairness prop-
erty. Finally, we count the number of verified fair partitions
(normalized by the total number of partitions). We would
like to note that partitioning the input space can be a bottle-
neck for verification for large domains due to the exponential
number of partitions. Our experiments (Appendix D2) show
that for the most commonly used datasets, our framework is
able to train and certify networks in a very reasonable time.

Fairness properties: In the experimental evaluation, we
consider two classes of fairness properties. The first class P1

is the one in definition 2.2 where two individuals are simi-
lar if they only differ in their sensitive attribute. The second
class of properties P2 relaxes the first by also allowing nu-
merical attributes to be close (not identical), this is allowed
under definition 2.1 of global individual fairness by setting
δi > 0 for numerical attributes. Complete formal definitions
of all the properties for the four datasets (full description in
Appendix B2) is provided in Appendix C2.

5.1 Experiment 1: Global Individual Fairness vs.
Local Individual Fairness

In this experiment, we empirically show that NNs with high
local individual fairness do not necessarily result in NNs
with global individual fairness. In particular, we train sev-
eral different NNs on the Adult dataset and considered mul-
tiple fairness properties (all from class P2 defined above) by
varying δi. Note that δi is equal for all features i within the
same property, but is different from one property to another.
Next, we use PeregeriNN verifier to find counterexamples
for both the local fairness (by applying the verifier to the
trained NN) and the global fairness (by applying the veri-
fier to the product NN). We measure the fairness of the NN

2Extended version at https://arxiv.org/abs/2205.09927

for both cases and report the results in Table 1. The results
indicate that verifying local fairness may result in incorrect
conclusions about the fairness of the model. In particular,
rows 2 and 4 in the table show that counterexamples were
not found in the neighborhood of the training data (reflected
by the 100% certified local fairness), yet verifying the prod-
uct NN was capable of finding counterexamples that are far
from the training data leading to accurate conclusions about
the NN fairness.

5.2 Experiment 2: Effects of Incorporating the
Fairness Regularizer

We investigate the effect of using the global fairness regu-
larizer (defined in (9)) on the decisions of the NN classi-
fier when trained on the Adult dataset. The fairness prop-
erty for this experiment is of class P1. To investigate the
predictor’s bias, we first project the data points on two nu-
merical features (age and hours/week). Our objective is to
check whether the points that are classified positively for
the privileged group are also classified positively for the
non-privileged group. Figure 2 (left) shows the predictions
for the unprivileged group when using the base classifier
(λf = 0). Green markers indicate points for which indi-
viduals from both privileged and non-privileged groups are
treated equally. The red markers show individuals from the
non-privileged group that did not receive the same NN out-
put compared to the corresponding identical ones in the priv-
ileged group. Figure 2 (right) shows the same predictions
but using the fair classifier (λf = 0.03), the predictions
from this classifier drastically decreased the discrimination
between the two groups while only decreasing the accuracy
by 2%. These results suggest that we can indeed regularize
the training to improve the satisfaction of the fairness con-
straint without a drastic change in performance.

We also investigate how the certified fairness changes
across epochs of training. To that end, we train a NN for
the Adult dataset and evaluate the test accuracy as well as
the certified global fairness after each epoch of training for
two different values of λf . Figure 3 shows the underlying
trade-off between achieving fairness versus maximizing ac-
curacy. As expected, lower values of λf result in a lower
loss in accuracy while having a lower effect on fairness. The
results also show that a small sacrifice of the accuracy can
lead to a significant enhancement of the fairness as shown
for the λf = 0.007 case.

5.3 Experiment 3: Certified Fair Training
Experiment setup: The objective of this experiment is to
compare the two regularizers, the local fairness regularizer
in (6) and the global fairness regularizer in (9). To that end,
we performed a grid search over the learning rate α, the fair-
ness regularization parameter λf , and the NN architecture to
get the best test accuracy across all datasets. The best perfor-
mance was obtained with a NN that consists of two hidden
layers of 20 neurons (except for the German dataset, where
we use 30 neurons per layer), learning rate α = 0.001,
global fairness regularization parameter λf equal to 0.01
for Adult and Law School, 0.005 for German, and 0.1 for

8241

Figure 2: Comparison between the base and CertiFair classifiers in terms of fairness as defined in 2.2. We show the classifica-
tions for the minority group of the adult dataset projected on two features; Age and hours worked per week. The figure shows
that the base classifier suffers from biases against identical individuals who are of a different race (red markers). CertiFair is
able to drastically improve the individual fairness on this dataset with only 2% reduction in accuracy.

Figure 3: Test accuracy (left) and certified fairness (right) across training epochs when training a NN with the fairness constraint
(λf = 0.003, λf = 0.007) and without it (λf = 0) on the Adult dataset.

Compas dataset, and local fairness regularization parameter
λf equal to 0.95 for Adult, 0.9 for Compas, 0.2 for Ger-
man, and 0.5 for Law School. We trained the models for
50 epochs with a batch size of 256 (except for Law School,
where the batch size is set to 1024) and used Adam Op-
timizer for learning the NN parameters θ. All the datasets
were split into 70% and 30% for training and testing. Addi-
tional experiments (Appendix D.22) compares the proposed
regularizers with LCIFR.

Effect of the choice of the fairness regularizer: We in-
vestigate the certified global fairness for the two regularizers
introduced in Section 4.3. Table 2 summarizes the results for
P1 and P2 fairness properties (defined in details in Appendix
C2) across different datasets. For each property and dataset,
we compare the test accuracy, positivity rate (percentage of
points classified as 1), and the certified global fairness of
the base classifier (trained with λf = 0) and the CertiFair
classifier trained twice with two different fairness regular-
izers Ll

f and Lg
f . Compared to the base classifier, training

the NN with the global fairness regularizer Lg
f significantly

increases the certified global fairness with a small drop in
the accuracy in most of the cases except for the Law School
dataset, where the test accuracy dropped by 7 % on P2 but
the global fairness increased by 45 %. Compared to the local
regularizer Ll

f , the global regularizer achieves higher global

fairness and comparable (if not better) test accuracy on all
datasets except Law School. We think that this might be
due to the network’s limited capacity to optimize both ob-
jectives. We also report the positivity rate (number of data
points classified positively) for the classifiers. This metric
is important because most of these datasets are unbalanced,
and hence the classifiers can trivially skew all the classifica-
tions to a single label and achieve high fairness percentage.
Thus it is desired that the positivity rate of the CertiFair clas-
sifier to be close to the one of the base classifier to ensure
that it is not trivial. Lastly, we conclude that even though the
local regularizer improves the global fairness, the global reg-
ularizer can achieve higher degrees of certified global fair-
ness without a significant decrease in test accuracy, and of
course, it avoids the drawbacks of the local regularizer dis-
cussed in Section 4.3.

Effect of the fairness regularization parameter: In this
experiment, we investigate the effect of the fairness regular-
ization parameter λf on the classifier’s accuracy and fair-
ness. The parameter λf controls the trade-off between the
accuracy of the classifier and its fairness, and tuning this pa-
rameter is usually dependent on the network/dataset. To that
end, we trained a two-layer NN with 30 neurons per layer for
the German dataset using 8 different values for λf and sum-
marized the results in Table 3. The fairness property verified

8242

Constraint Dataset Test Accuracy (%) Positivity Rate(%) Certified
Global Fairness (%)

Base Lg
f Ll

f Base Lg
f Ll

f Base Lg
f Ll

f

P1

Adult 84.55 82.33 83.25 20.80 18.13 20.15 1.77 97.86 95.31
German 75.30 72.66 69.66 79.00 83.14 81.71 14.81 92.59 82.71
Compas 68.30 65.08 63.82 61.55 66.00 71.60 47.22 100.00 100.00
Law 87.60 84.90 86.69 21.42 17.50 21.63 34.16 70.10 86.45

P2

Adult 84.55 82.34 83.81 20.8 17.4 21.79 6.40 100.00 61.92
German 75.30 73.00 70.00 79.00 72.00 83.00 8.64 95.06 86.41
Compas 68.30 65.08 63.19 61.55 66.00 69.40 11.14 100.00 100.00
Law 87.60 79.92 78.69 21.51 9.10 25.03 6.87 51.87 78.54

Table 2: Comparison between a base classifier (λf = 0) and CertiFair classifier with different fairness regularizers.

λf Test accuracy (%) Certified global fairness (%)
1× 10−4 74.33 8.64
5× 10−4 74.33 14.81
5× 10−3 72.33 66.66
7× 10−3 72.66 82.71
1× 10−2 73.00 95.06
5× 10−2 66.33 100.00

Table 3: Effect of fairness regularization parameter λf on
the test accuracy and certified fairness.

is of class P2. The results show that the global fairness sat-
isfaction can increase without a significant drop in accuracy
up to a certain point, after which the fairness loss is domi-
nant and results in a significant decrease in the accuracy.

6 Related work
Group fairness: Group fairness considers notions like de-
mographic parity (Feldman et al. 2015), equality of odds,
and equality of opportunity (Hardt, Price, and Srebro 2016).
Tools that verify notions of group fairness assume knowl-
edge of a probabilistic model of the population. FairSquare
(Albarghouthi et al. 2017) relies on numerical integration
to formally verify notions of group fairness; however, it
does not scale well for NNs. VeriFair (Bastani, Zhang, and
Solar-Lezama 2019) considers probabilistic verification us-
ing sampling and provides soundness guarantees using con-
centration inequalities. This approach is scalable to big net-
works, but it does not provide worst-case proof.
Individual fairness: LCIFR (Ruoss et al. 2020) proposes
a technique to learn fair representations that are provably
certified. An encoder is empirically trained to map similar
individuals to be within the neighborhood of the given in-
dividual and then apply NN verification techniques to this
neighborhood to certify fairness. The property verified is a
local property with respect to the given individual. On the
contrary, our work focuses on the global fairness properties
of a NN. It also avoids the empirical training of similarity
maps to avoid affecting the soundness and completeness of
the proposed framework. In the context of individual global
fairness, a recent work (John, Vijaykeerthy, and Saha 2020)
proposed a sound but incomplete verifier for linear and ker-
nelized polynomial/radial basis function classifiers. It also
proposed a meta-algorithm for the global individual fairness

verification problem; however, it is not clear how it can be
used to design sound and complete NN verifiers for the fair-
ness properties. Another line of work (Urban et al. 2020)
focuses on proving dependency fairness properties which
is a more restrictive definition of fairness since it requires
the NN outputs to avoid any dependence on the sensitive at-
tributes. The method employs forward and backward static
analysis and input space partitioning to verify the fairness
property. This definition of fairness is different from the in-
dividual fairness we are considering in this work and is more
restrictive. DIF (Yurochkin and Sun 2021) considers an aver-
age case fairness which is unlike our work which considers
worst-case fairness guarantees. Lastly, a very recent work
(Benussi et al. 2022) considers a similar definition of global
individual fairness problem. However, the framework for-
mulates the problem using MILP which is known to suffer
from scalability issues. Moreover, it introduces a local reg-
ularizer that uses MILP for bounds computation. This reg-
ularizer, though powerful, is impractical due to scalability
issues. For example, a single layer network with 100 neu-
rons takes 9 hours to train. Unlike this work, Certifair intro-
duces a global regularizer that is data independent and uses
over-approximation techniques during verification which are
known to be far more scalable than MILP-based methods.
Appendix D.42 shows the execution time needed to train
models that are orders of magnitude larger than those in (Be-
nussi et al. 2022). The worst case is less than 20 minutes
which is orders of magnitudes better than the 9 hours needed
in (Benussi et al. 2022) albeit for much larger architectures.
NN verification: This work is algorithmically related to NN
verification in the context of adversarial robustness. How-
ever, robustness is a local property of a NN given an input,
and a norm bounded perturbation. Moreover, the robustness
property does not consider the notion of sensitive attributes.
The NN verification literature is extensive (Katz et al. 2019,
2017; Ehlers 2017; Lomuscio and Maganti 2017; Tjeng,
Xiao, and Tedrake 2019; Bastani et al. 2016; Bunel et al.
2020; Fischetti and Jo 2018; Anderson et al. 2020; Cheng,
Nührenberg, and Ruess 2017; Xiang, Tran, and Johnson
2017, 2018; Gehr et al. 2018; Wang et al. 2018b; Tran et al.
2020; Ivanov et al. 2019; Fazlyab et al. 2019; Wang et al.
2018a; Dvijotham et al. 2018; Wong and Kolter 2018; Hen-
riksen and Lomuscio 2021; Wang et al. 2021; Singh et al.
2019) and any of those verifiers can be modified to verify
fairness properties of the Product NN.

8243

Acknowledgments
The authors acknowledge funding from NSF Awards
#2002405 and #2139781.

References
Aggarwal, A.; Lohia, P.; Nagar, S.; Dey, K.; and Saha, D.
2019. Black Box Fairness Testing of Machine Learning
Models. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ES-
EC/FSE 2019, 625–635. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450355728.
Albarghouthi, A.; D’Antoni, L.; Drews, S.; and Nori, A. V.
2017. FairSquare: Probabilistic Verification of Program
Fairness. Proc. ACM Program. Lang., 1(OOPSLA).
Anderson, R.; Huchette, J.; Ma, W.; Tjandraatmadja, C.; and
Vielma, J. P. 2020. Strong mixed-integer programming for-
mulations for trained neural networks. Mathematical Pro-
gramming, 183(1): 3–39.
Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016.
How We Analyzed the COMPAS Recidivism Algorithm. ht
tps://www.propublica.org/article/how-we-analyzed-the-
compas-recidivism-algorithm. Accessed: 2022-05-01.
Barthe, G.; Crespo, J. M.; and Kunz, C. 2011. Relational
verification using product programs. In International Sym-
posium on Formal Methods, 200–214. Springer.
Bastani, O.; Ioannou, Y.; Lampropoulos, L.; Vytiniotis, D.;
Nori, A.; and Criminisi, A. 2016. Measuring Neural Net
Robustness with Constraints. In Advances in Neural Infor-
mation Processing Systems, volume 29, 2613–2621.
Bastani, O.; Zhang, X.; and Solar-Lezama, A. 2019. Prob-
abilistic verification of fairness properties via concentra-
tion. Proceedings of the ACM on Programming Languages,
3(OOPSLA): 1–27.
Benussi, E.; Patane, A.; Wicker, M.; Laurenti, L.; and
Kwiatkowska, M. 2022. Individual Fairness Guarantees for
Neural Networks. arXiv preprint arXiv:2205.05763.
Brennan, T.; Dieterich, W.; and Ehret, B. 2009. Evaluat-
ing the predictive validity of the COMPAS risk and needs
assessment system. Criminal Justice and behavior, 36(1):
21–40.
Bunel, R.; Lu, J.; Turkaslan, I.; Kohli, P.; Torr, P.; and
Mudigonda, P. 2020. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research, 21(42): 1–39.
Cheng, C.-H.; Nührenberg, G.; and Ruess, H. 2017. Maxi-
mum Resilience of Artificial Neural Networks. In D’Souza,
D.; and Narayan Kumar, K., eds., Automated Technology for
Verification and Analysis, 251–268. Springer.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. http://archive.ics.uci.edu/ml. Accessed: 2022-05-01.
Dvijotham, K.; Stanforth, R.; Gowal, S.; Mann, T. A.; and
Kohli, P. 2018. A Dual Approach to Scalable Verification
of Deep Networks. In Globerson, A.; and Silva, R., eds.,
Uncertainty in Artificial Intelligence, volume 1, 550–559.
ISBN 978-0-9966431-3-9.

Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012. Fairness through awareness. In Proceedings of the
3rd innovations in theoretical computer science conference,
214–226.
Ehlers, R. 2017. Formal verification of piece-wise linear
feed-forward neural networks. In D’Souza, D.; and Kumar,
K. N., eds., International Symposium on Automated Tech-
nology for Verification and Analysis, 269–286. Springer.
Fazlyab, M.; Robey, A.; Hassani, H.; Morari, M.; and Pap-
pas, G. 2019. Efficient and accurate estimation of lips-
chitz constants for deep neural networks. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 32, 11423–11434. Curran Asso-
ciates, Inc.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data
mining, 259–268.
Fischetti, M.; and Jo, J. 2018. Deep neural networks and
mixed integer linear optimization. Constraints, 23(3): 296–
309.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI2: Safety and ro-
bustness certification of neural networks with abstract inter-
pretation. In 2018 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of op-
portunity in supervised learning. Advances in neural infor-
mation processing systems, 29.
Henriksen, P.; and Lomuscio, A. 2021. DEEPSPLIT: An
Efficient Splitting Method for Neural Network Verification
via Indirect Effect Analysis. In IJCAI, 2549–2555.
Ivanov, R.; Weimer, J.; Alur, R.; Pappas, G. J.; and Lee, I.
2019. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Compu-
tation and Control, HSCC ’19, 169–178. New York, NY,
USA: Association for Computing Machinery.
John, P. G.; Vijaykeerthy, D.; and Saha, D. 2020. Verify-
ing individual fairness in machine learning models. In Con-
ference on Uncertainty in Artificial Intelligence, 749–758.
PMLR.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. In Majumdar, R.;
and Kunčak, V., eds., Computer Aided Verification, Lecture
Notes in Computer Science, 97–117. Springer International
Publishing. ISBN 978-3-319-63387-9.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus, C.;
Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljić, A.; et al.
2019. The marabou framework for verification and analy-
sis of deep neural networks. In Dillig, I.; and Tasiran, S.,
eds., Computer Aided Verification, 443–452. Springer Inter-
national Publishing.

8244

Khedr, H.; Ferlez, J.; and Shoukry, Y. 2021. PEREGRiNN:
Penalized-Relaxation Greedy Neural Network Verifier. In
Silva, A.; and Leino, K. R. M., eds., Computer Aided Veri-
fication, 287–300. Cham: Springer International Publishing.
ISBN 978-3-030-81685-8.
Liu, C.; Arnon, T.; Lazarus, C.; Strong, C.; Barrett, C.;
Kochenderfer, M. J.; et al. 2021. Algorithms for verifying
deep neural networks. Foundations and Trends® in Opti-
mization, 4(3-4): 244–404.
Lomuscio, A.; and Maganti, L. 2017. An approach to reach-
ability analysis for feed-forward ReLU neural networks.
arXiv:1706.07351.
Mehrabi, N.; Gupta, U.; Morstatter, F.; Steeg, G. V.; and Gal-
styan, A. 2021a. Attributing Fair Decisions with Attention
Interventions. arXiv preprint arXiv:2109.03952.
Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; and
Galstyan, A. 2021b. A survey on bias and fairness in ma-
chine learning. ACM Computing Surveys (CSUR), 54(6):
1–35.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024–8035. Curran As-
sociates, Inc.
Ruoss, A.; Balunovic, M.; Fischer, M.; and Vechev, M.
2020. Learning certified individually fair representations.
Advances in Neural Information Processing Systems, 33:
7584–7596.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019. An
abstract domain for certifying neural networks. Proceedings
of the ACM on Programming Languages, 3(POPL): 1–30.
Tjeng, V.; Xiao, K.; and Tedrake, R. 2019. Evaluating Ro-
bustness of Neural Networks with Mixed Integer Program-
ming. arXiv:1711.07356.
Tran, H.-D.; Yang, X.; Manzanas Lopez, D.; Musau, P.;
Nguyen, L. V.; Xiang, W.; Bak, S.; and Johnson, T. T. 2020.
NNV: The Neural Network Verification Tool for Deep Neu-
ral Networks and Learning-Enabled Cyber-Physical Sys-
tems. In Lahiri, S. K.; and Wang, C., eds., Computer Aided
Verification, 3–17. Springer International Publishing.
Urban, C.; Christakis, M.; Wüstholz, V.; and Zhang, F. 2020.
Perfectly Parallel Fairness Certification of Neural Networks.
Proc. ACM Program. Lang., 4(OOPSLA).
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient formal safety analysis of neural networks.
In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.;
Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 31, 6367–6377.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal security analysis of neural networks using
symbolic intervals. In Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, 1599–1614.
USENIX Association.

Wang, S.; Zhang, H.; Xu, K.; Lin, X.; Jana, S.; Hsieh, C.-
J.; and Kolter, J. Z. 2021. Beta-crown: Efficient bound
propagation with per-neuron split constraints for complete
and incomplete neural network verification. arXiv preprint
arXiv:2103.06624.
Wightman, L. F. 1998. LSAC national longitudinal bar pas-
sage study. Law School Admission Council.
Wong, E.; and Kolter, Z. 2018. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. In International conference on machine learning,
5286–5295. PMLR.
Xiang, W.; Tran, H.-D.; and Johnson, T. T. 2017. Reachable
Set Computation and Safety Verification for Neural Net-
works with ReLU Activations. arXiv:1712.08163.
Xiang, W.; Tran, H.-D.; and Johnson, T. T. 2018. Output
reachable set estimation and verification for multilayer neu-
ral networks. IEEE transactions on neural networks and
learning systems, 29(11): 5777–5783.
Xu, D.; Yuan, S.; Zhang, L.; and Wu, X. 2018. Fairgan:
Fairness-aware generative adversarial networks. In 2018
IEEE International Conference on Big Data (Big Data),
570–575. IEEE.
Xu, K.; Zhang, H.; Wang, S.; Wang, Y.; Jana, S.; Lin, X.; and
Hsieh, C.-J. 2020. Fast and complete: Enabling complete
neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824.
Yurochkin, M.; Bower, A.; and Sun, Y. 2020. Training indi-
vidually fair ML models with sensitive subspace robustness.
In International Conference on Learning Representations.
Yurochkin, M.; and Sun, Y. 2021. SenSeI: Sensitive Set In-
variance for Enforcing Individual Fairness. In International
Conference on Learning Representations.
Zhang, B. H.; Lemoine, B.; and Mitchell, M. 2018. Mitigat-
ing unwanted biases with adversarial learning. In Proceed-
ings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, 335–340.
Zhang, H.; Chen, H.; Xiao, C.; Gowal, S.; Stanforth, R.; Li,
B.; Boning, D.; and Hsieh, C.-J. 2019. Towards stable and
efficient training of verifiably robust neural networks. arXiv
preprint arXiv:1906.06316.

8245

