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Abstract
Bayesian optimal experimental design is a sub-field of statis-
tics focused on developing methods to make efficient use
of experimental resources. Any potential design is evalu-
ated in terms of a utility function, such as the (theoreti-
cally well-justified) expected information gain (EIG); unfor-
tunately however, under most circumstances the EIG is in-
tractable to evaluate. In this work we build off of successful
variational approaches, which optimize a parameterized vari-
ational model with respect to bounds on the EIG. Past work
focused on learning a new variational model from scratch for
each new design considered. Here we present a novel neu-
ral architecture that allows experimenters to optimize a single
variational model that can estimate the EIG for potentially in-
finitely many designs. To further improve computational ef-
ficiency, we also propose to train the variational model on a
significantly cheaper-to-evaluate lower bound, and show em-
pirically that the resulting model provides an excellent guide
for more accurate, but expensive to evaluate bounds on the
EIG. We demonstrate the effectiveness of our technique on
generalized linear models, a class of statistical models that
is widely used in the analysis of controlled experiments. Ex-
periments show that our method is able to greatly improve
accuracy over existing approximation strategies, and achieve
these results with far better sample efficiency.

1 Introduction
Conducting experiments is often a resource-intensive en-
deavour, motivating experimenters to design their exper-
iments to be maximally informative given the resources
available. Optimal experimental design (OED) aims to ad-
dress this challenge by developing approaches to define a
utility, U(d), of a possible designs, d, and algorithms for
evaluating and optimizing this utility over all feasible de-
signs D. OED has been used widely across science and en-
gineering, including systems biology (Liepe et al. 2013),
geostatistics (Diggle and Lophaven 2006), manufacturing
(Antony 2001) and more (Goos and Jones 2011).

In this work we focus on evaluating the expected infor-
mation gain (EIG), a commonly used utility function in
Bayesian optimal experiment design (BOED) (Chaloner and
Verdinelli 1995; Ryan et al. 2016). We specify our model,
composed of a likelihood and prior p(y|θ, d)p(θ) for design
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d, possible experimental outcomes y and latent variables θ.
The EIG is then defined to be:

EIG(d) = Ep(y|d) [H[p(θ)]−H[p(θ|y, d)]] (1)

where H[·] is the entropy function. The experimenter then
seeks the solution to argmaxd∈D EIG(d), where D is the
set of all feasible designs. The EIG has sound theoretical
justifications, proven to be optimal in certain settings (Se-
bastiani and Wynn 2000; Bernardo and Smith 2009).

While powerful, this framework is limited by the diffi-
culty in evaluating the EIG due to the intractability of the
posterior distribution p(θ|y, d). Foster et al. (2019) proposed
four variational bounds for efficiently approximating the
EIG. The method involves defining a variational distribu-
tion, qϕ(·) that will approximate either the posterior distri-
bution p(θ|y, d) or the marginal likelihood p(y|d). The pa-
rameters ϕ of this variational distribution are optimized ac-
cording to the proposed bounds. In principle their method
allows for estimating the EIG for arbitrarily complex models
using flexible variational models, however their implemen-
tations focused on simpler variational forms that required
fitting a new variational model for every possible design. In
this work we focus on design amortization by proposing a
novel deep learning architecture based on conditional nor-
malizing flows (NF) (Papamakarios et al. 2021; Kobyzev,
Prince, and Brubaker 2020) and set invariant models (Za-
heer et al. 2017) to define a flexible variational distribution
qϕ(·|d) that only needs to be trained once, but can then ac-
curately estimate the EIG for potentially infinitely many de-
signs. Our experiments will show how design amortization
can dramatically improve computational efficiency and how
our more flexible variational form can make much more ac-
curate approximations to the EIG over competing methods.
We provide our code here1.

2 Background
Scientists consistently face the challenge of having to con-
duct experiments under limited resources, and must design
their experiments to use these resources as efficiently as pos-
sible. BOED provides a conceptually clear framework for
doing so. We assume we are given a model with design vari-
ables d, experimental outcomes y and latent parameters θ

1https://github.com/NobleKennamer/amortized boed

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8220



about which we wish to learn. We have prior information
on the latent variables encoded in a prior distribution, p(θ),
and a likelihood that predicts experimental outcomes from a
design and latent variables, p(y|θ, d). Via Bayes rule, these
two functions combine to give us the posterior distribution
p(θ|y, d) ∝ p(y|θ, d)p(θ) representing our state of knowl-
edge about the latent variables after conducting an experi-
ment with design d and observing outcomes y. For example
the design variables, d, could represent the environmental
conditions and chemical concentrations of a medium used
to culture a strain of bacteria, which produces an important
chemical compound. This design problem becomes more
complex with increasing dimension of d, for example, if we
have S petri dishes to work on (often called the experimental
units or subjects). The experimental outcomes, y, would rep-
resent the amount of the chemical compound yielded from
growing the culture in each of the conditions of d, and the
latent variables θ represent parameters that define how the
design variables d mediate the yield of the chemical com-
pound y. After conducting the experiment and observing y,
we can quantify our information gain (IG) as:

IG(y, d) = H[p(θ)]−H[p(θ|y, d)] (2)

However, this gain cannot be evaluated before conducting
the experiment, as it requires knowing the outcomes y. How-
ever, taking the expectation of the information gain with re-
spect to the outcomes, p(y|d), gives the EIG:

EIG(d) = Ep(θ,y|d)

[
log

(p(θ|y, d)
p(θ)

)]
= Ep(θ,y|d)

[
log

(p(y|θ, d)
p(y|d)

)] (3)

Nested Monte Carlo: Typically p(θ|y, d) and p(y|d) are
intractable, making the EIG challenging to compute. One
common approach to approximating EIG is to use a nested
Monte Carlo (NMC) estimator (Myung, Cavagnaro, and Pitt
2013; Vincent and Rainforth 2017; Rainforth et al. 2018):

µ̂NMC =
1

N

N∑
n=1

log
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

where θn,m ∼ p(θ) and yn ∼ p(y|θn,0, d)

(4)

Rainforth et al. (2018) showed that NMC is a consistent es-
timator converging as N,M −→ ∞. They also showed that it
is asymptotically optimal to set M ∝

√
N , resulting in the

overall convergence rate of O(T− 1
3 ), where T is the total

number of samples drawn (i.e. T = NM for NMC). How-
ever, this is much slower than the O(T− 1

2 ) rate of standard
Monte Carlo estimators (Robert and Casella 1999), in which
the total number of samples is simply T = N .

The slow convergence of the NMC estimator can be lim-
iting in practical applications of BOED. The inefficiencies
can be traced to requiring an independent estimate of the
marginal likelihood, p(yn|d), for each yn (the denominator
of Eq. (4)). Inspired by this, Foster et al. (2019) proposed
employing techniques from variational inference by defin-
ing a functional approximation to either p(θ|y, d) or p(y|d),

and allowing these estimators to amortize across the samples
of yn for more efficient estimation of the EIG. In this work
we focus on two of the four estimators they proposed: the
posterior estimator and variational nested Monte Carlo.

Posterior Estimator: The posterior estimator is an appli-
cation of the Barber-Agakov bound to BOED, which was
originally proposed for estimating the mutual information in
noisy communication channels (Barber and Agakov 2003).
It requires defining a variational approximation qϕ(θ|y, d) to
the posterior distribution, giving a lower bound to the EIG:

EIG(d) ≥ Lpost(d) ≜ Ep(θ,y|d)

[
log

(qϕ(θ|y, d)
p(θ)

)]
≈ 1

N

N∑
n=1

log
qϕ(θn|yn, d)

p(θn)

where yn, θn ∼ p(y, θ|d).

(5)

By maximizing this bound with respect to the variational
parameters ϕ, we can learn a variational form that can ef-
ficiently estimate the EIG. A Monte Carlo estimate of this
bound converges with rate O(T− 1

2 ), and if the true poste-
rior distribution is within the class of functions defined by
the variational form qϕ, the bound can be made tight (de-
pendent on the optimization) (Foster et al. 2019).

Variational Nested Monte Carlo: The second bound we
discuss is variational nested Monte Carlo (VNMC). It is
closely related to NMC, but differs by applying a variational
approximation qϕ(θ|y, d) as an importance sampler to esti-
mate the marginal likelihood term in NMC:

EIG(d) ≤

UV NMC(d,M) ≜ E

log p(y|θ0, d)
1
M

∑M
m=1

p(y,θm|d)
qϕ(θm|y,d)

 (6)

where the expectation is taken with respect to y, θ0:M ∼
p(y, θ0|d)

∏M
m=1 qϕ(θm|y, d).

By minimizing this upper bound with respect to the vari-
ational parameters ϕ, we can learn an importance distribu-
tion that allows for much more efficient computation of the
EIG. Note that if qϕ(θ|y, d) exactly equals the posterior dis-
tribution, the bound is tight and requires only a single nested
sample (M = 1). Even if the variational form does not equal
the posterior, the bound remains consistent as M −→ ∞. Fi-
nally, it is worth noting that by taking qϕ(θ|y, d) = p(θ), the
estimator simply reduces to NMC.

It was further shown by Foster et al. (2020) that VNMC
can be easily made into a lower bound by including θ0 (the
sample from the prior) when estimating the marginal likeli-
hood, a method we denote as contrastive VNMC (CVNMC):

EIG(d) ≥

LCoV NMC(d,M) ≜ E

log p(y|θ0, d)
1

M+1

∑M
m=0

p(y,θm|d)
qϕ(θm|y,d)


(7)
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where the expectation is taken with respect to y, θ0:M ∼
p(y, θ0|d)

∏M
m=1 qϕ(θm|y, d). We can also employ this

same technique to regular NMC to estimate both lower and
upper bounds.

Note that the upper bound (6) and lower bound (7) are
particularly useful when evaluating the performance of our
method in settings where ground truth is not available. In
these cases we can examine the bound pairs produced by
NMC and by VNMC to assess which set more tightly con-
strains the true value.

Practical considerations. In this work, we apply the same
flexible mathematical framework proposed in Foster et al.
(2019). However, Foster et al. (2019) adopted a “classical”
variational distribution setting, in which the variational form
qϕ is selected to take a standard, parametric form. They
found this approach effective, but tested only on very simple
design problems, with only one experimental unit at a time.
Their variational models only incorporate the design implic-
itly, requiring a separate optimization for every design to be
considered2. Unfortunately, as we show in the experiments
this approach is not effective on more complex design prob-
lems. Instead, we propose a far more flexible, deep learning
based distributional form that incorporates the design explic-
itly, allowing us to amortize training across and apply our
trained model to evaluation of all (potentially continuously
many) designs in our feasible set.

3 Method
We are interested in learning a parameterized function,
qϕ(θ|y, d), for approximating the posterior distribution. We
now describe our proposed deep learning architecture for
amortizing over designs, allowing practitioners to train a sin-
gle model that is capable of evaluating the EIG for poten-
tially infinitely many designs. We also discuss how we can
efficiently train this model using the (simpler and cheaper)
equation (5), then use the resulting approximation in the
more accurate bounds provided by VNMC, (6)–(7). This ad-
vances the work in Foster et al. (2019) by providing a highly
flexible variational form that can be used in a wide variety
of contexts and an inexpensive procedure to train it.

Neural Architecture
Figure 1 shows a high level representation of our architec-
ture. Broadly, it consists of two major components. The first
is a learnable function for taking in the design variables d
and simulated experimental outcomes from the model, y,
and producing a design context vector, cy,d, that will be used
to define a conditional distribution. We focus on the com-
mon case where the experimental units lack any meaning-
ful order and our learnable function must therefore be per-
mutation invariant. We can incorporate this inductive bias
into our model by making our function follow the general
form of set functions proposed in Zaheer et al. (2017). In
the sequel, we denote this component as our set invariant

2Although subsequent work (Foster et al. 2020) considered
evolving both the design and distribution q simultaneously, even
that work remains focused on a single (if evolving) design.

Figure 1: A high-level schematic of our architecture for
amortizing over designs. The first component (left) takes
in the design variables and simulated observations and pro-
duces a design context, cy,d. In many experiments the indi-
vidual units being experimented on are exchangeable, thus
we use a set invariant architecture. The second (right) is a
conditional normalizing flow, conditioned on the design con-
text produced by the first component. Together, they define
our variational posteriors qϕ(θ|y, d), amortized over designs.

model. The second major component is a learnable distribu-
tion conditioned on the design context produced by the set
invariant model. In this work we use conditional normalizing
flows, which consist of a base distribution and sequence of
invertible transformations with tractable Jacobian determi-
nants to maintain proper accounting of the probability den-
sity through the transformations. Both the base distribution
and transformations are learnable and conditioned on the de-
sign context.

Set Invariant Model. It is often the case that the individ-
ual units being experimented on do not posses an inherent
ordering – for example, subjects in a randomized controlled
clinical trial, or the petri dishes in our previous example.
Suppose we would like to find the optimally informative de-
sign for an experiment with S experimental units, where di
and yi denote the design variables and simulated outcomes
of unit i, respectively. In this setting we want our design
context to be invariant to permutations in its inputs, e.g., re-
ordering the individuals in the trial should not change our
results. Learning permutation invariant functions is an ac-
tive area of research (e.g., Bloem-Reddy and Teh 2020). In
this work we follow the general form proposed by Zaheer
et al. (2017), where our set invariant model is defined as,

cy,d = EMITϕEMIT

[
S∑

i=0

ENCϕENC
(yi, di)

]
. (8)

In particular, we define two learnable functions. The set en-
coder ENCϕENC

(yi, di) takes as input the design variables
and simulated outcomes for each individual experimen-
tal unit. Its output is an intermediary representation for
each experimental unit, which are aggregated together by
summation; the permutation invariance of the sum ensures
invariance of the overall function. The aggregated repre-
sentation is then passed through the set emitter function
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EMITϕEMIT
(·), which creates the final design context used

in the conditional normalizing flow. In our experiments we
find substantially improved performance using attention lay-
ers (Vaswani et al. 2017) in the set encoder, which allows
for interactions between the experimental units before ag-
gregation. In this case we should denote our set encoder as
ENCϕencode

(yi, di|y−i, d−i) where y−i d−i denote all simu-
lated outcomes and design variables except for the ith unit.

Structuring our design encoder function in this way gives
two major advantages. First, permutation invariance does
not need to be learned by the function since it is already
present by construction; this can make learning more effi-
cient and reduces the total number of weights via weight
sharing. Second, the function is able to encode designs with
a variable number of experimental units, S, as long as the di
and yi have the same size for all units.

Note that not all experimental design problems are per-
mutation invariant in the experimental units. For example,
in some settings there could be a temporal component in the
design variables, in which case we could replace our set in-
variant function with an order-based model such as a recur-
rent neural network.

Conditional Normalizing Flow. Normalizing flows de-
fine an expressive class of learnable probability distribu-
tions, which has been used in generative modeling and
probabilistic inference (Papamakarios et al. 2021; Kobyzev,
Prince, and Brubaker 2020). The main idea of normalizing
flow based models is to represent a random variable θ as a
transformation θ = T (x) of a random variable x sampled
from a base distribution p(x). The key property is that the
transformation T must be invertible and differentiable. This
allows us to obtain p(θ) via a change of variables,

p(θ) = p(x) | det JT (x)|−1 (9)
where x = T−1(θ) and det JT (x) is the determinant of the
Jacobian at x. Both the transformations and base distribu-
tion may have learnable parameters. This provides a highly
flexible class of distributions that can be both sampled and
efficiently evaluated.

In our setting we would like to learn not just a single dis-
tribution, but rather a conditional distribution given design
variables and experimental outcomes. This conditioning on
d is key to allowing us to amortize over all possible designs.
To this end, we learn a sequence of K conditional trans-
formations Tϕi(·|cy,d) and a conditional base distribution
pϕ0(x|cy,d) which together define our variational approxi-
mation to the posterior distribution amortized over designs.

qϕ(θ|cy,d) = pϕ0(x0|cy,d)
K∏
i=1

| det JTϕi
(xi|cy,d)|−1 (10)

where θ = TϕK
◦ TϕK−1

◦ . . . Tϕ1(x0), with all transforma-
tions and base distribution conditioned on the design context
(8). The full architecture, including the set invariant model
and conditional normalizing flow is trained end-to-end.

Variational Posterior Training
The posterior estimator and the (contrastive) VNMC bounds
all require learning a variational approximation to the pos-
terior distribution. In both Foster et al. (2019) and Foster

et al. (2020) each bound was trained separately, learning
its own variational approximation. However in all cases the
variational approximation produced by training one of the
bounds can be used for evaluating any other bound, since
they all only require an approximate posterior distribution.
Ideally, we would like to train using only the posterior esti-
mator since it is much cheaper – a total cost of only O(N) –
whereas both VNMC bounds have a total cost of O(NM).
However, it is not obvious that training on the (also less ac-
curate) bound should still provide good EIG estimates when
used in the VNMC bounds. Our experiments show that it is
surprisingly effective across a broad range of models. Intu-
itively speaking, this is possible because all bounds share the
same optimum – the true posterior distribution. Moreover,
because the posterior estimator takes its expectation with
respect to the model p(y, θ|d), the variational approxima-
tion qϕ(θ|y, d) will in general be wider than the true poste-
rior distribution, akin to variational inference using the “for-
ward” Kullback-Liebler (KL) divergence, and in contrast
to the more commonly used “reverse KL” variational opti-
mization methods that result in underdispersed and mode-
seeking optima. This property also makes the posterior esti-
mator’s qϕ an excellent choice for importance sampling (as
in VNMC), in which a too-narrow proposal distribution can
lead to high variance in the importance weights, causing a
small number of samples to dominate the estimator (Owen
2013, Chapter. 9).

4 Related Work

Our approach builds on the framework for BOED devel-
oped in Foster et al. (2019), which proposed four variational
bounds for estimating EIG. The framework itself is quite
flexible, capable of accommodating a wide variety of models
(e.g., implicit vs explicit likelihoods), sequential experimen-
tation (of arbitrary batch size) and arbitrary variational forms
q. However, their experiments were limited to only single
experimental units, and used simple variational forms that
cannot amortize over designs (requiring a separate training
procedure for each proposed design). Further recent work
in Foster et al. (2021) has also studied an RL-based opti-
mization approach to BOED, but it doesn’t produce EIG es-
timates, which is the main focus of this paper. In this work
we propose a deep learning architecture which can easily
be scaled to approximate arbitrarily complex distributions.
In addition, our architecture can amortize over designs, al-
lowing us to train a single variational model capable of es-
timating the EIG for potentially infinitely or continuously
many designs. We also show that we can train our model
using the cheaper posterior bound, then use its optimized
approximate posterior within the VNMC bounds for a more
accurate final approximation. We show that, using our pro-
posed variational form, we can achieve highly accurate EIG
estimates across a spectrum of complex design problems.
While a few other EIG approximations have been proposed
(see, e.g., Foster et al. (2019); Ryan et al. (2016)), in light
of the experimental results of Foster et al. (2019) we mainly
compare our experimental performance relative to NMC.
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5 Experiments
We perform three types of experiments: amortization, model
and architecture experiments. Our amortization experiment
shows the dramatic increase in efficiency from amortization,
and better EIG estimation provided by our more complex
variational forms compared to those used in Foster et al.
(2019). Model experiments examine how the benchmark
method, NMC, breaks down as model complexity grows
while our methods remain reliable for accurately estimat-
ing the EIG. Architecture experiments measure the impact
of key componets in our variational approximation and serve
as a guide to using our method effectively.

In all experiments we focus on estimating designs for dif-
ferent types of generalized linear models (GLMs) (McCul-
lagh and Nelder 1989). GLMs are a very common model
class used to analyze controlled experiments and are reg-
ularly used in applications of optimal experimental design
(Goos and Jones 2011). Our GLMs have the general pattern,

θ ∼ N (µp,Σp)

r = g−1(Dθ)

y ∼ Exponential Family Distribution(r).
(11)

Here, θ is a Np + 1 dimensional parameter vector, where
Np is the number of predictors (+1 for the intercept term).
D is a NE × (Np + 1) design matrix, where NE is the
number of experimental units. The inverse link function,
g−1, defines the type of GLM. Finally, µp and Σp are the
prior mean and covariance of the parameters. Our experi-
ments cover six GLMs: normal (known observation noise),
normal unknown (unknown observation noise), logistic, bi-
nomial, categorical and multinomial. For the normal model
with known observation noise we take σ = 1; for the normal
model with unknown observation noise3 we use the prior
σ ∼ InverseGamma(ap, bp) with ap = bp = 3.5. For the bi-
nomial model, we assume 10 random trials; we use 3 classes
for the categorical model, and 10 trials and 3 classes for the
multinomial model. All experiments in the sequel are run
for designs with 5 experimental units. Our implementations
made significant use of Pyro (Bingham et al. 2019) to im-
plement the inference procedures and NFlows (Durkan et al.
2020) to construct our conditional normalizing flows. All
training was done on a single Nvidia 2080TI and evaluation
was done on an Intel I7-9800X with 64 GB of RAM.

Amortization Experiments
While providing an excellent framework, the variational
forms used in Foster et al. (2019) are too simple to be ef-
fective on the GLM models we consider. Additionally, their
work required training a new variational model for every de-
sign being approximated, while we propose a method that
can amortize over designs. Our closest model to those tested
in Foster et al. (2019) is our normal (linear) model, similar
to their “AB model”; we apply their variational form for the
AB model (given in their appendix) in order to perform a

3In this case, the observation noise is included as the standard
deviation in the normal distribution that samples y.

Figure 2: Comparing our method and the (non-amortized)
variational form used by Foster et al. (2019) on the normal
(linear) model with 5 predictors and 5 on the diagonal of the
prior covariance (similar to the AB model in Foster et al.
(2019)). For clarity we only show the posterior estimator
values. Our method is > 3× faster (293s vs. 920s) and sig-
nificantly more accurate. See text for further analysis.

comparison. We set Np = 5 and Σp = 5I , i.e., diagonal
with variance 5.

We generate 50 random designs with NE = 5 experi-
mental units and compare the quality of EIG approximations
given by the posterior estimator as well as total wall clock
time. The precise architecture and training procedure we use
are described in the appendix. Figure 2 shows the results of
this experiment: our method produces a much tighter lower
bound that is highly correlated with the true values; select-
ing the highest estimate would pick the design with highest
true EIG in the set. In contrast, the variational form used
in Foster et al. (2019) yields a much looser and less corre-
lated bound, which would select the 6th best design if used.
Moreover, our method is more than 3× faster (293 seconds
compared to 920 seconds), showing the benefit of amor-
tizing over designs. In fact, this speed-up understates how
much more computationally efficient our method is, given
that it leaves us with a model that can estimate the EIG for
arbitrarily many designs without additional training. Train-
ing took 291 of our method’s 293 seconds; evaluating an
additional 50 designs, then, would take virtually the same
amount of time, compared to double the time required for
the non-amortized approach. The non-amortized training is
prohibitively slow, while moreover for our other GLM mod-
els it is often not clear what variational form from Foster
et al. (2019) could be applied; for these reasons, in the rest
of the experiments we compare only to standard NMC.

Model Experiments
In our model experiments we vary the GLMs in two ways:
the number of predictors (not including the intercept) and
the diagonal components of the prior covariance (all off-
diagonal terms are zero). The number of predictors Np is
varied from 1 to 5 and the diagonal of the prior covariance in
{1, 5, 25}. For the neural network architecture we use atten-
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tion layers for the set encoder, a residual network for the set
emitter (He et al. 2016), a full rank Gaussian distribution for
the conditional base of the normalzing flow and four affine
coupling layers each parameterized with a residual network.
Additional details of the architecture and training parame-
ters can be found in the appendix. In all experiments we train
the variational approximation using the posterior estimator.
During training, new designs are generated randomly from
a multivariate normal distribution with identity covariance
in dimension Np + 1. For final evaluation we generate 50
new random designs and estimate the posterior bound with
N = 5000 samples, while the VNMC bounds are estimated
with N = 1000 and M = 31 samples and nested samples,
and the NMC bounds are estimated with N = 30000 and
M = 173 samples and nested samples. The number of sam-
ples for VNMC and NMC were selected based on the maxi-
mum number of samples that fit into memory (64 GB RAM)
for the largest model (multinomial with 5 predictors).

Figure 3 shows EIG evaluations for 50 randomly gener-
ated designs for the 5 estimators: posterior, VNMC upper,
VNMC lower (contrastive VNMC), NMC upper and NMC
lower (contrastive NMC). Since this figure pertains to the
linear model we can calculate the ground truth EIG exactly,
shown in solid black. For visual clarity we sort the designs in
order of ground truth EIG value. We see that all estimators
perform reasonably well on the easiest form of the model
(1 predictor with unit prior covariance). However, even in
this case the VNMC bounds (upper and lower) more tightly
constrain the ground truth – in fact both are nearly exact. In
addition the posterior bound (a lower bound) is consistently
above the NMC lower bound and closer to the truth. These
trends become magnified as the prior covariance and num-
ber of predictors increase. In all cases the VNMC bounds
are nearly exact, while the performance of NMC degrades
rapidly with problem difficulty. Again, the posterior estima-
tor remains above and closer to truth than the NMC lower
bound.

Figure 4 shows exactly the same set of experiments, but
for the linear unknown model. In this case we can calcu-
late a high-quality Monte Carlo estimate of the ground truth
thanks to conjugacy, and sort the designs to be evaluated in
order of this ground truth. The results are largely consistent
with those from the linear model with known observation
noise: the VNMC bounds constrain the ground truth much
more tightly than the NMC bounds. However in this case
the posterior estimator is only above the NMC lower bound
in the two hardest cases (5 predictors and 5 or 25 diagonal
covariance).

Figures 6, 7, 8, 9, in the appendix, show the same set of
experiments but for the logistic, binomial, categorical and
multinomial models. In none of these cases can we calcu-
late ground truth, so all plots order their designs by the
benchmark NMC (upper). Even without ground truth we
still clearly see the lower and upper bounds of VNMC are
much closer together and below/above their NMC counter-
parts in practically all cases. One exception is the logistic
model, where as long as the model only contains one pre-
dictor variable, the NMC bounds are as tight as the VNMC
bounds; however by 5 predictors the VNMC bounds are

Figure 3: Results for estimating EIG in the linear model with
known observation noise. The x-axis ranges over the index
of 50 randomly selected designs, each with 5 experimental
units. Due to the dimensionality, the designs lack a mean-
ingful order; for visual clarity we plot them in the sorted or-
der of the true EIG. The rows vary the number of predictors
(Np ∈ {1, 5}) while columns show changes in the diagonal
of the prior covariance matrix, {1, 5, 25}, from informative
to uninformative. NMC and VNMC methods can estimate
both upper and lower bounds, while the posterior estimator
only provides a lower bound. Our proposed method gives
much tighter bounds on the truth than the competing NMC
(with 167× fewer samples). The shading shows one stan-
dard deviation of our estimates over 20 runs.

tighter. In fact the VNMC lower and upper bounds agree
with each other in all cases, suggesting they are closely esti-
mating the true EIG. We also see that the VNMC lower and
upper bounds are touching across all settings of the binomial
model and all but the hardest in the categorical and multino-
mial models (where they are still much tighter than NMC),
again suggesting that our VNMC estimators are nearly ex-
act. The results for the posterior estimator are more mixed
– sometimes it is above the NMC lower bound and some-
times below. Nevertheless, the variational posterior learned
using the posterior estimator can be used to compute VNMC
bounds on the EIG that are much tighter than NMC.

Our experiments show that training a single variational
posterior, amortizing over designs, we can calculate the EIG
much more accurately than the competing NMC benchmark,
nearly calculating ground truth exactly. Moreover, the ex-
periments show that training on the posterior estimator can
provide a variational distribution that remains effective for
estimation using the more costly VNMC bounds (see Sec-
tion 3). Not only does VNMC provide far more accurate es-
timates, it does so with many fewer samples – more than two
order of magnitudes (167×) fewer samples than NMC.

Architecture Experiments
We next investigate the importance of architectural decisions
for the neural networks defining qϕ(θ|y, d). We compare us-
ing attention layers vs. residual layers in the set encoder,
and transform type and number in the normalizing flow.
We compare using 4 vs. 8 transforms, and test affine cou-
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Figure 4: Same as Figure 3, but for the linear model with
unknown observation noise.

pling transforms (Dinh, Sohl-Dickstein, and Bengio 2017),
rational quadratic (RQ) splines (Durkan et al. 2019), and no
transform (just the conditional base distribution). We run all
combinations for the linear unknown and binomial model
with 5 predictors and 25 on the diagonal of the prior co-
variance. Note that the true posterior for the linear unknown
model is t-distributed, while the binomial is not analytically
expressible, so we expect the use of normalizing flows to be
advantageous over just the normal base distribution. The rest
of the architecture components are the same as the Model
Experiments and full details can be found in the appendix.

Figure 5 shows the loss curves of the experiments for
the linear unknown model. The inset plot on the top right
shows the loss curves across all epochs, while the main plot
shows a detail of the last 50 optimization steps. Each opti-
mization step is run on a batch of 50 designs, so this plot
indicates final performance on 2500 randomly generated de-
signs. Specifically the loss is −

∑N
i=1 log qϕ(θi|yi, d) where

yi, θi ∼ p(y, θ|d) and N = 50 – the cross entropy of the
variational posterior. Empirically, we see that using atten-
tion layers in the set encoder is the most important architec-
tural decision (lower 5 curves vs upper); all networks using
attention layers achieved superior performance to all net-
works using ResNets regardless of the other architectural
settings. Beyond this, we see that using an affine coupling
layer is also important, but see little difference between 4
and 8 transform layers. Surprisingly, the RQ transforms per-
form no better than having no transform. This is because
the RQ transforms are restricted to the range of (0, 1), with
linear tails outside. Even after training, almost all param-
eter samples are outside this range by the time they reach
the spline; the linear tails effectively skip the flow layers
completely, explaining why its performance is comparable
to models with no transform layers. In the appendix, Fig-
ure 11 shows the performance of a subset of these models at
evaluating the EIG for 50 random designs, highlighting that
the loss curves’ values are directly related to the accuracy
and sample efficiency of the EIG estimate. Figures 10 and
12 show the same plots for the binomial model and further
support these conclusions.

Figure 5: Results for our architecture experiments on the
linear unknown model with 5 predictors and diagonal prior
covariance 25. We vary the architecture of the set encoder
(attention vs. resnet), the normalizing flow transform type
(affine coupling, affine spline, or no transform), and the
number of transforms (4 or 8). The main plot shows the loss
for the posterior estimator over the last 50 steps of training;
each step is performed over a batch of 50 random designs
(2500 designs total). The inset plot shows the loss curves
over all 5000 training steps, indicating all architectures have
converged. Further discussion is given in the text.

6 Conclusion
In this paper we expand on the work of Foster et al. (2019),
which proposed variational bounds for estimating the EIG
for Bayesian optimal experimental design. In particular we
propose a deep learning architecture incorporating set in-
variance and conditional normalizing flows that allows us to
train a single model capable of estimating the EIG across the
design space. Our experiments show that this architecture is
highly effective at estimating EIG, and that design amortiza-
tion provides significant computational speed ups. For cases
where ground truth can be calculated, our model’s VNMC
bounds are nearly exact, while in cases without ground truth
our VNMC upper and lower bounds are often sufficiently
tight to suggest they are exact. These estimates are signifi-
cantly more accurate than those of standard NMC while re-
quiring far (167×) fewer samples, as well as far more accu-
rate and efficient than the simpler, non-amortized variational
forms used in (Foster et al. 2019). We also demonstrate that
we can train our model using the much cheaper posterior
estimator bound, with cost O(N), then evaluate using this
fitted model within the more accurate but costly VNMC
bounds, O(NM). Together, we provide a method for faster
and more accurate approximation of the EIG across many
possible designs. In future work, we plan to extend our ap-
proach to design optimization tasks; on this point, we ob-
serve that our variational form, qϕ(θ|y, d), is differentiable
with respect to the designs, d, suggesting it can generalize
and potentially improve on the gradient-based design opti-
mization objectives proposed by Foster et al. (2020).
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