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Abstract

Offline reinforcement learning (offline RL) considers prob-
lems where learning is performed using only previously col-
lected samples and is helpful for the settings in which collect-
ing new data is costly or risky. In model-based offline RL, the
learner performs estimation (or optimization) using a model
constructed according to the empirical transition frequencies.
We analyze the sample complexity of vanilla model-based
offline RL with dependent samples in the infinite-horizon
discounted-reward setting. In our setting, the samples obey the
dynamics of the Markov decision process and, consequently,
may have interdependencies. Under no assumption of inde-
pendent samples, we provide a high-probability, polynomial
sample complexity bound for vanilla model-based off-policy
evaluation that requires partial or uniform coverage. We ex-
tend this result to the off-policy optimization under uniform
coverage. As a comparison to the model-based approach, we
analyze the sample complexity of off-policy evaluation with
vanilla importance sampling in the infinite-horizon setting.
Finally, we provide an estimator that outperforms the sample-
mean estimator for almost deterministic dynamics that are
prevalent in reinforcement learning.

Introduction
Offline reinforcement learning (RL) considers problems
where a learner has access to only a dataset that is collected
under a behavior policy in an environment and tries to evalu-
ate (or optimize) a target policy. The learner typically has no
control over the behavior policy, and the transition dynamics
of the environment are unknown to the learner. Offline RL is
helpful for settings where online learning may not be safe or
previously collected data are abundant. The applications of of-
fline RL include, but are not limited to healthcare (Shortreed
et al. 2011; Tseng et al. 2017), robotics (Levine et al. 2018;
Ebert et al. 2018; Zeng et al. 2018), natural language pro-
cessing (Zhou et al. 2017; Henderson, Lemon, and Georgila
2008), and recommendation systems (Swaminathan et al.
2017; Gilotte et al. 2018).

We develop theoretical guarantees for offline RL. In detail,
we use an infinite horizon Markov decision process (MDP)
to model the environment and analyze the number of sample
paths sufficient to achieve the desired accuracy for off-policy
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evaluation. We mainly focus on vanilla model-based off-
policy evaluation, where a target policy is evaluated through
a model based on the sample mean estimator of the transition
dynamics.

Analyzing the theoretical properties of model-based off-
policy evaluation is challenging due to the sequential nature
of the MDP model and potentially dependent samples. These
factors make model-based off-policy evaluation lack the unbi-
asedness property that importance-sampling-based off-policy
methods have (Levine et al. 2018). The first source of bias
is because the expected value is a non-linear function of
the transition probabilities. Under the assumption that the
transition probability estimates are unbiased, the bias in the
value function estimate vanishes asymptotically with the in-
creasing number of sample transitions. However, this bias
is present with any finite number of samples (Mannor et al.
2004). The second source of bias is because of potentially
biased transition probability estimates. In reality, the sample
transitions come from time series data and are not necessarily
independent. The sample mean estimator, consequently, is
not guaranteed to be unbiased. Quantifying this bias requires
knowing the model, which contradicts the motivations of RL.

We consider that the dataset is constructed using sample
paths that are executions of an MDP under the behavior policy
and derive a sample complexity upper bound for model-based
off-policy evaluation. We overcome the first source of bias
by using a robust MDP (Nilim and El Ghaoui 2005) that
includes the true MDP with high probability. To overcome
the second source of bias, we use a concentration bound that
can handle random stopping times potentially dependent on
the previous samples. We combine these methods and derive
a sufficient condition on the number of sample paths to be
collected to accurately estimate the value of the target pol-
icy with high probability. The bound shows that the vanilla
model-based off-policy evaluation has performance guaran-
tees under both partial and uniform coverage. We extend this
sample complexity result to off-policy optimization under
uniform coverage. In addition, as a comparison, we derive a
sufficient condition on the number of samples for the vanilla
importance sampling method. Finally, we give an estimator
that outperforms the sample mean estimator in settings where
transition dynamics of the MDP is almost deterministic, i.e.,
there is a probable next state for every state and action.

The main contributions of this paper are threefold:
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1. We derive sufficient conditions on the number of sample
paths for vanilla model-based off-policy evaluation and
optimization. These bounds do not assume independence
between the sample transitions.

2. We derive a sufficient condition on the number of sample
paths for the importance-sampling-based off-policy evalu-
ation in the infinite-horizon discounted reward setting.

3. We provide a new estimator for the transition probabili-
ties that outperforms the sample mean estimator for the
environments with a limited amount of stochasticity.

We remark that for the first two contributions, we aim to
analyze the performance of vanilla off-policy methods in the
discounted infinite horizon setting rather than building new
algorithms with optimal sample complexities.

Preliminaries
A Markov decision process (MDP) is a tuple M =
(S,A,P, r, s0) where S is the set of states, A is the set of
actions, P(s, a, q) is the transition probability form state s
to q under action a, r(s, a) is the (random) reward of action
a at state s, and s0 is the initial state. We assume that the
reward is normalized, i.e., 0 ≤ E [r(s, a)] ≤ 1 for all s ∈ S ,
and a ∈ A. S denotes the cardinality of S and A denotes
the cardinality of A. An absorbing state s transitions to itself
under every action and has 0 reward, i.e., P(s, a, s) = 1 and
r(s, a) = 0 for all a ∈ A. A (stationary) policy π assigns
the same probabilities to actions given the state at every time
step; π(s, a) denotes the probability of taking action a at state
s. An (infinite) path ξ = s0a0r0s1a1r1 . . . is a sequence of
states, actions, and rewards. The value function V π

M(s) de-
notes the expected total reward under policy π starting from
s, i.e., V π

M(s) = E [
∑∞

t=0 r(st, at)] where the expectation is
over the randomness of the policy, transition dynamics, and
rewards.

The occupancy measure xπ(s, a) denotes the expected
number of times that action a is taken at state s under pol-
icy π starting from s0. Due to the linearity of expectation,
we have V π

M(s0) =
∑

s∈S,a∈A xπ(s, a)E [r(s, a)]. Define
ρπ(s, a) as the probability of taking action a at state s at least
once under stationary policy π starting from s0. Also, define
λπ(s, a) as the probability of taking action a at state s again
under stationary policy π given that the current state is s and
current action is a. Due to the Markovianity of the transition
dynamics and the stationarity of policy π, we have

xπ(s, a) = ρπ(s, a)
∞∑
i=1

(1− λπ(s, a))λπ(s, a)i−1i

=
ρπ(s, a)

1− λπ(s, a)

where i represents the number of times (s, a) is used.

Offline Reinforcement Learning Problem
We consider two offline reinforcement learning problems.
The first problem is off-policy evaluation where the goal is
to estimate the value V πt

M (s0) of a known stationary target
policy πt given N sample paths that are collected under a

s0

s1

s◦

a, σ

a, γ − σ

a, 1− γ

a, 1− γ

a, γ

a, 1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ

E[
σ̂
]

(b)

Figure 1: (a) An MDP with a single action. A label a, p of
a directed edge from s to q means P(s, a, q) = p. (b) The
expected sample mean estimation E [σ̂] of σ given a single
path when γ = 1.

known stationary behavior policy πb. The second problem
is off-policy optimization where the goal is to synthesize an
optimal policy π∗ that maximizes the value function V π∗

M (s0)
given N sample paths that are collected under a known sta-
tionary behavior policy πb.

For both of these problems, we assume that there exists
an absorbing final state s◦ such that every state in S \ {s◦}
transitions to s◦ with probability 1 − γ under every action.
State s◦ represents the effective end of the path. We note that
transitioning to s◦ with a fixed probability is equivalent to
having a discount factor γ and ensures the boundedness of
the value function. On the other hand, the setting we consider
is more disadvantaged compared to having infinite-length
paths with discounted rewards since sample paths eventually
end up at s◦ and the learner cannot access to further sample
transitions from the other states.

Vanilla Model-Based Offline Learning
We analyze the vanilla model-based approach for the afore-
mentioned offline reinforcement learning problems. In this
section, we describe the model construction.

The model construction is fairly simple; we utilize the sam-
ple mean estimator to estimate the transition probabilities and
rewards. Formally, let n(s, a, q) be the total number of sam-
ple transitions in the sample paths from state s to state q under
action a. Let P̃(s, a, q) = n(s, a, q)/

(∑
q∈S n(s, a, q)

)
denote the empirical frequency of transitioning from s to
q under a. The estimated transition probabilities P̂(s, a, q)
minimize the L2 distance to the empirical frequencies subject
to the constraint P̂(s, a, s◦) = 1−γ. If state s has no sample
transition, we set P̂(s, a, s) = γ for all a ∈ A. For simplicity,
we assume that the mean reward E [r(s, a)] is known for all
s ∈ S and a ∈ A. The results we present in this paper can
be extended to the unknown reward case by considering a
sample mean estimator for the rewards as well.

Given the estimated model M̂ = (S,A, P̂, r, s0) and the
target policy πt, the value of the target policy can be esti-
mated by solving a set of equations or by value iteration.
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We assume that this computation can be performed exactly.
V πt

M̂ (s0) denotes the model-based value estimate for πt.

Bias Issues in Model-Based Offline Learning
The main challenges associated with model-based off-policy
evaluation are due to the biases in the estimation of transition
probabilities and the estimation of the value function.

Bias in the estimation of transition probabilities We note
that the sample-mean estimator is the maximum likelihood
estimator of the transition probabilities. However, this es-
timator is biased since the outcomes of the future samples
are dependent on the previous samples. For example, con-
sider the MDP given in Figure 1a. A transition from s0 to s1

implies that all previous transitions are from s0 to s0. The
(potential) dependencies between the samples, i.e., the de-
pendency between the number of samples and the outcomes
of the sample transitions, make the sample mean estimate
biased. As shown in Figure 1b, the bias of the sample mean
estimator can be as large as 0.22 given a single sample path.
In general, this bias occurs if the successor states of an origin
state have different return probabilities to the origin state.

While the model-based off-policy estimation is provably
good when the estimates for the transition probabilities are
unbiased (Mannor et al. 2004), it is challenging to obtain
unbiased estimates with low variance since the learning data
usually consists of samples that have dependencies. A prov-
ably unbiased estimator utilizes only the first sample from
the origin state. However, this estimator suffers from high
variance due to the low number of samples. Another option
to overcome the bias issue is fixing a number of samples per
state-action pair as in the PAC-MDP literature (Strehl and
Littman 2008). However, this approach may result in a large
number of “unknown” state-action pairs and is wasteful in
that not all samples are utilized.

We overcome the bias issue by considering a concentration
bound that can work with a random number of samples and
handle the dependencies between the outcomes.

Bias in the value function estimation Even when the tran-
sition probability can be estimated without a bias, the esti-
mate for the value function is, in general, biased. Given the
estimates for the transition probabilities are unbiased, the
bias and variance of the value function estimate vanish as the
number of samples per state approach to ∞ (Mannor et al.
2004). A way to overcome the bias in the value function esti-
mation is to use a robust MDP model that uses a possible set
of transition probabilities (Yu et al. 2020, 2021). The robust
model is then used to compute upper and lower bounds on the
value function. We also follow this approach and use a robust
MDP to show that the value function estimate is accurate
with high probability.

Theoretical Guarantees for Vanilla
Model-Based Off-Policy Evaluation and

Optimization
In this section, we analyze the performance of vanilla model-
based off-policy evaluation and optimization.

We derive a bound on the number N of required sam-
ple paths that relates the estimation accuracy to the distance
between the behavior and target policies. The bound is poly-
nomial in the statistics of the behavior and target policies,
and the size of the MDP.
Theorem 1. Let N be the number of sample paths that are
independently collected under πb. Define

D =

{
(s, a)

∣∣∣∣xπt

(s, a) ≥ (ε/2)1/β(1− γ)(2−β)/β

SA

}
.

If

N ≥ Õ

(
min

β∈[0,1]
max

(s,a)∈D

(
S1+2βA2β

(1− γ)4−2β
· x

πt

(s, a)2β

xπb(s, a)
· 1

ε2
,

1

γρπb(s, a)

))
then with probability at least 1− δ, we have

|V πt

M (s0)− V πt

M̂ (s0)| ≤ ε

where the dependency on 1/δ is logarithmic.
The proof is given in (Karabag and Topcu 2023).
The bound in Theorem 1 holds for every β ∈ [0, 1]. This

implies that vanilla model-based off-policy evaluation works
under both uniform coverage and partial coverage. For β = 0,
the bound depends on how uniformly πb covers the state-
action space, i.e., max 1/xπb

(s,a). If β > 0, the bound de-
pends on the distributional shift between the policies; it is
sufficient that πb covers the state-action pairs that are fre-
quently visited by πt. We note that we do not need to decide
on the value of β a priori. We also note that the maximum is
over the set D of state-action pairs for which the target pol-
icy has a sufficiently large occupancy measure. This implies
that vanilla model-based estimation remains to be accurate
for pathological cases where some parts of the MDP are un-
reachable or reached with a very low probability under both
policies.

The first fraction in the bound given in Theorem 1 shows
that as the occupancy measures of the behavior and target
policies get close to each other in terms of ratio, then the off-
policy estimation gets more accurate. In detail, the sufficient
number of sample paths increase when the size of the MDP S,
the maximum occupancy measure 1/1−γ, the desired accuracy
1/ε or the distributional shift xπt

(s,a)/xπb
(s,a) between the

behavior and target policies increase. The last fraction in
the bound is a natural consequence of rejection sampling:
Õ(1/γρπb

(s,a)) sample paths are required to ensure that there
is at least one path that has a sample from (s, a) to S \ {s◦}.

In the extreme case where the behavior and target policies
are the same, the bound has 1/ε2 dependence on the desired
optimality gap. We note that the expected reward of a random
path is subgaussian, and the 1/ε2 dependency matches the
Chernoff bound.

Proof sketch for Theorem 1 We follow the steps shown
in Figure 2 to prove Theorem 1. We first decide on the suffi-
cient accuracy level for the transition probability estimates
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Number of sample paths

Concentration of i.i.d. Bernoulli RVs (Lemma 4)

Lower bound on the number of sample paths
that has a sample from a given state-action pair

Concentration of i.i.d. Geometric RVs (Lemma 5)

Lower bound on the number of samples
from a given state-action pair

Accuracy level for the value function

Lemma 2

Sufficient accuracy for
the transition probability estimates

Concentration of i.d. Bernoulli RVs (Lemma 3)

Sufficient number of samples
for a given state-action pair

Sufficient condition

Upper bound on the required number of sample paths

Figure 2: The flowchart for the proof of Theorem 1. Gray boxes are the relevant quantities, and white boxes are the relations
between these quantities.

for a given level of accuracy for the value function. Next,
we decide on a sufficient number of samples from a given
state-action pair to achieve the accuracy level for the transi-
tion probability estimates. Finally, we decide on a sufficient
number of sample paths to collect the sufficient number of
samples from given state-action pairs.

We first decide on the required accuracy for the transition
probability estimates from each state to make an accurate
estimation for the value function. Lemma 2 shows that if the
transition probabilities of state-action pairs are accurate pro-
portionally to their occupancy measures, then the estimated
value function is accurate. We note that this lemma is similar
to simulation lemma (Strehl and Littman 2008); however,
unlike the simulation lemma, we do not assume a fixed ac-
curacy level for every state-action pair for the estimation of
transition probabilities.
Lemma 2. For any α ≥ 0 and 0 ≤ β ≤ 1, if∑

q∈S
|P̂(s, a, q)− P(s, a, q)| ≤ α

xπt(s, a)β

for all s ∈ S and a ∈ A, then

|V πt

M (s0)− V πt

M̂ (s0)| ≤
α(SA)β

(1− γ)2−β
.

We set α = ε(1−γ)(2−β)
/(SA)β in Lemma 2 to achieve

ε accuracy. Given Lemma 2, our goal is to determine the
number of sample paths that guarantee a desired estimation
accuracy. In order to do so, we first determine the number of
sample transitions that is sufficient to estimate the transition
probabilities accurately. Lemma 3 provides an upper bound
on the number of samples from a state-action pair to estimate
transition probabilities within a desired accuracy.
Lemma 3. For any 0 < δ′ < 1, if∑

q∈S\{s◦}

n(s, a, q) ≥ 40S

(ε′)2
log

(
1

ε′

)
log

(
5

3δ

)
,

then
∑

q∈S |P̂(s, a, q) − P(s, a, q)| ≤ γε′ with probability
at least 1− δ′.

To prove Lemma 3, we use a concentration bound that
can handle a random number of samples and possible depen-
dencies between the samples. The bound is a random stop-
ping time generalization of the i.i.d. concentration inequality
given in (Weissman et al. 2003) for the categorical distribu-
tions. Thanks to this bound, we overcome the aforementioned
bias problem in estimating transition probabilities during
our analysis. By Lemma 3, to achieve the accuracy given
in Lemma 2, Õ

(
S1+2βA2βγ2xπt

(s,a)
2β

/ε2(1−γ)4−2β

)
samples

from (s, a) to S \ {s◦} are sufficient.
In the second part of the proof, we decide on the required

number of paths to have enough samples from every state.
We first decide on the number of sample paths that has a
sample from (s, a) to S \ {s◦}. Lemma 4 provides a lower
bound on the number of sample paths that has a sample from
a given state-action pair.
Lemma 4. Let N be the number of sample paths that are
independently collected under πb. For any 0 < δ′ < 1,
N ′ ≥ 0, and (s, a) ∈ S ×A, if

N ≥ 6

γρπb(s, a)
max (N ′, log(1/δ′)) ,

then the number of sample paths that has a sample from state
s to S \ {s◦} under action a, is at least N ′ with probability
at least 1− δ′.

By Lemma 4, to have N ′ sample paths that has a sample
from (s, a) to S \ {s◦}, Õ

(
N ′
/γρπb

(s,a)
)

sample paths are
sufficient.

We note that if a path has a sample from (s, a) to S \ {s◦},
then the number of samples from (s, a) to S \ {s◦} follows a
geometric distribution due to the stationarity of πb. By a tail
bound for the sum of geometric random variables (Janson
2018), Lemma 5 provides an upper bound on the number of
sample paths that has a sample from a given state-action pair,
in order to ensure a desired number of sample transitions
from the state-action pair.
Lemma 5. Let N ′ be the number of sample paths that has
a sample from state s to S \ {s◦} under action a. For any
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0 < δ′ < 1 and k ≥ 0, if

N ′ ≥ max
(
8k(1− λπb

(s, a)), log(1/δ′)
)

then the number of sample transitions from state s to S \{s◦}
under action a, is at least k with probability at least 1− δ′.

By Lemma 5, if N ′ paths has a sample from (s, a) to
S \{s◦}, then we have Õ(N

′
/(1−λπb

(s,a))) sample transitions
from (s, a) to S\{s◦} with high probability. Combining these
bounds and the sufficient number of samples per state-action
pair, we conclude that if the number N of paths is greater
than or equal to

N ≥ Õ

 min
β∈[0,1]

max
s∈S\{s◦}

a∈A

(
S1+2βA2β

(1− γ)4−2β
· x

πt

(s, a)2β

xπb(s, a)
· 1

ε2
,

1

γρπb(s, a)

))
,

then the model-based off-policy estimate is ε-accurate with
high probability. Finally, we note that if xπt

(s, a)β ≤
ε(1−γ)1−β

/2(SA)β, then the transition probability estimates
for (s, a) trivially satisfies the condition given in Lemma 2,
and β can be arbitrarily chosen between 0 and 1. Hence, if

N ≥ Õ

(
min

β∈[0,1]
max

(s,a)∈D

(
S1+2βA2β

(1− γ)4−2β
· x

πt

(s, a)2β

xπb(s, a)
· 1

ε2
,

1

γρπb(s, a)

))
,

then the model-based off-policy estimate is ε-accurate with
high probability where

D =

{
(s, a)

∣∣∣∣xπt

(s, a) ≤ (ε/2)1/β(1− γ)(1−β)/β

SA

}
.

Comparison with importance sampling As a comparison
for the bound given in Theorem 1, we derive a bound on the
sufficient number of sample paths that need to be collected for
the vanilla off-policy estimation with importance sampling
in the infinite-horizon discounted-reward setting.

The importance sampling estimate is

V̂ πt

M (s0) =
1

N

N∑
i=1

Pr(ξi = si0a
i
0 . . . |πt)

Pr(ξi = si0a
i
0 . . . |πb)

∞∑
t=0

E
[
r(sit, a

i
t)
]

where ξ1, . . . , ξN are sample paths collected under πb. Let
Γt and Γb denote the distribution of paths under the target
and behavior policies, respectively. To accurately estimate the
expected value of a given function with respect to the prob-
ability measure Γt with high probability using the sample
paths that are collected under policy Γb, approximately

exp
(
Eξ∼Γπt [l(ξ)] +O

(
Stdξ∼Γπt (l(ξ))

))
samples are sufficient for importance sampling where l(ξ) =
log
(
Pr(ξ|πt)/Pr(ξ|πb)

)
(Chatterjee and Diaconis 2018). Con-

sidering that πt and πb are stationary, we have

Eξ∼Γπt [l(ξ)] ≤ 1

1− γ
log

 max
s∈S\s◦
a∈A

πt(s, a)

πb(s, a)



and

Stdξ∼Γπt (l(ξ)) ≤
√
2

1− γ
log

 max
s∈S\s◦
a∈A

πt(s, a)

πb(s, a)

 .

The details of this derivation are given in (Karabag and Topcu
2023). As a result, approximately

exp
(
Eξ∼Γπt [l(ξ)] +O

(
Stdξ∼Γπt (l(ξ))

))
≤

 max
s∈S\s◦
a∈A

πt(s, a)

πb(s, a)

O( 1
1−γ )

.

sample paths are sufficient for the vanilla off-policy esti-
mation with importance sampling in the infinite-horizon
discounted-reward case.

A form of the maximum distributional shift between
the policies, max(s,a)∈D

(
xπt

(s,a)2β/xπb
(s,a)

)
for the model-

based method and maxs∈S\s◦
a∈A

(
πt(s,a)/πb(s,a)

)
for the impor-

tance sampling method, appears in the upper bounds for both
model-based off-policy estimation and off-policy estimation
via importance sampling: As the inherit distance between
the target and behavior policies increase, the problem of
off-policy estimation becomes more challenging.

We also note that the upper bound for the importance
sampling has an exponential dependency on the expected
time horizon, i.e., 1/1−γ. Similar to the finite-horizon case,
the variance of the estimates can grow exponentially with
the expected time horizon in the infinite-horizon discounted-
reward case.

Off-policy optimization The estimated model can be used
to maximize a known reward function. By letting β = 0 in
Theorem 1, we have the following result, which provides a
bound on the number of paths that need to be collected for
off-policy optimization.
Corollary 6. Let N be the number of sample paths that are
independently collected under πb. Also, let π′ denote optimal
policy for the estimated model M̂, and π∗ denote optimal
policy for the true model M. If the number N of paths is
greater than or equal to

Õ

 max
s∈S\{s◦}

a∈A

(
Sγ

(1− γ)4
· 1

xπb(s, a)
· 1

ε2
,

1

γρπb(s, a)

) ,

then with probability at least 1− δ, we have

|V π′

M(s0)− V π∗

M (s0)| ≤ ε,

where the dependency on 1/δ is logarithmic.
The proof is given in (Karabag and Topcu 2023).
Corollary 6 shows the accuracy of vanilla model-based

optimization under uniform coverage, i.e., dependency on
1/xπb

(s,a). Related works such as (Yan et al. 2022; Rashidine-
jad et al. 2021) provide sample complexity bounds that re-
quire only partial coverage, i.e., xπ∗

(s,a)/xπb
(s,a). The differ-

ence is because the vanilla model-based estimation is per-
formed using the sample-mean estimates whereas the afore-
mentioned works use a pessimistic MDP (as in the proof of
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Theorem 1). We can recover the same sample complexity
bound given in Theorem 1 for off-policy optimization with a
pessimistic MDP built using the confidence bounds given in
Lemma 3.

Estimation of the Accuracy Level The learner is agnostic
to the value of the bound given in Theorem 1. Computing
the lower bound requires knowing the model fully, which
inherently contradicts the motivation of off-policy learning.
Consequently, the learner cannot directly know the accuracy
level for a given confidence level.

To estimate the level of accuracy, we can use the occupancy
measure values that are computed using the estimated model.
This approach gives an asymptotically consistent estimator
of the accuracy level. Since the estimated model becomes
more accurate with the increasing number of samples, the
estimated occupancy measures become more accurate and,
consequently, the estimate for the level of accuracy becomes
more accurate.

In order to estimate the accuracy level with non-
asymptotical guarantees, we need to compute the occupancy
measures of the behavior and target policies. Computing the
occupancy measures of the behavior policy is relatively easy
and does not require the model construction: The sample
paths are direct samples for the occupancy measures. Since
the number of samples from a state-action pair in a path is
a subexponential random variable, we can use Bernstein’s
inequality to compute a lower bound on the occupancy mea-
sures of the behavior policy. On the other hand, computing
the occupancy measures of the target policy is challenging
since the distribution of interest and the source of samples are
not the same. For this computation, we can use robust MDPs.
Lemma 3 gives a possible set of transition probabilities for
a given confidence level. Using this lemma, we can build
a robust MDP that contains the true transition probabilities
with high probability. Then, we compute the largest possible
occupancy measures for the target policy. Finally, given the
robust estimates for the occupancy measures and the number
of sample paths, we can compute a provably correct accuracy
level using the bound given in Theorem 1.

Beyond Sample Mean Estimators
Sample mean estimators are preferred due to their asymp-
totic consistency and low variance. But, can we do better?
The answer is positive given prior knowledge of the tran-
sition dynamics of the system. Reinforcement learning is
often concerned with almost deterministic systems that have
noisy dynamics, but the amount of noise is limited. For these
systems, there exists an asymptotically consistent estimator
that has a lower error than the sample mean estimator in the
regime of low number of samples.

In our context, an MDP is almost deterministic if for all
s ∈ S \{s◦} and a ∈ A there exists a q ∈ S \{s◦} such that
P(s, a, q) ≥ γ(1− ϵ) with ϵ ≈ 0.

Let X be a categorical random variable with support
{1, . . . ,K} and probability distribution [p1, . . . , pK ]. The
sample mean estimator of pi is p̂SM

i = Ni/N where N
is the number of i.i.d. samples and Ni is the number of
samples with value i. Let d = argmaxi Ni. We define the

deterministic-favored estimator as

p̂DF
i =

Ni +
√
N1d(i)

N +
√
N

where 1d(i) is 1 if i = d and 0 otherwise. We note that the
deterministic-favored estimator does the opposite of the mini-
max estimator: while the minimax estimator favors a uniform
posterior (Wasserman 2006), the deterministic-favored esti-
mator boosts the estimated probability of the most frequent
observation.

The deterministic-favored estimator is asymptotically con-
sistent. Furthermore, despite being biased, it has a lower
mean squared error (MSE) than the sample mean estimator
when X is almost deterministic.
Theorem 7. The MSE of the deterministic-favored estimator
p̂DF
i satisfies

E
[(
p̂DF
i − pi

)2] ≤ N(1− pi)

(N +
√
N)2

+exp

(
− (2pi − 1)2N

12(1− pi)

)
if pi > 1/2.

The proof is given in (Karabag and Topcu 2023).
We note that the second term decays exponentially fast

as N or pi increases. On the other hand, the MSE of the
sample mean estimator is Npi(1−pi)/N2. The deterministic
favored estimator performs better than the sample mean es-
timator if pi ≥ 1− ϵ where ϵ ≈ N2

/(N+
√
N)2. For instance,

1− N2
/(N+

√
N)2 = 0.826 for N = 100. Symmetrically, for

small pi, the deterministic-favored estimator performs bet-
ter than the sample mean estimator if there exists j such
that pj ≥ 1 − ϵ where ϵ ≈ N2

/(N+
√
N)2. Overall, the

deterministic-favored estimator outperforms the sample mean
estimator for almost-deterministic random variables in the
regime of low number of samples.

Related Work
Off-policy evaluation literature mainly focuses on finding
good estimators with a low bias and variance. The pre-
vious methods to solve this problem include importance
sampling (Liu et al. 2018; Xie, Ma, and Wang 2019), vari-
ants of dynamic programming (Hao et al. 2021; Munos and
Szepesvári 2008), and model-based approaches (Rashidine-
jad et al. 2021; Yan et al. 2022; Mannor et al. 2004). Model-
based approaches are also used for offline policy optimiza-
tion (Yu et al. 2020, 2021).

Yin, Bai, and Wang (2021) studied the sample complexity
of vanilla model-based off-policy evaluation and optimiza-
tion in the finite-horizon setting under uniform coverage.
Different from the infinite horizon setting, the sample tran-
sitions are i.i.d. in the finite-horizon setting. For off-policy
evaluation, Yin, Bai, and Wang (2021) showed a path sample

complexity of Õ
(

H2
/mins∈S

a∈A
xπb

(s,a)ε2 + H2
√
SA/ε

)
using

martingale concentration inequalities where H is the time
horizon. For the infinite-horizon setting, the bound that we
give in Theorem 1, does not have any non-logarithmic de-
pendencies in the number of actions and has a higher or-
der dependency in the time horizon when β = 0, i.e., uni-
form coverage. Similarly, for off-policy optimization Yin,
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Bai, and Wang (2021) showed a path sample complexity

of Õ
(

H4S/mins∈S
a∈A

xπb
(s,a)ε2

)
. The bound that we give in

Corollary 6 matches the finite-horizon bound of (Yin, Bai,
and Wang 2021). We also remark that our bound matches
the sample complexity bound of vanilla asynchronous Q-
learning (Li et al. 2021).

The sample complexity of model-based off-policy opti-
mization is studied extensively using pessimistic models (Ue-
hara and Sun 2022; Ross and Bagnell 2012; Li et al. 2022;
Rashidinejad et al. 2021). Recently, Li et al. (2022) showed

a lower bound of Õ
(

S maxs∈S\s◦
a∈A

xπt
(s,a)

xπb
(s,a)

/(1−γ)3ε2

)
(inde-

pendent) sample transitions and provided an algorithm with
a matching sample complexity. The algorithm given in (Li
et al. 2022) uses a pessimistic model, whereas we analyze
the sample complexity of vanilla model-based off-policy op-
timization without pessimistic penalties.

Different from the majority of model-based off-policy eval-
uation and optimization works, we consider that the samples
are coming from time series data, i.e., paths, that obey the dy-
namics of the MDP. In the model-free setting, Uehara, Huang,
and Jiang (2020); Yan et al. (2022); Li et al. (2021) consider
that the samples come from an underlying Markov chain and
showed that the independence assumption can be removed
by assuming a mixing property for the underlying Markov
chain. Unlike these works, we consider that the samples are
(unbounded length) episodes of the MDP and do not require
the underlying Markov chain to be ergodic. Consequently,
we do not have the burn-in sampling costs due to the mixing
time.

Existing literature on finite-horizon off-policy importance
sampling (Liu et al. 2018; Xie, Ma, and Wang 2019) shows
that the variance of the importance sampling estimates grows
exponentially with the horizon length. As a similar result, we
show a sample complexity upper bound for the discounted
infinite-horizon setting that has an exponential dependency
in the expected time horizon.

To the best of our knowledge, previous model-based offline
RL works use sample-mean estimators to estimate the transi-
tion probabilities. For the almost-deterministic environments,
we propose an estimator that is motivated by the minimax
estimator of the categorical random variables (Wasserman
2006).

Conclusion

We analyzed the sample complexity of vanilla model-based
off-policy reinforcement learning with dependent samples.
Despite its simple nature, the sample complexities of the
vanilla model-based method are comparable to those of opti-
mal algorithms. While the sample mean estimator becomes
biased with dependent samples, our results show the order of
the sample complexity remains the same compared to the case
with independent samples. We also give an estimator that out-
performs the sample mean estimator for almost-deterministic
random variables.
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