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Abstract

Recently a multi-agent variant of the classical multi-armed
bandit was proposed to tackle fairness issues in online learning.
Inspired by a long line of work in social choice and economics,
the goal is to optimize the Nash social welfare instead of the
total utility. Unfortunately previous algorithms either are not
efficient or achieve sub-optimal regret in terms of the number
of rounds. We propose a new efficient algorithm with lower
regret than even previous inefficient ones. We also complement
our efficient algorithm with an inefficient approach with regret
that matches the lower bound for one agent. The experimental
findings confirm the effectiveness of our efficient algorithm
compared to the previous approaches.

1 Introduction
The multi-armed bandit (MAB) problem poses an identi-
cal set of choices (or actions, arms) at each time step to
the decision-maker. When the decision maker pulls makes a
choice, she receives a reward drawn from a distribution asso-
ciated with that choice. The goal is to select arms to maximize
the total reward in expectation, or to minimize their expected
regret with respect to the optimal strategy (or policy). The
MAB problem lends itself to many applications including
allocation of resources in a financial portfolio (Hoffman et al.
2011; Shen et al. 2015; Huo and Fu 2017), selection of both
dosages (Bastani and Bayati 2020) and treatments (Durand
et al. 2018) in clinical healthcare, and a broad range of recom-
mender systems (Zhou et al. 2017; Bouneffouf, Bouzeghoub,
and Gançarski 2012, 2013).

In many scenarios, making a decision impacts not only one
but multiple agents. For instance, consider a policy-maker
making decisions that might influence various groups of their
constituents (Zhu and Walker 2018), or a recommendation
engine that picks hyperparameters for their system to serve
many users. The multi-agent multi-armed bandit problem
(MA-MAB), proposed in Hossain, Micha, and Shah (2021),
is a variant of the MAB problem in which there are N agents
and K arms, and in every round t, the algorithm selects
the same arm a for every agent and receive N rewards real-
izations drawn from unknown distributions {Dj,a}Nj=1 with
unknown means {µ⋆

j,a}Nj=1. The reward distributions of the
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same arm for different agents need not be the same, and
hence an optimal arm for one agent might be sub-optimal for
the others. As such, the goal of picking the optimal arm in
the standard MAB problem is no longer meaningful, and a
different objective is needed.

In this setting, one intuitive objective would be to opti-
mize the expected rewards over all agents. This reduces the
problem to the classic MAB problem and can be solved ac-
cordingly (Slivkins 2019). In practice, this objective has a key
weakness: individual rewards may be neglected in order to
improve the reward of the collective. Consider an extremely
divided case with two arms where just over half of agents
receive reward 1 from the first arm and reward 0 from the
second arm, and the other agents receive the opposite re-
wards. The optimal strategy in this case is to always choose
the first arm: half of the agents receive reward 1, and almost
half of the agents receive reward 0. While this formulation
is well-studied by reduction, it unfortunately does not serve
to enforce fairness among the agents. A fairer choice would
be to pull each arm with roughly the same probability, which
only slightly reduces the individual utilities. In other words,
the agents would receive similar rewards with each other
if the algorithm learns a distribution π over the arms and
converges to pulling each arm almost uniformly. Thus, the
optimal strategy for a MA-MAB problem corresponds not to
picking the optimal arm as in the classic MAB problem, but
a probability distribution over the arms.

In (Hossain, Micha, and Shah 2021), the authors pro-
posed an objective motivated by studies on fairness in
social choice: the Nash social welfare (NSW). This is a
classical notion going back to (Nash 1950) and (Kaneko
and Nakamura 1979). For n agents with expected utility
u1, u2, . . . , un, the Nash product

∏
i ui is sandwiched be-

tween (mini ui)
n ≤

∏
i ui ≤

(∑
i ui

n

)n
, serving as a

compromise between an egalitarian approach (optimizing
the minimum reward across agents) and a utilitarian ap-
proach (optimizing the sum of rewards across agents). In
the context of the MA-MAB problem, the optimal fair
strategy corresponds to the distribution that maximizes
the cummulative Nash product of the agents’ expected
rewards. Formally, π⋆ = argmaxπ∈∆K NSW(π, µ⋆) =

argmaxπ∈∆K

∏
j∈[N ]

(∑
a∈[K] πaµ

⋆
j,a

)
, where ∆K is the
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K-simplex .
The prior work in (Hossain, Micha, and Shah 2021)

proposed three algorithms for the MA-MAB problem (see
table 1). Their Explore-First and ϵ-greedy algorithms have
regret bounds that scale with Ω(T 2/3). The algorithms
involve computing the optimal policy given an estimated
reward matrix, i.e., π = argmaxπ∈∆K NSW(π, µ̂). Since
the objective is log-concave, the optimization step can be
solved in polynomial time and there thus exist efficient imple-
mentations for the algorithms. Their UCB algorithm achieves
the improved regret bound of Õ(K

√
NT ·min{N,K}).

Note that the dependency on T for the UCB algorithm is tight
due to a reduction of the MA-MAB problem with N = 1
to the standard multi-armed bandits problem with a lower
bound of Ω(

√
TK). It is not clear to the authors of (Hossain,

Micha, and Shah 2021) if the UCB algorithm “admits an
efficient implementation.” This is due to the algorithm’s step
of computing argmaxπ∈∆K NSW(π, µ̂) +

∑
a∈[K] βaπa,

where βa is inversely proportional to the number of times
the algorithm has picked arm a. With the added linear term,
the optimization program is no longer log-concave. As such,
previous algorithms for this problem in (Hossain, Micha, and
Shah 2021) either fail to achieve optimal dependency on T ,
or do not admit an efficient implementation. This leads us to
investigate the following question:

Is it possible to design an algorithm that admits an
efficient implementation while achieving optimal dependency
on T?

Our main contribution is an efficient algorithm with
Õ(
√
NKT + NK) regret. We not only not give an affir-

mative answer to the question above, but also achieve an
improved regret bound over the UCB algorithm of (Hossain,
Micha, and Shah 2021) for most regimes of N,K, T . Our
algorithm preserves the efficiency of the Explore-First and
ϵ-Greedy approaches in (Hossain, Micha, and Shah 2021),
while achieving an improved bound over the previous state-
of-the-art. We also complement our efficient algorithm with
an inefficient approach with Õ(

√
KT +N2K) regret.

2 Other Related Works
Many variants of the multi-armed bandit problem have been
proposed and studied such as adversarial bandit (Auer et al.
2002), dueling bandit (Yue and Joachims 2009; Yue et al.
2012), Lipschitz bandit (Kleinberg 2004; Flaxman, Kalai,
and McMahan 2004), contextual bandit (Hazan and Megiddo
2007), and sleeping bandit (Kleinberg, Niculescu-Mizil, and
Sharma 2010). Multi-agent variants of the problem have
also been investigated in (Landgren, Srivastava, and Leonard
2016; Chakraborty et al. 2017; Bargiacchi et al. 2018).

In the context of fair multi-armed bandit, (Joseph et al.
2016) proposes a framework where an arm with a higher
expected reward is selected with a probability no lower than
that of an arm with a lower expected reward. (Wang and
Joachims 2020) requires the fair policy to sample arms with
probability proportional to the value of a merit function of its
mean reward. In (Liu et al. 2017) preserving fairness means

the probability of selecting each arm should be similar if the
two arms have a similar quality distribution. (Gillen et al.
2018) studies fairness in the linear contextual bandits setting
where there are individual fairness constraints imposed by an
unknown similarity metric. (Patil et al. 2020) proposes a fair
MAB variant that seeks to optimize the cumulative reward
while also ensures that, at any round, each arm is pulled at
least a specified fraction of times.

Our objective of finding a probability distribution over
arms to optimize the Nash welfare objective can also be cast
as the continuum-armed bandit problem where the Nash wel-
fare function is the objective. (Kleinberg, Slivkins, and Upfal
2019) designs an algorithm with a regret bound of Õ

(
T

γ+1
γ+2

)
,

where γ, defined as the zooming dimension, would be Θ(K)
for the MA-MAB problem. The resulting bound would be no
better than O(T 2/3) and approaches O(T ) as K increases. It
is also important to note that there is a long line of work on
bandit convex optimization (Hazan and Levy 2014; Bubeck
and Eldan 2016; Bubeck, Lee, and Eldan 2017; Chen, Zhang,
and Karbasi 2019). One can apply the approaches to opti-
mize the log of the Nash welfare function. However, the
regret bound of the new objective does not translate to that
of the original objective.

3 Preliminaries
Define [n] = {1, . . . , n} for n ∈ N. In the multi-agent multi-
armed bandit problem, we have a set of agents [N ] and a set
of arms [K] for N,K ∈ N. For each agent j ∈ [N ] and arm
a ∈ [K], we have a reward distribution Dj,a with mean µ⋆

j,a

and support in [0, 1]. Define µ⋆ = (µ⋆
j,a)j∈[N ],a∈[K] as the

mean reward matrix. At each round t, at denotes the selected
arm of round t and rj,at,t ∼ Dj,at the realization of the
reward distribution associated with arm at of each agent j.

For reward matrix µ = µj∈[N ],a∈[K] ∈ [0, 1]N×K and
policy π ∈ ∆K , we denote the Nash Social Welfare func-
tion by the product over the expected reward of each agent,
NSW(π, µ) =

∏
j∈[N ]

(∑
a∈[K] πaµj,a

)
. For a time hori-

zon T , our goal is to choose policies πt ∈ ∆K at each
round t ∈ [T ] to minimize the cumulative regret RT =∑

t∈[T ] NSW(π⋆, µ⋆)−
∑

t∈[T ] NSW(πt, µ
⋆). We use πa,t

to denote the probability of selecting arm a under policy πt.
At each round t, our algorithm samples an arm at

from πt and pulls the same arm for every agent. Let
Na,t =

∑t−1
τ=1 1{aτ = a} denote the number of times

arm a has been sampled before round t, and µ̂j,a,t =
1

Na,t

∑t−1
τ=1 rj,aτ ,τ1{aτ = a} the corresponding empirical

mean of agent j’s reward on arm a. Our main algorithm
maintains a confidence bound for the mean reward matrix
µ⋆ at every round. Let µ̂t = (µ̂j,a,t)j∈[N ],a∈[K] denote the
estimated mean reward matrix and wt = (wj,a,t)j∈[N ],a∈[K]

the confidence bound matrix for round t.

4 Algorithms
Our UCB algorithm, Algorithm 1, first selects each arm

once in order to obtain an initial estimate µ̂ for µ. Then,

8160



Algorithm Regret Bound Efficient Reference

Explore-First Õ
(

3
√

NKT 2 ·min{N,K}
)

✓ (Hossain, Micha, and Shah 2021), Theorem 1

ϵ-Greedy Õ
(

3
√

NKT 2 ·min{N,K}
)

✓ (Hossain, Micha, and Shah 2021), Theorem 2

UCB Õ
(
K
√
NT ·min{N,K}

)
✗ (Hossain, Micha, and Shah 2021), Theorem 3

Algorithm 1 Õ
(
NK +

√
NKT

)
✓ Theorem 4.5

Algorithm 2 Õ
(
N2K +

√
KT

)
✗ Theorem 4.6

Table 1: Fair algorithms for the MA-MAB problem.

Algorithm 1: Fair multi-agent UCB algorithm
1: input: K,N, T, δ
2: for t = 1 to T do
3: if t ≤ K then
4: πt ← policy that puts probability 1 on arm t
5: else
6: ∀j, a, µ̂j,a,t =

1
Na,t

∑t−1
τ=1 rj,aτ ,τ1{aτ = a}

7: ∀j, a, Uj,a,t = min(µ̂j,a,t + wj,a,t, 1)
8: πt ← argmaxπ∈∆K NSW(π, Ut)
9: end if

10: Sample at from πt

11: Observe rewards {rj,at,t}j∈N

12: Nat,t+1 ← Nat,t + 1
13: end for

it computes the upper confidence bound estimate Ut =
{Uj,a,t}j∈[N ],a∈[K] of the true mean for each arms a of N
agents and finds a policy πt that optimizes the Nash social
welfare function given Ut. Due to the log-concavity of Nash
social welfare, we use standard convex optimization tools
to optimize log(NSW(π, Ut)) and simultaneously optimize
NSW(π, Ut).

This approach differs from the UCB algorithm in Hossain,
Micha, and Shah (2021) in two aspects. First, the optimization
step in their UCB algorithm uses an additive regularization
term in the objective rather than on the estimate µ̂, and is
therefore not log-concave. Second, our confidence interval
is defined in terms of the empirical mean and as a result our
confidence interval is about a factor of

√
1− µ̂j,a,t tighter

than that of Hossain, Micha, and Shah (2021). As our proof
involves bounding the regret by the Lipschitz continuity of
the Nash social welfare, our confidence interval allows for a
careful analysis of the algorithm.

Note that the UCB algorithm in Hossain, Micha, and Shah
(2021) is horizon-independent. Although Algorithm 1 re-
quires the value of the time horizon T as input, it can be
easily modified to be horizon-independent. One approach
is to modify the confidence interval wj,a,t so it becomes a
function of the current time step, t , rather than the time hori-
zon, T . Specifically, both ln(4NKT/δ) terms of wj,a,t in
Algorithm 1 would become ln(8NKt2/δ). Lemma 4.2 and
Theorem 4.5 can be easily adapted to the new confidence
interval. The horizon-independent variant of our algorithm

would have the same regret bound of Õ
(
NK +

√
NKT

)
.

Overall approach: Our objective is to bound the re-
gret

∑
t∈[T ] NSW(π⋆, µ⋆) − NSW(πt, µ

⋆). Observe that
NSW(·, ·) is monotone in the second argument so
NSW(π⋆, Ut) ≥ NSW(π⋆, µ⋆). By the optimality of πt,
we also have NSW(πt, Ut) ≥ NSW(π⋆, Ut). Thus, we can
reduce the problem to bounding

∑
t∈[T ] NSW(πt, Ut) −

NSW(πt, µ
⋆).

The key idea to bound the regret in a single round t is to
look at the expected reward of each agent j if the mean reward
was Ut. Formally, let gj,t =

∑
a∈[K] πa,t(1 − Uj,a,t) =

1−
∑

a∈[K] πa,tUj,a,t. If there are a lot of agents with large
gj,t, then the Nash product NSW(πt, Ut) =

∏
j (1− gj,t) is

small and the regret is therefore small. More precisely, we
consider two cases depending on whether there exists a p ≥ 0
such that the set of agents {j ∈ [N ] : gj,t ≥ 2−p} is of size
at least 3 · 2p ln(T ). If such a p exists, then

NSW(πt, Ut) ≤ (1− 2−p)3·2
p lnT ≤ 1

T 3

As a result, the regret of round t is negligible.
We now need to bound the regret of rounds where no such

p exists. The key idea is to show that when no p exists, the
upper confidence bounds are on average very close to the true
means. For intuition, suppose the following similar statement
holds. Let g′j,t =

∑
a∈[K] πa,t(1− µ̂j,a,t) and for all p ≥ 0,

the set of agents {j ∈ [N ] : g′j,t ≥ 2−p} is of size at most
3 · 2p ln(T ). Given this condition we can bound

∑
j∈[N ]

g′j,t ≤
∫ 1

0

[number of agents j s.t. g′j,t ≥ x]dx

≤ 1 + 6 lnT logN

Notice that our estimation error wj,a,t is a function of
1− µ̂j,a,t and we showed that 1− µ̂j,a,t is small on average.
Thus, by making a careful averaging argument, we can show
that the upper bound Ut is close to µ⋆ on average. The regret
bound then follows from the smoothness of the function
NSW(πt, ·). The actual proof has to overcome additional
technical challenges due to the difference between the desired
g′j,t and the actual g,t.
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Analysis
We seek to bound

∑
t∈[T ] NSW(πt, Ut)−NSW(πt, µ

⋆) us-
ing the smoothness of the NSW objective. We include the
missing proof of the Lipschitz-continuity property and the
other lemmas in the appendix.
Lemma 4.1. (Lemma 3, (Hossain, Micha, and Shah 2021))
Given a policy π ∈ ∆k and reward matrices µ1, µ2 ∈
[0, 1]N×K , we have∣∣NSW(π, µ1)−NSW(π, µ2)

∣∣ ≤ ∑
j∈[N ]

∑
a∈[K]

πa

∣∣µ1
j,a − µ2

j,a

∣∣
Lemma 4.1 implies that a Lipschitz-continuity analysis

for bounding
∑

t∈[T ] NSW(πt, Ut) − NSW(πt, µ
⋆) would

benefit from a tight confidence bound on the means of the re-
wards. The following lemma proves a confidence interval that
is about factor of

√
1− µ̂j,a,t tighter than that of Hossain,

Micha, and Shah (2021).
Lemma 4.2. For any δ ∈ (0, 1), with probability at least
1 − δ/2, ∀ t > K, a ∈ [K], j ∈ [N ],

∣∣µ⋆
j,a − µ̂j,a,t

∣∣ ≤√
12(1−µ̂j,a,t) ln(4NKT/δ)

Na,t
+ 12 ln(4NKT/δ)

Na,t
= wj,a,t.

Our confidence bound wj,a,t in Lemma 4.2 has

a Õ
(√

1−µ̂j,a,t

Na,t

)
term and a Õ

(
1

Na,t

)
term. Using

Young’s inequality, we can bound both the first term by
Õ
(
(1− µ̂j,a,t) +

1
Na,t

)
, and thus we have

wj,a,t ∈ Õ

(
(1− µ̂j,a,t) +

1

Na,t

)
. (1)

As mentioned above, if there are a lot of agents with large
gj,t at round t, then the regret will be negligible. Thus, our
main goal is to analyze the regret for rounds t’s when there are
not enough such agents. The following lemma formalizes the
intuition and bounds the sum of expected empirical reward
over all agents by the confidence intervals wt. In other words,
it bounds the (1− µ̂j,a,t) term of Equation 1 over all actions
a and agents j.
Lemma 4.3. Define gj,t =

∑
a∈[K] πa,t (1− Uj,a,t), and

S(t, p) = {j for j ∈ [N ] : gj,t ≥ 2−p} . If |S(t, p)| < 2p ·
3 lnT for all p ≥ 0, then∑

j∈[N ]

∑
a∈[K]

πa,t(1− µ̂j,a,t)

≤ 1 + 6 lnT logN +
∑
j∈[N ]

∑
a∈[K]

πa,twj,a,t.

Lemma 4.4 bounds the error incurred by the 1
Na,t

term of
Equation 1. We carefully analyze the martingale sequence
to obtain a tighter bound than that of black-box approaches,
i.e. in Lemma 4.4 we bound the martingale sequence to be
of O(K lnT/K) while Azuma-Hoeffding inequality would
give us O(

√
T ).

Lemma 4.4. With probability 1− δ/2,∑
t∈[T ]

∑
a∈[K]

πa,t/Na,t ≤ 2K

(
ln

T

K
+ 1

)
+ ln(2/δ).

With Lemma 4.3 and Lemma 4.4, we are ready to
bound

∑
t∈[T ] NSW(πt, Ut)−NSW(πt, µ

⋆) by a Lipschitz-
continuity analysis of the Nash social welfare function.

Theorem 4.5. Suppose ∀j, a, t, rj,t,a ∈ [0, 1] and wj,a,t =√
12(1−µ̂j,a,t) ln(4NKT/δ)

Na,t
+ 12 ln(4NKT/δ)

Na,t
, for any δ ∈

(0, 1), the regret of the Fair multi-agent UCB algorithm (Al-

gorithm 1) is RT = Õ
(√

NKT +NK
)

with probability
at least 1− δ.

Proof. Let I ′ ⊆ [T ] denote the set of all rounds t where there
exists p ≥ 0 such that |S(t, p)| ≥ 2p3 lnT . Let I = [K]∪ I ′.
We have ∑

t∈I

NSW(πt, Ut)−NSW(πt, µ
⋆)

≤
∑
t∈I′

NSW(πt, Ut) +K

≤
∑
t∈I′

∏
j∈S(t,p)

(1− gj,t) +K

≤ T
(
1− 2−p

)2p·3 lnT
+K

≤ 1

T 2
+K. (2)

The last inequality is due to the fact that (1 − 1
x )

x ≤
1
e ∀x ≥ 1. We bound the regret of rounds not in I . For any
δ ∈ (0, 1), the events in Lemma 4.2 and Lemma 4.4 hold
with probability at least 1− δ,∑

t/∈I

NSW(πt, Ut)−NSW(πt, µ
⋆)

≤
∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

∣∣Uj,a,t − µ⋆
j,a,t

∣∣
=
∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

∣∣Uj,a,t − µ̂j,a,t + µ̂j,a,t − µ⋆
j,a,t

∣∣
≤ 2

∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

√
12(1− µ̂j,a,t) ln(4NKT/δ)

Na,t

+
∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t
24 ln(4NKT/δ)

Na,t
. (3)

The first inequality follows from Lemma 4.1. The last in-
equality follows from Lemma 4.2 and the definition of Uj,a,t.

By Lemma 4.4, we can bound the error incurred by the
linear term of the confidence interval in Equation 3,∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t
24 ln(4NKT/δ)

Na,t

≤
∑
t∈[T ]

∑
j∈[N ]

∑
a∈[K]

πa,t
24 ln(4NKT/δ)

Na,t

=
∑
j∈[N ]

∑
t∈[T ]

∑
a∈[K]

πa,t
24 ln(4NKT/δ)

Na,t

8162



≤ 24 ln(4NKT/δ)N

(
2K

(
ln

T

K
+ 1

)
+ ln(2/δ)

)
.

(4)

We are done after bounding the remaining term of Equation 3.
For brevity, we bound it without the log term,∑

t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

√
1− µ̂j,a,t

Na,t

≤
∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

(
q(1− µ̂j,a,t)

2
+

1

2q · Na,t

)
.

(5)

The inequality follows from Young’s inequality for q ≥ 0.
Applying Lemma 4.3 to the first term and Lemma 4.4 to the
second term of Equation 5, we have:∑

t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

√
1− µ̂j,a,t

Na,t

≤ q

2

∑
t/∈I

1 + 6 lnT +
∑
j∈[N ]

∑
a∈[K]

πa,twj,a,t


+

N

2q

(
2K

(
ln

T

K
+ 1

)
+ ln(2/δ)

)
≤ q

2

∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

√
12(1− µ̂j,a,t) ln(4NKT/δ)

Na,t

+
q

2

∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

12 ln(4NKT/δ)

Na,t
+ 6q · T · lnT

+
N

2q

(
2K

(
ln

T

K
+ 1

)
+ ln(2/δ)

)
,

where we use the fact that 6 lnT ≥ 6 ln 2 ≥ 1. Suppose
q ∈ (0, 1], applying Lemma 4.4 to the linear term of the
confidence interval, we have∑

t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

√
1− µ̂j,a,t

Na,t

≤ q

2

∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

√
12(1− µ̂j,a,t) ln(4NKT/δ)

Na,t

+
N ln(4NKT/δ)

q

(
2K

(
ln

T

K
+ 1

)
+ ln(2/δ)

)
+ 6q · T · lnT.

Setting q =
√
KN

(
√
KN+

√
T )
√

12 ln(4NKT/δ)
≤ 1 and re-

arranging the terms, we have

1

2

∑
t/∈I

∑
j∈[N ]

∑
a∈[K]

πa,t

√
1− µ̂j,a,t

Na,t

≤ (ln(4NKT/δ))
3/2

(
1 +

√
T√

KN

)
2NK

(
ln

T

K
+ 1

)

+ (ln(4NKT/δ))
3/2

(
1 +

√
T√

KN

)
N ln(2/δ)

+
6T
√
KN

(
√
KN +

√
T )

. (6)

From Equations 2, 3, 4, and 6, we have∑
t∈[T ]

NSW(πt, Ut)−NSW(πt, µ
⋆)

= O
(
(
√
NKT +NK) · polylog(NKT/δ)

)
.

By monotonicity of the Nash-social welfare function
and the optimization step in the algorithm, we have
NSW(πt, Ut) ≥ NSW(π⋆, Ut) ≥ NSW(π⋆, µ⋆) . Thus,∑

t∈[T ]

NSW(π⋆, µ⋆)−
∑
t∈[T ]

NSW(πt, µ
⋆)

= O
(
(
√
NKT +NK) · polylog(NKT/δ)

)
■

An Inefficient Algorithm with Improved Regret

Algorithm 2: Fair multi-agent UCB algorithm with high start-
up cost

1: input: K,N, T, δ
2: for t = 1 to T do
3: if t ≤ 180N2K ln(6NTK/δ) lnT then
4: πt ← policy that puts probability 1 on arm t mod

(K + 1)
5: else
6: ∀j, a, µ̂j,a,t =

1
Na,t

∑t−1
τ=1 rj,aτ ,τ1{aτ = a}

7: Sπ = {π ∈ ∆K :
∑

a∈[K],j∈[N ] πa(1 − µ̂j,a,t) ≤
1 + 2 lnT}

8: if Sπ ̸= ∅ then
9: πt ← argmaxπ∈Sπ

(NSW(π, µ̂t) + π · ηt)
10: else
11: πt ← policy that puts probability 1 on a random

arm a ∈ [K]
12: end if
13: end if
14: Sample at from πt

15: Observe rewards {rj,at,t}j∈N

16: Nat,t+1 ← Nat,t + 1
17: end for

Algorithm 2 is able to obtain a tighter regret bound in
terms of T by first pulling each arm Õ(N2) times, then
selecting πt to optimize the Nash Social Welfare on µ̂t plus
an additive term π · ηt, where ηt = {ηa,t}a∈[K] is a vector.
The additive term gives an upper bound on |NSW(π, µ∗)−
NSW(π, µ̂t)|, and by the optimization step we obtain that
for all t > Õ(N2K),

NSW(π∗, µ∗) ≤ NSW(π∗, µ̂t) +
∑

a∈[K]

π∗
a · ηa,t
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≤ NSW(πt, µ̂t) +
∑

a∈[K]

πa,t · ηa,t

≤ NSW(πt, µ
∗) + 2

∑
a∈[K]

πa,t · ηa,t.

Thus, by bounding
∑

t∈[Õ(N2K),T ]

∑
a∈[K] πa,t · ηa,t, we

obtain a bound on the total regret:
Theorem 4.6. Suppose ∀j, a, t, rj,t,a ∈ [0, 1], wj,a,t =√

12(1−µ̂j,a,t) ln(6NKT/δ)
Na,t

+ 12 ln(6NKT/δ)
Na,t

, and

ηa,t =Õ(
√
K/T )

∑
j∈[N ]

(1− µ̂j,a,t

+ Õ(
√
T/K +

√
N)

1

Na,t

+O(1/
√
N)

∑
j∈[N ]

wj,a,t

for any δ ∈ (0, 1), the regret of Algorithm 2 is RT =

Õ
(√

KT +N2K
)

with probability at least 1− δ.

We defer the proof of this theorem and the details of
the constants and log terms in the O and Õ of η to the
appendix. At a high level, this bound comes from using
a tighter bound in place of Lemma 4.2, where we bound∣∣∣∑j∈[N ] µ

∗
j,a − µ̂j,a,t

∣∣∣ instead of
∣∣µ∗

j,a − µ̂j,a,t

∣∣. We also an-
alyze the regret at each time step t using

NSW(π, µ̂t) =
∏

j∈[N ]

(
Ea∼πµ

∗
j,a + Ea∼π(µ̂j,a,t − µ∗

j,a)
)
.

Since NSW(π, µ∗) =
∏

j∈[N ] Ea∼πµ
∗
j,a, we can bound

NSW(π, µ∗)−NSW(π, µ̂t) by

N∑
m=1

∑
{B⊆[N ]:|B|=m}

∏
j∈B

Ea∼π(µ̂j,a,t − µ∗
j,a)

Ea∼πµ∗
j,a

,

which drops the leading factor
∏

j Ea∼πµ
∗
j,a ≤ 1 from the

bound. Note that here the regret is bounded by Ea∼π(µ̂j,a,t−
µ∗
j,a) as opposed to Ea∼π|µ̂j,a,t − µ∗

j,a| in Lemma 4.1. Ana-
lyzing the terms with m = 1 and m ≥ 2 separately allows
us to derive the bound ηa,t in our algorithm.

The algorithm obtains a bound in T which matches the
known lower bound O(

√
KT ) up to logarithmic terms, at

the tradeoff of a high initial cost for pulling each arm Õ(N2)
times. Additionally, similar to the UCB algorithm of (Hos-
sain, Micha, and Shah 2021) the algorithm uses an additive
regularization term in its optimization step and therefore does
not have a known efficient implementation.

5 Experiments
We test Algorithm 1 and the UCB algorithm from (Hos-
sain, Micha, and Shah 2021) with both αt = N and
αt =

√
12NK log(NKt), although we exclude the sec-

ond αt from the results because it was outperformed by the
other algorithms in every test. We test three pairs of (N,K):

a small size (4, 2), a medium size (20, 4), and a large size
(80, 8). For each pair (N,K) we test the algorithms on 5
values of µ⋆ chosen randomly from 1 minus an exponential
distribution with mean 0.04, and rounded up to 0.1 in extreme
cases. When an action a ∈ [K] is taken, we draw the rewards
for each agent j ∈ [N ] from a Bernoulli distribution with
p = µ⋆

j,a. For the optimization step, we round the empirical
mean up to 10−3 since this is a divisor in gradient computa-
tions. We also optimized the additive terms in both algorithms
using a constant factor found through empirical binary search:
the additive term wj,a,t in Algorithm 1 is scaled by 0.5, and
the additive term in the optimization step of (Hossain, Micha,
and Shah 2021) is scaled by 0.8.1

In each algorithm we compute πt using the projected gra-
dient ascent. For Algorithm 1, we take advantage of the
log-concavity of the Nash Social Welfare function and the
monotonicity of the logarithm and optimize the log of the
objective in the gradient ascent.. The UCB algorithm from
(Hossain, Micha, and Shah 2021) computes the policy πt

as argmaxπ NSW(π, µ̂t) + αt

∑
a∈[K]

(
πa ·

√
log(NKt)

Na,t

)
,

which is no longer a log-concave objective due to the lin-
ear terms (Hossain, Micha, and Shah 2021). We can address
this issue to some degree by allowing the gradient ascent to
run substantially longer: for Algorithm 1 the gradient ascent
terminates after the objective changes by less than 2 · 10−4

after 20 iterations, and for (Hossain, Micha, and Shah 2021)
the ascent terminates after changing less than 10−6 after 30
iterations. By tightening the termination conditions we make
it more difficult for the ascent to hang on a suboptimal po-
sition in (Hossain, Micha, and Shah 2021) at the tradeoff of
longer runtime. Even at this point, we still see instability in
the regret graph over time with the non-concave optimization.
We include the algorithm none-the-less as it is the only other
existing algorithm for fair multi-agent multi-armed bandits
with regret on the order of O(

√
T ).

Table 2 shows the average regret of the two algorithms
after 200,000 iterations and 500,000 iterations over the 5
independent instances for each size, which are the same set
of instances for both algorithms. Figure 1 shows cumulative
regret graphs of the algorithms’ instances for each setting of
N and K.

In all cases, Algorithm 1 outperforms the previous best
algorithm as T becomes large. Once the

√
T terms in the

regret bounds become dominant, the
√
K ·
√
minN,K factor

saved in Algorithm 1 over the previous algorithm becomes
apparent. This is especially true as N and K are larger. For
the small case where (N,K) = (4, 2), both regret curves take
on the shape

√
T , with a growing separation between the two

as T increases. However, it is worth noting that (Hossain,
Micha, and Shah 2021) does outperform at early iterations.
This is due to the difference in the two UCB approaches.
Specifically, (Hossain, Micha, and Shah 2021) does not make
any changes to µ̂ in the optimization step, so their algorithm
is able to begin improving immediately. Algorithm 1 adds
the confidence bound to µ̂ and then caps all elements in µ̂

1The repository is hosted at https://github.com/MetricJones/Fair-
MultiAgent-MultiArmed-Bandits.
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Figure 1: Sample Cumulative Regret Graphs for each setting. (N,K) is (4,2) in the top row, (20,4) in the center row, and (80,8)
on the bottom row. The regret graphs show up to 20,000 iterations in the first column, 100,000 iterations in the second column,
and 500,000 iterations in the third for Algorithm 1 (blue) and the UCB (red) from (Hossain, Micha, and Shah 2021).

N K Algorithm 1 (Hossain, Micha, and Shah 2021) NSW(π⋆, µ⋆)
t = 2 · 105 t = 5 · 105 t = 2 · 105 t = 5 · 105

4 2 1222 1806 1226 1832 0.9428± 0.0370
20 4 8313 15322 10801 21655 0.6353± 0.0358
80 8 4521 9966 5230 12874 0.0808± 0.0154

Table 2: Average cumulative regrets over 10 values of µ∗, with T = 5 · 105

at 1, so until one of the terms in the upper confidence bound
drops below 1 the algorithm will choose a uniform π, which
accounts for the large linear cumulative regret in the first 7500
iterations before the upper confidence bound is non-trivial
and Algorithm 1 begins to outperform (Hossain, Micha, and
Shah 2021). For the small size, it seems that Algorithm 1
performs better as long as the number of iterations is at least
25,000.

In the medium case, the linear section in the regret curve
of Algorithm 1 still does not outperform (Hossain, Micha,
and Shah 2021), but (Hossain, Micha, and Shah 2021) sees a
steeper regret curve which narrows the gap for small T and
creates a larger regret gap for large T . In the largest case,
where (N,K) = (80, 8), we see that (Hossain, Micha, and
Shah 2021) barely ever outperforms Algorithm 1 even at
small T when Algorithm 1’s upper confidence bound is a
matrix of 1s. At high values of T we still see that Algorithm
1 outperform and we observe that the other factors in the

√
T

terms begin to play a significant role. Algorithm 1’s regret
curve still takes on a

√
T shape although it is much gentler

than the smaller cases, which can be at least partially at-
tributed to the fact that the instantaneous regret at each round
is bounded by the optimal value of the Nash social welfare,
which is the product of expected rewards. The algorithm from
(Hossain, Micha, and Shah 2021) still appears almost linear
even at 500,000 iterations, as substantially larger values of T
are required to overcome the factors of N and K and see the√
T shape. There is still a substantial difference between the

cumulative regrets of the two algorithms as T increases.
Our experiments support the theoretical gains of our results.

We see that at small values of T , under 10,000, our algorithm
may be outperformed by (Hossain, Micha, and Shah 2021)
for small sizes of N and K. This effect becomes significantly
weaker as N and K increase. At sufficiently large T , on
the order of 25,000, Algorithm 1 outperforms the previous
state-of-the-art with increasing significance and consistency
as K, N , and T increase. Additionally, as T increases the
regret curves of Algorithm 1 are significantly smoother than
those of the previous algorithm due to the efficiency of the
optimization step.
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