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Abstract

Unsupervised pre-training algorithms for graph representa-
tion learning are vulnerable to adversarial attacks, such as
first-order perturbations on graphs, which will have an impact
on particular downstream applications. Designing an effec-
tive representation learning strategy against white-box attacks
remains a crucial open topic. Prior research attempts to im-
prove representation robustness by maximizing mutual infor-
mation between the representation and the perturbed graph,
which is sub-optimal because it does not adapt its defense
techniques to the severity of the attack. To address this issue,
we propose an unsupervised defense method that combines
local and global defense to improve the robustness of rep-
resentation. Note that we put forward the Perturbed Edges
Harmfulness (PEH) metric to determine the riskiness of the
attack. Thus, when the edges are attacked, the model can au-
tomatically identify the risk of attack. We present a method of
attention-based protection against high-risk attacks that pe-
nalizes attention coefficients of perturbed edges to encoders.
Extensive experiments demonstrate that our strategies can en-
hance the robustness of representation against various adver-
sarial attacks on three benchmark graphs.

Introduction
Graphs are commonly used to simulate real-world relation-
ships (Wu et al. 2022), such as social networks (Zhang et al.
2020), biological interaction graphs (Vlaic et al. 2018) and
e-commerce networks (Eswaran et al. 2017). In recent years,
graph neural networks (GNNs) (Welling and Kipf 2016)
based on graph-structured data have gained a lot of attention
due to their outstanding performance in many applications,
such as node classification (Jin et al. 2021a; Yu et al. 2021),
link prediction (Kipf and Welling 2016), and graph cluster-
ing (Bo et al. 2020; Jin et al. 2021b).

Due to the high cost of labels and complexity of graph
neural network training, many studies (Velickovic et al.
2019; You et al. 2020; Peng et al. 2020; Qiu et al. 2020)
have moved towards establishing pretraining graph models
on unlabeled data and feeding the learned representations to
off-the-shelf machine learning models for applicable down-
stream tasks. Although pre-trained models on graphs have
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Figure 1: The overview of (a) a graph attacked under differ-
ent peturbed edges and (b) accuracy of different unsurper-
vised models under various perturbation rates.

shown encouraging outcomes, (Xu et al. 2022) indicates
that these models based on GNN are also more vulnerable
to adversarial attacks on graphs (Zügner, Akbarnejad, and
Günnemann 2018; Zügner and Günnemann 2019; Xu et al.
2019), which affect the representation ability of the entire
graph and then transmit the incorrect representation to all
downstream tasks. Even subtle perturbations have a consid-
erable impact on the learned graph representation, thereby
degrading the performance of downstream tasks such as se-
vere rumor detection (Sun et al. 2022) and financial supervi-
sion (Paranjape, Benson, and Leskovec 2017). For example,
hackers invading a bank system and making subtle modifica-
tions to the clean data cause the system to provide the same
credit limit to two unconnected clients in accordance with
the attacker’s instructions.

Figure 1(a) provides an overview of several attacks on the
graph pre-training process. The main purpose of these at-
tacks is to perturb a clean graph to alter its representation and
jeopardize applications that are used afterward. However, we
find that numerous studies (Xu et al. 2019; Zügner, Akbarne-
jad, and Günnemann 2018; Zügner and Günnemann 2019)
have demonstrated that perturbing various edges can result
in different degrees of damage to representations. The de-
gree of damage produced by perturbing an edge is primarily
determined by the edge’s sensitivity, and a small number of
perturbations on edges with high sensitivity can significantly
reduce the representation capability of the model. The exist-
ing robust GNN pre-training models (Xu et al. 2022; Zhu
et al. 2022; Li et al. 2022a; Yang, Zhang, and Yang 2021)
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disregard the requirement for sensitive edge protection. Fig-
ure 1(b) shows the trend of decreasing classification accu-
racy of traditional global defense-based robust representa-
tion learning methods as the proportion of perturbed edges
increases. It is evident that the decreasing trend in classifica-
tion accuracy of conventional approaches is turbulent and
unable to protect critical edges properly. During the pre-
training process of the graph neural network, we anticipate
locating sensitive edges and injecting vaccinations, as well
as performing global robust representation learning, thus en-
suring that the classification accuracy declines steadily and
gradually.

Consequently, there are two issues that need to be re-
solved: 1) How should sensitive edges be identified? 2) How
can sensitive edges be protected from harmful attacks?

In this paper, we first present the Perturbed Edges
Harmfulness (PEH) to distinguish whether the attacked
edges are sensitive; then, an information theory-based mea-
sure is then used to quantify whether the attacked edges are
harmful. Next, we design an algorithm to improve the ro-
bustness of the representation from local and global perspec-
tives, using a combination of local sensitive edge defense
and global defense methods. In local defense, we propose a
penalty attention mechanism to mitigate the detrimental ef-
fects of perturbations on sensitive edges without sacrificing
the representations of other nodes. In addition, we concen-
trated on adding edges rather than removing them, as adding
edges is more effective than removing them and requires
more protection (Wu et al. 2019; Li et al. 2022a). Adding an
edge between two distant nodes will have a significant effect
on the graph’s structure, whereas the nodes of the deleted
edge may be connected via higher-order neighbors. Further-
more, locating sensitive edges is an enormous challenge that
is directly tied to their position. To acquire perturbed data
under the most perilous attack, we employ greedy and gra-
dient descent-based topological attacks and project the most
influential perturbation to the constraint set using convex
relaxation on the boolean variables (Xu et al. 2019). Ulti-
mately, we propose a whole optimization problem to investi-
gate the trade-off between global and local defense. Overall,
our main contributions are:

• We present a new robust unsupervised pre-training ap-
proach that combines global and local defense for im-
proving robustness.

• We propose a novel vaccination method for protecting
sensitive edges. Through the suggested penalized aggre-
gation mechanism, harmful effects of perturbed sensitive
edges can be mitigated.

• We conduct several experiments on real-world datasets
to demonstrate the robustness of our approach against a
variety of adversarial attacks.

Preliminaries

In this section, we first introduce the notations used in this
paper, then briefly describe the preliminaries of our method.

Graph Representation Learning
For unsupervised graph representation learning, usu-
ally G=(V,E) can represent a graph, where V =
{v1, v2 . . . vn} denotes the set of nodes, E ∈ V × V de-
notes the set of edges, and we also use an adjacency matrix
A ∈ {0, 1}|V |×|V | to represent the set of edges E, which is
a symmetric matrix with elements Aij = 1 if (vi, vj) ∈ E,
Aij = 0 otherwise. X ∈ R|V |×d denotes the feature matrix.
In the following discussion, we use G =(A,X) to denote
the graph.

The objective is to learn an encoder e: R|V |×|V | ×
R|V |×d → R|V |×d′

, which maps input nodes to a low-
dimensional representation z without label information,
where z can be used in downstream tasks such as node clas-
sification and graph clustering.

Mutual Information
Mutual information I (X;Y ) is an entropy-based measure
of the mutual dependence between variables X and Y, and
can be interpreted as the degree of uncertainty reduction of
another random variable Y once the value of variable X is
known. It is related to conditional entropy, defined as:

I (X;Y ) = H (X)−H (X|Y ) , (1)

where H (X) denotes the entropy of variable X , and
H (X|Y ) denotes the entropy of the conditional probabil-
ity of X given Y. Currently, many researchers use mutual
information in the application of graph data, such as rec-
ommendation (Yuhao et al. 2022), sociology (Coutrot et al.
2022), and bioinformatics (Li et al. 2022b). DGI (Velick-
ovic et al. 2019) is built upon the InfoMax principle (Hjelm
et al. 2018), which prescribes to learn an encoder e that max-
imizes the mutual information between the graph and its rep-
resentation., i.e., I(G; e(G)).

Projected Gradient Descent Attack
The Projected Gradient Descent (PGD) (Madry et al. 2018)
attack, one of the most effective first-order adversarial meth-
ods, is a greedy attack method onto the l∞-bound at the end
of each iteration. The PGD adversarial example can be writ-
ten as:

xt+1=
∏

∥x+s∥∞<ϵ
(xt+αsgn(∇xL(θ, x))) (2)

where sgn(·) is a signum function, α is the attack step, which
is similar to learning rate, t denotes the iteration index of
PGD, and

∏
∥x+s∥ is the projection operator over the con-

straint set x+ s on the ϵ-ball in the l∞-norm.

Methods
This section begins with a discussion of min-max adversar-
ial attacks. Then, we present a mechanism for determining
the harmfulness of adversarial attacks, followed by the intro-
duction of two distinct defense strategies, namely local and
global defense. Finally, we present the technical details and
optimization issues associated with our methods.
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Min-Max Adversarial Attack
Here, we introduce how to attack the graph during the graph
pre-training. By perturbing the structures of the original
graph G, it becomes a new graph G∗ = (A∗,X), where the
adversarial attack can be defined as a bilevel optimization
problem:

max
G∗∈PG

∆

L(G∗, fθ∗(G∗))

s.t.θ∗=argmin
θ

L(G, fθ(G))
, (3)

where PG
∆ is the space of the perturbation matrix ∆ on the

input graph G. L(·) is a contrastive loss that is the negative
mutual information between the local representations and
the global graph summary, and fθ(·) is a surrogate model.
The attacker obtains the parameters θ∗ by minimizing the
training loss L(·) of the target model. How to quickly get
the polluted graph remains an urgent problem, so we choose
the projected gradient descent (PGD) method (Madry et al.
2018), which is proved to be the best first-order attack. How-
ever, PGD is not appropriate for boolean-type graph struc-
tures. Inspired by (Xu et al. 2019), we perform convex relax-
ation on the Boolean variables and then use the PGD method
on the basis of the continuation assumption. If the attack
causes high-risk harm to the model’s representation, conven-
tional learning approaches cannot obtain robust representa-
tions effectively. In the subsequent section, we introduce the
overall framework of our robust representation learning for
the adversarial attack.

Quantifying Harmfulness of Adversarial Attack
We propose the PEH to quantify the harmfulness of adver-
sarial attacks. Intuitively, attacked edges could be considered
sensitive if learned representations degrade significantly fol-
lowing adversarial attacks on contrastive learning. We mea-
sure the difference in representation quality before and after
adversarial attacks using the variation in mutual information,
which also reflects the side effects of the attack.

We provide a comprehensive overview of identifying the
harmfulness of an attack by utilizing mutual information.
If the mutual information between the attacked graph and
the encoded representation reduces dramatically after the
adversarial attack, this implies that the attack has severely
degraded the representation capacity. In other words, other
nodes would be required to learn the perturbed graph, hence
limiting the expressive power of the encoder. Therefore,
the attacked edges deemed sensitive should be vaccinated
against adversarial attacks to improve the representation ca-
pability. Furthermore, we ought not specially to protect the
attacked edge if the value of PEH(θ) is not readily high.
PEH(θ) can be defined as:

PEH(θ) = I (G; fθ (G))− I (G∗; fθ (G
∗)) , (4)

where I (G∗; fθ (G
∗)) refers to the mutual information be-

tween the perturbed graph and its representation. Therefore,
by definition, PEH(θ) describes the divergence between the
encoder’s capacity to represent clean and perturbed graphs.
The higher the value of PEH(θ), the current encoder is less
expressible in the perturbed graph, which also means that

this attack is dangerous to the current encoder. Formally, per-
turbed edges are sufficiently hazardous when PEH(θ) > h.

Though some works (Xu et al. 2022) propose graph rep-
resentation vulnerability (GRV) to describe the robustness
of a representation and quantify the vulnerability of graph
encoders, they have failed to notice the degree of vulnerabil-
ity. Imagine that if the sensitive edges are attacked without
specific protection, the encoder will forcibly change the rep-
resentation structure based on the perturbed graph, which
would affect the overall graph representation and then affect
downstream tasks, resulting in poorer node classification
performance. Following, we introduce our proposed strate-
gies for protecting sensitive edges.

Defense Methods
After judging whether the attacked edge is sensitive, we pro-
pose two different defense strategies, i.e., local and global
defense. If the PEH(θ) > h, we adopt the local defense
strategy, otherwise global defense, where θ denotes the cur-
rent parameter.

Local defense. To formulate the protection strategy for
sensitive edges, we first attempt to explain why the graph
encoder is susceptible to adversarial attacks. Graph encoders
employ aggregation to acquire adjacent node representations
during unsupervised learning. If the graph’s edges are dis-
rupted, “false” neighbors will be treated as “true” neigh-
bors throughout the aggregating process and their infor-
mation will be propagated to other nodes. So, we use an
attention-based penalty mechanism on the encoder of unsu-
pervised pre-training. Firstly, we use Graph Attention Net-
works (GAT) (Veličković et al. 2018) as the graph encoder
and define the attention coefficient from node vi to node vj :

rij= LeakyReLU(a[Wzi||Wzj ]), (5)

where W is the parameter responsible for increasing the
dimension of the characteristics of nodes, || indicates the
concatenation of vectors, a represents the mapping of the
spliced high-dimensional features to a real number, and we
used a single-layer feedforward neural network in there. For
node i, calculate its first-order neighbor node j ∈ Ni and
their attention coefficient rij one by one. After that, the at-
tention coefficient associated with node vi is further normal-
ized:

aij= softmax(rij)=
exp(rij)∑

k∈Ni
exp(rik)

. (6)

Once obtained, the features of adjacent nodes are weighted
and summed according to the calculated attention coefficient
to update the features of each node i.

zi = ||Kk=1σ(
1

K

∑
j∈Ni

akijW
kzj), (7)

where σ(·) represents a nonlinear activation function and akij
denotes the weight coefficient calculated by the k-th atten-
tion mechanism. However, this method of message passing
can not distinguish the perturbed edges, and naturally ob-
tains the “fake message” passed from them. We hope to re-
duce negative effects by reducing the attention coefficients
of all perturbed edges in the polluted graph. Inspired by the
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PA-GNN method (Tang et al. 2020), we evaluate the influ-
ence of perturbed edges on the whole system by accumulat-
ing the attention coefficient of the perturbed edges:

Sp =
∑K

k=1

∑
i,j∈E∗

aki,j , (8)

where E∗ denotes the perturbed edges, i.e., added edges. K
represents the number of independent attention mechanisms.
The smaller Sp, the less influence the perturbed edges have.
In order to further minimize Sp, a loss function is designed
to simultaneously decrease the attention values of the per-
turbed edges and increase the attention values of the clean
edges:

Latt=min
Θ

∑K
k=1 (

∑
i,j∈E∗ aki,j −

∑
i,j∈E aki,j)

K(E + E∗)
, (9)

where E and E∗ represent the number of original and per-
turbed edges respectively. Note that we try to directly reduce
the attention coefficients aij received by all added edges, re-
sulting in the overall loss being unable to converge. In ad-
dition, we also need to consider the expressive power of the
graph encoder. In our scenario, we combine Latt with the
mutual information entropy loss Lm to produce the local
protection loss, that is:

Ll = Lm + βLatt, (10)

where β is a hyper-parameter to control the trade-off be-
tween the local protection coefficient. Lm is the negative
mutual information between the clean graph and the en-
coded representation.

Let’s review the procedure once more. We first extract the
sensitive edges from the clean graph using the PGD attack
method, and then we propose the local defense (injection
vaccination) strategy to reduce the sensitive edges’ message-
passing ability. Naturally, we also rely on clean graphs to
enhance the expressive power of graph encoders. In the fol-
lowing section, we will discuss how to implement the global
defense when PEH(θ) < h.

Global defense. A lower value of PEH(θ) implies the at-
tack causes less danger to the current encoder, we can imple-
ment global defense that is not so targeted to the perturbed
edges. We choose a simpler approach to improve the global
robustness of the model for unsupervised graph representa-
tion learning. That is, by maximizing the mutual informa-
tion of the parameters and perturbed graphs, we update the
global representation. We maximize the mutual information
between the perturbed graph and its representation, hence
improving the representation’s overall robustness. The fol-
lowing are the comparative learning objectives for global
defense:

Lg = −I (G∗; f (G∗)) . (11)

However, calculating mutual information is challenging. In
the following section, we discuss how to solve optimization
issues and construct a robust framework for learning graph
representations.

Algorithm 1: Optimization algorithm

Input: Graph G = (A,X), learning rate δl, δg , hyper-
parameters α, β.

Output: Model parameters Θ
1: Randomly initialize Θ.
2: While not early-stop do
3: generate adversarial graph G∗ based on Eq.3
4: PEH(θ)← I (G; fθ (G))− I (G∗; fθ (G

∗))
5: if PEH(θ) > h then
6: update parameters Θ based on Eq.13
7: else
8: update parameters Θ based on Eq.14
9: end if

10: end while
11: Return Θ

Optimization
In this section, we introduce the optimization of our pro-
posed model. The main challenge is how to maximize the
mutual information between encoded representations and
global summaries of graphs. Inspired by DGI, we use the bi-
nary cross-entropy loss between the positive examples and
the negative examples from the original graph as follows:

Lm(G, e)=EG[logD(z,s)] + EG̃[log(1−D(z̃, s))], (12)

where z denotes the local representation encoded by GAT
and s is a readout function to summarize the global graph-
level representation, i.e., accumulating all local representa-
tions. D(z,s) represents the learnable bilinear discrimina-
tor by default, the probability scores, assigned to a patch-
summary pair of local and global representations. z̃ denotes
the representation of negative samples (X̃, Ã) with the cor-
ruption function C, i,e., C (X,A) = (X̃, Ã). To effectively
maximize mutual information of positive examples, we use
the Jensen-Shannon divergence based on the product of joint
distribution and marginal distribution. We further fine-tune
the polluted graph G∗ by generating perturbations on the
clean graph to enhance the robustness of the graph, i.e., the
worst-case adversarial attack. We then calculate the PEH
to determine whether the perturbed edges are sensitive. If
PEH(θ) > h, we try to inject the vaccine against sensitive
edges, i.e., local protection. The model parameters Θ are up-
dated as follows:

Θ← Θ− δl∇ΘLl. (13)

When PEH(θ) < h, the risk of this attack is low, and the
model only has to be taught global representation robustness
using stochastic gradient descent (SGD) in Eq.11.

|V | |E| |Feature| |Class|
Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6
Polblogs 1490 16714 - 2

Table 1: Statistics of the experimental data
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Dataset Model Node classification (Acc%)) Node clustering (NMI%)
0 0.3 0.6 0.9 0 0.3 0.6 0.9

Cora

GCN 80.5±0.5 72.7±0.3 66.5±0.7 63.7±0.8 55.3±0.6 45.8±0.5 42.3±0.4 35.5±1.1
GAT 80.9±0.6 74.2±0.9 69.1±2.2 65.3±1.3 51.8±0.4 45.6±1.3 41.5±0.8 38.6±2.0
DGI 80.8±2.0 67.0±1.8 62.2±2.0 54.6±1.0 60.7±2.6 40.6±3.8 33.4±2.3 26.5±3.3

RGCN 79.4±1.1 68.6±2.4 67.9±1.3 60.5±1.7 61.2±0.9 49.3±3.9 37.3±2.0 31.7±2.4
EdgeDrop 82.6±3.5 43.5±7.0 35.0±4.9 26.8±6.7 36.7±5.1 16.5±6.5 9.7±3.2 7.1±3.5
GraphCL 81.2±0.2 68.2±0.2 62.9±0.2 55.0±0.2 60.8±0.3 40.9±0.2 33.6±0.2 26.6±0.3

GRV 79.9±1.5 65.9±1.2 64.1±1.3 58.3±0.7 52.4±1.5 38.4±3.1 35.1±1.9 28.5±1.3
Ours-Wl 75.6±1.5 64.2±0.8 63.5±1.1 58.8±1.2 47.5±2.0 38.4±0.8 35.2±1.7 24.7±1.1

Ours 77.3±2.8 72.1±2.2 69.2±1.3 66.2±1.4 51.1±0.8 46.4±2.6 44.2±3.2 42.1±3.9

Citseer

GCN 69.8±1.2 58.5±0.7 51.2±0.8 49.7±0.2 42.7±1.0 33.8±1.2 23.3±0.6 20.5±0.3
GAT 70.5±0.8 59.3±0.5 52.3±0.3 50.9±1.0 44.9±0.7 32.0±0.3 25.9±0.2 20.4±0.7
DGI 71.2±0.8 56.5±1.1 49.8±1.2 45.5±1.6 47.5±0.5 32.3±0.7 19.1±0.5 14.8±0.3

RGCN 66.9±1.7 59.5±2.2 51.5±1.3 49.8±0.8 39.8±2.4 29.8±3.0 26.7±2.1 17.5±1.8
EdgeDrop 76.8±3.7 54.2±3.5 39.6±3.2 27.8±2.4 15.3±2.7 13.5±1.8 9.1±1.4 6.2±0.6
GraphCL 72.9±0.2 56.4±0.1 52.6±0.2 43.2±0.2 46.6±0.2 25.1±0.2 20.1±0.2 12.9±0.1

GRV 69.2±0.4 59.2±0.4 51.2±0.3 48.0±0.3 45.0±1.7 28.7±0.3 20.2±1.4 16.3±1.2
Ours-Wl 65.8±0.8 52.3±1.5 47.5±1.1 42.8±1.0 37.2±1.6 24.4±1.2 19.0±1.4 15.5±1.3

Ours 67.8±3.1 59.9±2.7 55.6±0.8 51.1±1.1 42.4±2.9 30.1±3.0 28.8±3.7 20.8±4.3

Polblogs

GCN 86.3±0.3 81.1±1.5 80.3±0.7 76.1±2.5 42.3±0.7 35.2±2.5 26.6±1.1 23.8±1.0
GAT 86.7±0.5 82.8±2.8 80.5±0.9 78.7±2.2 44.2±1.5 37.5±3.9 33.8±1.2 28.5±3.0
DGI 84.9±0.6 81.8±0.6 78.3±0.8 75.3±0.7 34.3±2.3 35.5±1.7 30.8±0.4 25.7 ±3.1

RGCN 85.3±0.8 81.7±0.8 79.1±0.4 78.5±0.7 40.7±0.4 32.8±1.3 30.4±1.0 26.7±0.6
EdgeDrop 86.7±3.3 76.7±2.4 72.5±2.0 68.1±1.3 33.2±2.5 21.8±6.6 15.2±4.3 9.7±0.5
GraphCL 86.2±0.2 78.3±0.4 69.0±0.3 67.6±0.4 30.6±0.4 19.3±0.7 10.6±0.4 9.3±0.4

GRV 87.0±0.8 84.2±1.1 82.6±1.5 80.6±2.7 43.5±2.3 37.5±1.8 32.8±0.9 28.1±1.1
Ours-Wl 85.8±0.5 82.9±1.2 80.1±1.4 78.6±0.7 40.3±1.7 40.2±2.1 35.5±1.3 29.8±1.7

Ours 87.4±0.8 85.8±1.3 84.5±1.7 83.3±0.6 45.0±2.7 42.5±1.5 39.1±2.4 35.6±1.2

Table 2: Node classification and clustering performance under PGD attack. 0, 0.3, 0.6, and 0.9 represent the perturbation rates.

Θ← Θ− δg∇ΘLg, (14)
where δl and δg control the learning rate. Overall, Algorithm
1 summarizes the framework for learning local-global ro-
bustness that we presented.

Experiments
We evaluated the robustness of unsupervised graph repre-
sentation learning using three real-world datasets. Specif-
ically, we design experiments to investigate the following
questions. Q1: How well can our approach perform in down-
stream tasks, e.g., node classification and clustering? Q2:
How does our method fare against various adversarial at-
tacks? Q3: What is the distribution of the attention score
over the original and perturbed edges? Q4: How sensitive
is the model to its parameters?

Experimental Setup
Datasets. We use three real-world datasets in our exper-
iments, i.e., Cora, Citeseer (Sen et al. 2008) and Polblogs
(Adamic and Glance 2005). Their detailed statistics are
given in Table 1. Cora and Citeser are citation networks with
nodes representing documents and edges representing cita-
tion relationships. The attributes of nodes are represented as
bag-of-words. Polblogs is a network of political blogs from
a crawl of the front page of the blog. Since the dataset lacks
attributes, we set the attribute matrix to be an identity matrix.

Baselines. We compare our methods with seven baselines
in two categories as listed below:

1) Non-robust graph representation learning
GCN (Welling and Kipf 2016) is a graph convolutional

network model which learns node representations via mes-
sage passing.

GAT (Veličković et al. 2018) leverages multi-head self-
attention to aggregate node features.

DGI (Velickovic et al. 2019) is an unsupervised repre-
sentation learning method that relies on maximizing mutual
information between representations and global summaries
of graphs.

2) Robust graph representation learning
RGCN (Zhu et al. 2019) adapts Gaussian distributions as

hidden representations to “fortify” GCNs against adversarial
attacks.

EdgeDrop (Rong et al. 2020) is a novel and flexible tech-
nique to increase robustness via randomly removing edges
and the message passing reducer technology is introduced,
and we delete 10% edges during training on the DGI surro-
gate model.

GraphCL (You et al. 2020), is a graph contrastive learn-
ing framework that learns unsupervised graph representa-
tions by augmentation for the sake of better robustness.

GRV (Xu et al. 2022) is also an unsupervised learning
method, which designs a robust representation learning al-
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Figure 2: Node classification performance (Acc%) on Polblogs under different attackers

gorithm by using a mutual information-based measure.
Ours-Wl is a variant of our model without local defense.

Attack Methods. We also evaluate how robust our model
is under different adversarial attacks and select four adver-
sarial attack methods.

Nettack (Zügner, Akbarnejad, and Günnemann 2018) is a
targeted attack method. We randomly perturb various nodes
with Nettack, next, we count the total number of perturbed
edges to make it approximate the default perturbation rate.

Meta-attack (Zügner and Günnemann 2019) is a non-
targeted adversarial attack and perturbs the discrete graph
structure via meta-gradients. We set a different perturbation
rate from 0% to 50%, with a step of 10%.

Random perturbation is an attack method that randomly
connects or removes edges from a clean graph, and we de-
sign different perturbation ratios with a step of 10%.

PGD (Xu et al. 2019) is a non-targeted attack, the most
effective first-order adversarial method.

Settings and Parameters. For Cora and Citeseer, ran-
domly assign them to the training, verification, and test sets
in the ratio of 1:1:8. For Polblogs, we randomly select 10%
nodes for training and 80% nodes for testing. We adopt PGD
to generate attacked datasets on clean graphs by default in
the training phase. For our model, we set the parameters
h = 0.2, α = 1 and β = 0.4. At the stage of evaluat-
ing, we consider both the performance and the robustness
of the model, so we employ the four attack methods in-
dicated above, and set different perturbation ratios with a
step of 10%. All comparative learning baselines use a two-
layer GCN as the encoder and use the default setting. For
node clustering tasks, we use normalized mutual informa-
tion (NMI) as the measure. In addition, we run 10 trials and
report the mean and the standard deviation.

Performances in Downstream Tasks against PGD
Attack(Q1)
In this section, we compare the node classification and clus-
tering performance of our proposed model against PGD ad-
versarial attacks at different perturbation rates with seven
baselines. We employ the PGD’s default parameter settings,
obtained from its authors. From Table 2, we find that (i) as
the perturbation ratio rises, so does the performance of our
technique compared with baselines, highlighting the need

for early vaccination; (ii) we can see that our model per-
forms better than Ours-Wl. This also illustrates that the at-
tention penalty mechanism is advantageous for representa-
tion ability in the face of adversarial attacks; (iii) the accu-
racy of a semi-supervised model deviates more noticeably
as the perturbation rate rises. It may be that the increase in
the perturbation rate leads to the inconsistency between the
label information and the perturbed graph.

Performances against Different Adversarial
Attacks(Q2)
In this section, we further evaluate the performance of rep-
resentations against different adversarial attacks, where per-
turbations are defined as adding edges. We adapt some com-
mon attack strategies to the baselines, i.e., PGD, Nettack,
meta-attack, and random perturbation. This time, we exam-
ine the node classification problem on the Polblogs dataset
as an example. This choice is convincing because the afore-
mentioned attack strategies only modify the graph topology,
which is the only piece of information we know regarding
the Polblogs dataset. The experimental results are shown in
Figure 2. From the figures, we observe the following re-
sults: (i) The performance of our model decays slowly when
the perturbation rate goes higher, while other robust mod-
els drop rapidly in most cases. This proves the importance
of vaccinating the sensitive edges; (ii) compared with other
methods, our pre-trained model can defend against differ-
ent adversarial attacks in the downstream tasks effectively.
This is because our method successfully combines and bal-
ances local and global defense to improve the robustness of
the model; (iii) in general, most models perform better when
under Nettack. Because Netstack is primarily used to target
unnoticeable edges, many sensitive edges are not attacked
for this reason; (iv) our model can also defend against ran-
dom attacks. The reason is that these attack methods more
or less change the sensitive edges that need to be specially
protected.

Effects of the Attention Score(Q3)
An interesting question is why our defense strategy using
a global-sensitive protection approach is so robust. If we
can determine what makes representation so robust, we can
avoid costly meta-gradient computations and potentially use
this information to defend against adversarial attacks. We
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Figure 3: Distributions of attention coefficients. We imple-
ment GCN w and w/o LD (local defense) on Cora and pol-
blogs datasets

design an attention visualization task for which we use Eq.6
to calculate attention coefficients. For a fair comparison, we
compute attention scores for each node pair (|V | × |V |)
in the encoder, then naturally normalize them and evaluate
all attention in terms of all node pairs. Generally, the more
relevant two representations are, the more attention coeffi-
cients are scored between them. So we investigate the four
attention coefficient factors with and without the vaccina-
tion mechanism as well as from two datasets respectively in
Figure 3. As shown in Figure 3(a) and Figure 3(c), normal
edges receive relatively higher attention scores when com-
pared to the method of global defense. Simultaneously, per-
turbed edges are compelled to reduce the attention coeffi-
cient between them. We confirm that the ability to punish
perturbation can also be transferred to the encoder. These
figures prove the effectiveness of the penalized aggregation
mechanism of the encoder and the global-local defense al-
gorithm.

Sensitivity Analysis(Q4)
To prove the effectiveness of the design of our model, we
evaluate the sensitivity of our model on the 20% ratio of
PGD perturbation to its two main parameters, i.e., h, and
β. h controls the local defense or global defense and β bal-
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Figure 4: Parameter sensitivity analysis

ances the robustness and ability of representations at local
defense. We explore the sensitivity of the Polblogs dataset.
We vary h from 0 to 0.5 and β from 0 to 1. The results in
Figure 4 demonstrate that our model is not markedly sen-
sitive to changes within certain ranges. However, compared
with values of h, we find extremely minimum values β result
in low performances under perturbation, demonstrating the
proposed local and global defense are both essential. Fur-
thermore. It is worth noting that we fix β at 0.4 and h at 0.2
to achieve the best performance on the Cora and Polblogs
datasets, implying just one kind of defense is not enough
and we need to combine local and global defense to resist
adversarial attacks.

Related Works

In this section, we review related work about robust repre-
sentation training on graphs. Contrastive learning is known
for its cheapness and strong performance, from traditional
methods such as DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) and node2vec (Grover and Leskovec 2016), to graph
contrastive learning, e.g., DGI (Velickovic et al. 2019). Then
hybrid method GMI (Peng et al. 2020) and adaptive aug-
mentation GCA (Zhu et al. 2021) are proposed. However,
representations on graphs are known to be vulnerable to
adversarial attacks. At present, aiming to increase the ro-
bustness of representations has drawn increasing research
interest in the past few years. Most of these works use at-
tacked graphs as a part of data augmentation to learn rep-
resentations. GraphACL (Guo et al. 2022) maximizes the
mutual information using global representations of a per-
turbed graph. RoSA (Zhu et al. 2022) utilizes non-aligned
augmented views and introduces adversarial training to in-
crease its robustness. ArieL (Feng et al. 2022) uses an ad-
versal attack and information regulation to obtain compari-
son samples of the reasonable constraint range that satisfy
the conditions. However, they mostly use perturbed graphs
to learn better representations and do not directly defend
against adversarial attacks. (Xu et al. 2022) introduces graph
representation vulnerability (GRV) to successfully identify
and apply the information of perturbed graphs. Neverthe-
less, they fail to recognize that different perturbations result
in various destructions of the representation, making it diffi-
cult to identify and safeguard problematic edges.

Conlusion

In this paper, we propose a novel robust model that success-
fully defends adversarial attacks by combining global and
local defense strategies. By penalizing attention coefficients
of perturbed edges to encoders, our method can effectively
protect dangerous edges in advance. Experimental results il-
lustrate our methods can learn robust representation to de-
fend against various adversarial attack strategies, particu-
larly for minor but extremely dangerous perturbations. In the
future, we will explore representation learning in dynamic
adversarial attack scenarios. At the same time, we also ap-
ply the representation to the link prediction task.

8111



Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grants No. U22B2036, 62272340,
62276187, 11931015), National Science Fund for Distin-
guished Young Scholars (Grants No. 62025602), Tencent
Foundation, and XPLORER PRIZE.

References
Adamic, L. A.; and Glance, N. 2005. The political blogo-
sphere and the 2004 US election: Divided they blog. In
LINKDD, 36–43.
Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; and Cui, P. 2020.
Structural deep clustering network. In WWW, 1400–1410.
Coutrot, A.; Manley, E.; Goodroe, S.; Gahnstrom, C.; Filom-
ena, G.; Yesiltepe, D.; Dalton, R.; Wiener, J. M.; Hölscher,
C.; Hornberger, M.; et al. 2022. Entropy of city street net-
works linked to future spatial navigation ability. Nature,
604(7904): 104–110.
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