The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs

Rui Jiao'?, Jiaqi Han'?

, Wenbing Huang*> ", Yu Rong®, Yang Liu'?3"

! Beijing National Research Center for Information Science and Technology (BNRist),

Department of Computer Science and Technology, Tsinghua University

2 Institute for AI Industry Research (AIR), Tsinghua University

3 Beijing Academy of Artificial Intelligence
* Gaoling School of Artificial Intelligence, Renmin University of China
> Beijing Key Laboratory of Big Data Management and Analysis Methods
6 Tencent Al Lab
{jiaor21,hanjq21} @mails.tsinghua.edu.cn, hwenbing @ 126.com,
yu.rong @hotmail.com, liuyang2011 @tsinghua.edu.cn

Abstract

Pretraining molecular representation models without labels
is fundamental to various applications. Conventional meth-
ods mainly process 2D molecular graphs and focus solely on
2D tasks, making their pretrained models incapable of char-
acterizing 3D geometry and thus defective for downstream
3D tasks. In this work, we tackle 3D molecular pretraining
in a complete and novel sense. In particular, we first propose
to adopt an equivariant energy-based model as the backbone
for pretraining, which enjoys the merits of fulfilling the sym-
metry of 3D space. Then we develop a node-level pretrain-
ing loss for force prediction, where we further exploit the
Riemann-Gaussian distribution to ensure the loss to be E(3)-
invariant, enabling more robustness. Moreover, a graph-level
noise scale prediction task is also leveraged to further pro-
mote the eventual performance. We evaluate our model pre-
trained from a large-scale 3D dataset GEOM-QM9 on two
challenging 3D benchmarks: MD17 and QM9. Experimental
results demonstrate the efficacy of our method against current
state-of-the-art pretraining approaches, and verify the validity
of our design for each proposed component. Code is available
at https://github.com/jiaor17/3D-EMGP.

Introduction

Learning informative molecular representation is a funda-
mental step for various downstream applications, includ-
ing molecular property prediction (Gilmer et al. 2017;
Kearnes et al. 2016), virtual screening (Wallach, Dzamba,
and Heifets 2015; Zheng, Fan, and Mu 2019), and Molecu-
lar Dynamics (MD) simulation (Chmiela et al. 2017). Recent
methods exploit Graph Neural Networks (GNNs) (Gilmer
et al. 2017; Xu et al. 2019) for their power in capturing the
topology of molecules, which yet is label-hungry and thus
powerless for real scenarios when molecular annotations are
unavailable. Therefore, the research attention has been paid
to the self-supervised pretraining paradigm, to construct the
surrogate task by exploring the intrinsic structure within un-
labeled molecules. A variety of self-supervised works have
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been proposed, ranging from generative-based models (Kipf
and Welling 2016; Hu et al. 2020a,b) to contrastive learn-
ing (Sun et al. 2020; Velickovic et al. 2019; You et al. 2020,
2021a; Sun et al. 2021).

In many applications, using and analyzing 3D geometry
is crucial and even indispensable; for instance, we need to
process 3D coordinates for energy prediction in MD simu-
lation or protein-ligand docking. Owing to the fast develop-
ment in data acquisition, it is now convenient to access large-
scale unlabeled molecules with rich 3D conformations (Ax-
elrod and Gomez-Bombarelli 2022). It would be quite ex-
citing if we could develop techniques to obtain pretrained
models from these unlabeled molecules for 3D tasks with
limited data. Nevertheless, existing self-supervised meth-
ods (Hu et al. 2020a; You et al. 2020; Rong et al. 2020)
are weak in leveraging the 3D geometry information. First,
from the input side, the backbone models they pretrain can
only process the input of 2D molecules without the consid-
eration of 3D coordinates. As demonstrated by Schiitt et al.
(2017), certain molecular properties (e.g. potential energy)
are closely related to the 3D structure with which they can
be better predicted. Second, for the output side, their pre-
training tasks are not 3D-aware, making the knowledge they
discover less generalizable in 3D space. Recently, the study
by Liu et al. (2021) proposes to impose the 3D information
for pretraining; however, its goal is still limited to enhancing
2D models for 2D tasks.

In this paper, we investigate 3D molecular pretraining in
a complete and novel sense: using 3D backbone models, de-
signing 3D-aware pretraining tasks, and targeting 3D down-
stream evaluations. However, this is not trivial by any means.
The challenges mainly stem from how to maintain the sym-
metry of our biological world—rotating/translating the 3D
conformation of a molecule does not change the law of its
behavior. Mathematically, we should make the backbone
E(3)-equivariant, and the pretraining loss E(3)-invariant,
where the group E(3) collects the transformations of rota-
tions, reflections, and translations (Satorras, Hoogeboom,
and Welling 2021). Unfortunately, typical GNNs (Gilmer
etal. 2017; Xu et al. 2019) and 3D losses based on Euclidean
distance (Luo and Hu 2020) do not satisfy such constraints.



To address the above challenges, this paper makes the fol-
lowing contributions: 1. We propose an energy-based rep-
resentation model that predicts E(3)-equivariant force for
each atom in the input 3D molecule, by leveraging recently-
proposed equivariant GNNs (Satorras, Hoogeboom, and
Welling 2021; Schiitt et al. 2017; Tholke and De Fabri-
tiis 2021) as the building block. 2. To pretrain this model,
we formulate a physics-inspired node-level force prediction
task, which is further translated to a 3D position denois-
ing loss in an equivalent way. More importantly, we de-
velop a novel denoising scheme with the aid of the pro-
posed Riemann-Gaussian distribution, to ensure the E(3)-
invariance of the pretraining task. 3. We additionally de-
sign a graph-level surrogate task on 3D molecules, in line
with the observation from traditional 2D methods (Rong
et al. 2020) that performing node-level and graph-level tasks
jointly is able to promote the eventual performance. For this
purpose, we teach the model to identify the noise scale of
the input tuple consisting of a clean sample and a noisy
one. The above ingredients are unified in a general pretrain-
ing framework: energy-motivated 3D Equivariant Molecular
Graph Pretraining (3D-EMGP).

We pretrain our model on a large-scale dataset with
3D conformations: GEOM-QM9 (Axelrod and Gomez-
Bombarelli 2022), and then evaluate its performance on the
two popular 3D tasks: MD17 (Chmiela et al. 2017) and
QM9 (Ramakrishnan et al. 2014). Extensive experiments
demonstrate that our model outperforms state-of-the-art 2D
approaches, even though their inputs are augmented with 3D
coordinates for fair comparisons. We also inspect how the
performance changes if we replace the components of our
architecture with other implementations. The results do sup-
port the optimal choice of our design.

Related Works

Self-supervised molecular pretraining Self-supervised
learning has been well developed in the field of molecu-
lar graph representation learning. Many pretraining tasks
have been proposed to extract information from large-scale
molecular dataset, mainly divided into three categories: con-
trastive, generative and predictive. Contrastive methods aim
to maximize the mutual information between different views
of the same graph (Sun et al. 2020; Velickovic et al. 2019;
You et al. 2020, 2021a; Sun et al. 2021), while genera-
tive methods focus on reconstructing the information from
different levels of the 2D topological structure (Kipf and
Welling 2016; Hu et al. 2020a,b). As for predictive meth-
ods, they learn the molecule representation by predicting the
pseudo-labels created from the input graphs. For example,
GROVER (Rong et al. 2020) proposes to classify the sub-
graph structure and predict the existence of specific motifs,
which leverages domain knowledge into molecule pretrain-
ing. However, all the above methods mainly focus on pre-
training 2D GNNs without 3D information. More recently,
several methods propose to tackle 3D graphs, including 3D
Infomax (Stérk et al. 2022) that maximizes the mutual infor-
mation between the representations encoded from a 2D and a
3D model, and GraphM VP (Liu et al. 2021) which uses con-
trastive and generative methods to incorporate 3D informa-
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tion into the 2D model. However, the motivation of these two
methods remains to benefit 2D models with 3D information.
On the contrary, this paper attempts to pretrain 3D models
via 3D objectives with the usage for 3D downstream tasks.
Besides, ChemRL-GEM (Fang et al. 2022) predicts bond
length, bond angle prediction, and atom distance for 3D pre-
training. While they only employ pairwise or triplet invari-
ant tasks, we formulate both invariant and equivariant pre-
training objectives in accordance with our proposed energy-
based molecular representation model. Zhu et al. (2022) for-
mulates the pretraining task as translation between 2D and
3D views, distinct from our goal of realizing pretraining
mainly based on 3D conformations. Zhou et al. (2023) ap-
plies masked position denoising, similar to the implemented
baseline PosPred in our experiments.

Equivariant graph neural networks To better analyze
the physical and chemical properties of molecules, many re-
searchers regard the molecules as geometric graphs, which
additionally assign 3D coordinates on each atom apart from
the 2D topological information. Geometric graphs present
rotational, translational, and/or reflectional symmetry, as the
properties are invariant and the dynamic processes are equiv-
ariant to the E(3) or SE(3) transformations in 3D space.
To introduce this inductive bias, geometrically equivariant
graph neural networks have been proposed to model the ge-
ometric graphs. According to Han et al. (2022), current 3D
GNNs achieve equivariance mainly in three ways: extract-
ing irreducible representations (Thomas et al. 2018; Fuchs
et al. 2020), utilizing group regular representations (Finzi
et al. 2020; Hutchinson et al. 2021) or transforming the 3D
vectors into invariant scalars (Schiitt et al. 2017; Satorras,
Hoogeboom, and Welling 2021; Tholke and De Fabritiis
2021). Previous works showcase the superiority of equiv-
ariant models on several 3D molecular tasks (Tholke and
De Fabritiis 2021; Liu et al. 2022), and our goal is to fur-
ther improve the performance of 3D models via equivariant
pretraining on large-scale 3D datasets.

Method
Energy-based Molecular Modeling

In general, a molecule consisting of N atoms can be mod-
eled as a molecular graph G = (V, £), where V is the set of
nodes (atoms) and £ is the set of edges modeling the con-
nectivity, e.g., bond connection or spatial proximity. Each
atom is assigned a node feature h;, 1 < ¢ < N, representing
the properties of the atom, such as atom type. In this work,
we elaborate on the 3D information of a molecule, that is,
apart from the node attribute h; € R™ for atom ¢, we extra
consider the 3D coordinate ; € R®. We denote the config-
urations of all nodes as X = [z, @2, - ,xy]| € RV,
and similarly the node features as H = [hy, ha, - ,hn] €
R™*N _Our goal is to pretrain a capable GNN model ¢ that
can be generally applied to different downstream 3D tasks,
which is depicted as (X, H, ). We hereafter omit the in-
put of £ for conciseness, unless otherwise specified.

Unlike conventional 2D molecular graph pretraining, we
are now provided with vital 3D information, making it possi-
ble to leverage the rich geometric context in a unified frame-



Node-Level: Equivariant Force Prediction
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Figure 1: An overview of our 3D-EMGP. It consists of two tasks: node-level equivaraint force prediction and graph-level
invariant noise scale prediction. X', X are the original and perturbed coordinates. H is the input node feature and H ' H' are
the output features of the original and perturbed graph. Rie, (X | X) is the proposed Riemann-Gaussian distribution in Eq. (9).

work. However, involving 3D conformation is not free of
difficulty, and one constraint we should enforce is to make
 equivariant for vector outputs, and invariant for scalar out-
puts. The notion of equivariance/invariance is defined below.

Definition 1 A GNN model ¢ is call E(3)-equivariant, if for
any transformation g € E(3), o(g- X, H) = g- (X, H);
and it is called E(3)-invariant if p(g - X, H) = (X, H).

In Definition 1, the group action g - X is implemented
as matrix multiplication O X for orthogonal transformation
O € R3*3 and addition X + ¢t for translation t € R3.
Basically, for an equivariant function, the output will trans-
late/rotate/reflect in the same way as the input, while for
the invariant case, the output stays unchanged whatever
group action conducted on the input. Equivariance/invari-
ance is so essential that it characterizes the symmetry of
the 3D biochemistry: rotating or translating a molecule will
never change its potential energy. There is a variety of E(3)-
equivariant GNNs (Han et al. 2022) that can be utilized as
our backbone. By choosing an E(3)-equivariant GNN, ¢
is instantiated as @ggn. Notably, pggN is also permutation
equivariant regarding the order of the columns in X and H.

We now introduce our idea of how to tackle 3D molec-
ular pretraining in a more domain-knowledge-reliable man-
ner. As well studied in biochemistry, the interaction between
atoms in 3D space is captured by the forces and potentials,
depending on the positions of the atoms, i.e., the molecu-
lar conformation. This connection inspires us to incorpo-
rate the concept of energy and force into our representation
model, making room for designing unsupervised pretraining
objectives with 3D geometric information. In light of this,
we introduce a representation model that jointly takes into
account both energy and force. We denote the energy of a
molecule as F € R and the resultant interaction force exert-
ing on atom i as f; € R3,1 < i < N. The forces over all
atoms are collected in the matrix F € R3*N, Clearly, E is
an invariant graph-level scalar, while F' consists of equivari-
ant node-level vectors, in terms of the input transformation.
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To derive F and F' by the equivariant model pggn, We
first obtain a node-level representation in the latent space:

H' = ppon (X, H,E), (1)

where H' € RF*N is an invariant representation. Let £, F'

denote the predicted energy and force. We yield the graph-
level energy of the molecule via a graph pooling operation:

E(X) = ¥Proj (Z h;) s

where h/, is the i-th column of H', pr; : R* — R is the pro-
jection head, realized by a Multi-Layer Perceptron (MLP).
Essentially, force corresponds to the direction that causes
potential energy to decrease, which implies

)

F(X)=— lim = VxE(X),

AX—0 AX

3)

where V x denotes the gradient w.z.t. X. It is easy to verify
that E is invariant and F" is equivariant!.

We attempt to design the first proxy task by leveraging the
predicted force F to fit the force implied in the molecule.
However, there is usually no force label provided in the pre-
training dataset. Fortunately, we can fulfill this purpose from
the lens of node-level denoising—we first add noise to each
node’s coordinate and then estimate the virtual force that
pulls the noisy coordinate back to the original one. Upon
the denoising process in the first pretraining task, we further
construct a graph-level pretraining objective in an intuitive
sense: a desirable model should be able to tell how much
noise is added to its input. The details of the two pretraining
tasks are presented in the subsequent contents.

"More precisely, Fis orthogonality-equivariant but translation-
invariant.



Node-Level: Equivariant Force Prediction

We start by designing a pretraining objective that well
characterizes the 3D geometric information. To fulfill this
goal, we resort to the force F produced by our energy-
based molecular model. Yet, it is challenging and non-
straightforward to provide a reasonable instantiation, since
there is usually no available ground truth force labels in
large-scale pretraining datasets. Interestingly, we find a way
through by establishing a connection between F' and the dis-
tribution of the conformations X, and manage to provide
the predicted F with pseudo supervision. The connection
is identified by first assuming a Boltzmann energy distribu-
tion (Boltzmann 1868) over the training conformers G:

- Lo (-E20).

where E denotes the assumed energy, k is the Boltzmann
constant, T is the temperature, and Z is the normalization.
By taking the logarithm and computing the gradient over X,
we acquire

p(X) “

Vxlogp(X) x —VxE(X):=F. (5)
It is thus applicable to approach F by the first term in
Eq. (5), serving as a pseudo force. In light of this, we formu-
late an equivariant (pseudo) force prediction (EFP) objective
over training data G:

Lepp = Eg g [|F(X) - Vxlogp(X)[[Z], (6

where F is produced by the model pggn (Eq. (1-3)), || - || #
computes the Frobenius norm.

Nevertheless, we still have no idea of what the exact form
of the data density p(X) looks like. Hence it is infeasible to
directly apply the loss Eq. (6). Fortunately, the work by Vin-
cent (2011) draws a promising conclusion that Eq. (6) can
be equivalently translated to a denoising problem which is
tractable to solve (see Appendix for details). In a nutshell,
we instead sample a noisy sample X from X according to a
certain conditional distribution, i.e., X ~ p(X | X). Then
we substitute the noisy sample into the model pggn and per-
form the replacement of Eq. (6) by

LerppN = Eg ¢ x~px1x) [HF(X) - Vx log p(X | X)||2F]
0

We now discuss the formulation of the conditional prob-
ability p(X | X). Different from the traditional denoising
process on images or other Euclidean data (Song and Er-
mon 2020; Shi et al. 2021; Luo et al. 2021), in our case
when considering the 3D geometry, the noise we add should
be geometry-aware other than conformation-aware. In other
words, p(X | X)) should be doubly E(3)-invariant, namely,

plgr- X | g2 X)=p(X | X),Yg1,92 €E(3), (8)

with the illustrations provided in Fig. 2. This is consistent
with our understanding: the behavior of molecules with the
same geometry should be independent of different confor-
mations. For example, when we rotate the sample X, the
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Figure 2: Illustration of different distributions. For typical
Gaussian, a data point (in dashed circle) is a specific confor-
mation X, while for Riemann Gaussian, it is a set of confor-
mations with the same geometry [X] = {g- X | g € E(3)}.

property of p(X | X) by Eq. (8) ensures the loss in Eq. (7)
to be unchanged, which is what we desire; similarly, con-
ducting rotation on X should also obey the same rule. A
conventional choice of p(X | X)) is utilizing the standard
Gaussian with noise scale o: p(X | X) = N(X,0%I).
This naive form fails to meet the doubly E(3)-invariant prop-
erty in Eq. (8), which could cause mistaken supervision in
Eq. (7). To show this, we derive V¢ logp(X | X)

XG_QX as the force target; if we set X = RX for some

rotation matrix R # I, then we have V ¢ logp(X | X) =
—#(R — I)X # 0, which, however, does not align with
the true fact that the force between X = RX and X should
be zero since they share the same geometry.

To devise the form with the symmetry in Eq. (8), we in-
stead resort to Riemann-Gaussian distribution (Said et al.

2017) defined as follows:
1 . 7

©))
where Z (o) is the normalization term, and d is the metric
that calculates the difference between X and X. Riemann-
Gaussian is a generalization version of typical Gaussian, by
choosing various distances d beyond the Euclidean metric.
Here, to pursue the constraint in Eq. (8), we propose to use
d(X1,X2) = ||Y,' Y1 - Y, Yol (10)
where Y = X — pu(X) re-positions X towards zero mean
(p(X) denotes the mean of the columns in X). One clear
benefit is that the distance function d defined in Eq. (10) sat-
isfies the doubly E(3)-invariance constraint in Eq. (8). Note
that d is also permutation invariant with regard to the order
of the columns of X and X. We summarize the above dis-
cussion as a formal proposition as follows.

(X, X)

po(X | X) =Rie, (X | X) := 12

Proposition 1 For Riemann-Gaussian Rie,(X | X) de-
fined in Eq. (9), it is doubly E(3)-invariant as per Eq. (8).

The gradient of Riemann-Gaussian is calculated as fol-
lows, with the detailed derivations in Appendix A.2:

! (YYT)Y —(YYT)Y].

Vg logps(X|X) = ——
(11)

o2



Meanwhile, as proved in Appendix, the calculation in
Eq. (11) is of the complexity O(N), making it computation-
ally efficient for even large-scale molecules.

The last remaining recipe is how to sample X from X
according to the Riemann-Gaussian distribution to provide
the input to Eq. (7). It is non-straightforward to accomplish
this goal, since the normalization term Z(o) of Riemann-
Gaussian is unknown. Here we resort to Langevin dynam-
ics (Schlick 2010) which is widely used for approximated
sampling when only non-normalized probability density is
given. We provide the details in Appendix A.6. Furthermore,
to better explore the conformation space, we employ a sam-
pling scheme with multiple levels of noise (Song and Ermon
2020). Particularly, let {o; } _, be a series of noises with dif-
ferent scales. The final EFP loss is given by

Lerp-rinal = Eg 6 1m0 (1,0), X ~ps, (X]X)
1. - 1 i
[UzQH;lF(X) — . Vx log po, (X|X)||%], (12)

where U(1,L) is the discrete uniform distribution, and
V ¢ log ps, (X |X) is provided by Eq. (11). We apply a
weighting coefficient o7 for different noise scales and scale
the predicted forces by 1/0; as suggested by Song and Er-
mon (2020); Shi et al. (2021). We also add « as a normal-
ization for numerical stability of the inner product; its value
is given by o = (YY" [|p + |[YY 7| )/2 in our exper-
iments. It is proved in Appendix A.5 that the normalization
term « also satisfies the doubly E(3)-invariant property.

Graph-Level: Invariant Noise-scale Prediction

In the last subsection, we have constructed a node-level pre-
training objective for local force prediction. To further dis-
cover global patterns within the input data, this subsection
presents how to design a graph-level self-supervised task.
Previous studies (Hu et al. 2020a; Rong et al. 2020) have re-
vealed for 2D molecules that the node- and graph-level tasks
are able to promote each other. Here, we investigate this idea
on 3D geometric graphs.

Recalling that X is distributed by p,, (X|X), it is ex-
pected that a well-behaved model should identify how much
the perturbed sample deviates from the original data. Such
intuition inspires us to set up a classification problem as
noise scale prediction. Specifically, our @pgn shares the
same EGN backbone as in Eq. (1), yielding exactly the same
invariant node- and graph-level embeddings. For the input
X and X, we first obtain their graph-level embedding u and
U via @GN, respectively. Instead of using the scalar projec-
tion head ¢p,; for energy computation, we employ a classi-
fication head g4 that takes as input a concatenation of the
graph-level embeddings of the original conformation « and
the perturbed conformation w. The output of @g,e is the log-
its p € R = seqte (u]|2), where L is the number of noise
levels. Finally, a cross-entropy loss is computed between the
logits and the label, which is the sampled noise level for the
current input. The objective of the invariant noise-scale pre-
diction task is thus given by

Linp = Eg~G7l~U(1,L),X~pgl (X]X) [ﬁCE (I[7], p) ]a (13)
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where Lcg is the cross-entropy loss and I[!] is the one-hot
encoding of .

Our overall training objective, as illustrated in Fig. 1, is a
combination of both node-level equivariant force prediction
loss and graph-level invariant noise scale prediction loss:

L = A1 LEpp-Final + A2 Linp, (14)

where \; and A5 are the balancing coefficients.

Experiments
Experimental Setup

Pretraining dataset We leverage a large-scale molecu-
lar dataset GEOM-QM9 (Axelrod and Gomez-Bombarelli
2022) with corresponding 3D conformations as our pretrain-
ing dataset. Specifically, we select the conformations with
top-10 Boltzmann weight? for each molecule, and filter out
the conformations that overlap with the testing molecules in
downstream tasks, leading to 100k conformations in total.

Downstream tasks To thoroughly evaluate our proposed
pretraining framework, we employ the two widely-adopted
3D molecular property prediction datasets: MD17 (Chmiela
et al. 2017) and QM9 (Ramakrishnan et al. 2014), as
the downstream tasks. In detail, MD17 contains the simu-
lated dynamical trajectories of 8 small organic molecules,
with the recorded energy and force at each frame. We se-
lect 9,500/500 frames as the training/validation set of each
molecule. We jointly optimize the energy and force predic-
tions by firstly obtaining the energy and deriving the force by
F = —VxE. QM0 labels 12 chemical properties of small
molecules with stable 3D structures. We follow the data split
in Anderson, Hy, and Kondor (2019) and Satorras, Hooge-
boom, and Welling (2021), where the sizes of training, vali-
dation, and test sets are 100k, 18k, and 13k, respectively.

Baselines The baseline without any pretraining is termed
as Base. Several widely-used 2D pretraining tasks are eval-
uated, including the generative methods AttrMask (Hu et al.
2020a), EdgePred (Hamilton, Ying, and Leskovec 2017),
GPT-GNN (Hu et al. 2020b), and the contrastive meth-
ods InfoGraph (Sun et al. 2020), GCC (Qiu et al. 2020),
GraphCL (You et al. 2020), JOAO and its improved ver-
sion JOAOv2 (You et al. 2021b). In addition, we also
compare with GraphMVP (Liu et al. 2021) and 3D Info-
max (Stark et al. 2022) which simultaneously train 2D- and
3D-GNN models. Notably, different from the original set-
ting in GraphMVP and 3D Infomax, which evaluates the
pretrained 2D GNN, we preserve the 3D model for our 3D
tasks in the experiments. We further involve GEM (Fang
et al. 2022) which applies bond length prediction, bond an-
gle prediction, and atom distance prediction as 3D pretrain-
ing tasks. We also propose PosPred, an extension of 2D At-
trMask to 3D, as a competitive 3D baseline which masks the
positions of a random subset of atoms with the center of each
input molecule, and then reconstructs the masked positions.
For all above model-agnostic methods, we adapt exactly the

2Boltzmann weight is the statistic weight for each conformer
determined by its energy.



Force Aspirin  Benzene Ethanol Malon. Naph. Salicylic Toluene  Uracil ‘ Average
Base 0.3885 0.1861 0.0599  0.1464 0.3310  0.2683 0.1563  0.1323 | 0.2086
AttrMask 0.3643 0.2277 0.0567  0.1456 0.1773  0.3890 0.1093  0.1560 | 0.2032
EdgePred 0.4707 0.2036 0.0743  0.1268 0.2310  0.3400 0.1854  0.1933 | 0.2281
GPT-GNN 0.4278 0.2492 0.0703  0.1484 0.2080  0.3609 0.1541  0.2219 | 0.2301
InfoGraph 0.6578 0.2743 0.1257  0.2647 0.2860  0.5793 0.3821  0.4238 | 0.3742
GCC 0.3996  0.2346 0.0662  0.1484 0.2798  0.4263 0.3378  0.2369 | 0.2662
GraphCL 0.2333 0.1845 0.0503  0.0852 0.0966  0.1587 0.0725  0.1167 | 0.1247
JOAO 0.3646  0.2331 0.0642  0.1029 0.2017  0.3020 0.1322  0.1683 | 0.1961
JOAOV2 0.3447 0.2198 0.0568  0.0981 0.1889  0.2753 0.1001  0.1850 | 0.1836
GraphMVP  0.3198 0.2800 0.0629  0.0788 0.2350  0.2641 0.0903  0.1339 | 0.1831
3D Infomax  0.4592  0.1914 0.0705  0.1263  0.2642  0.3401 0.2032  0.1836 | 0.2298
GEM 0.3994  0.2105 0.0871  0.1161 0.1489  0.2344 0.1193  0.1827 | 0.1873
PosPred 0.3050  0.2023 0.0519  0.0937 0.0971 0.2481 0.0945  0.1270 | 0.1525
3D-EMGP 0.1560  0.1648 0.0389  0.0737 0.0829  0.1187 0.0619  0.0773 | 0.0968

Table 1: MAE (lower is better) on MD17 force prediction. All methods share the same backbone as Base.

(07 AE €EHOMO €LUMO 12 CV G H R2 U U() ZPVE
Base 0.070 499 28.0 243 0.031 0.031 10.1 109 0.067 9.7 93 1.51
AttrMask 0.072 50.0 313 37.8  0.020 0.062 112 114 0423 108 10.7 1.90
EdgePred 0.086 582 374 31.9 0.039 0.038 145 148 0.112 142 147 1.81
GPT-GNN 0.103 54.1 35.7 28.8 0.039 0.032 122 148 0.158 248 12.0 1.75
InfoGraph 0.099 722 @ 48.1 38.1 0.041 0.030 165 145 0.114 149 164 1.69
GCC 0.085 577 37.7 323  0.041 0.034 128 145 0.104 132 13.1 1.66
GraphCL 0.066 45.5 26.8 229 0.027 0.028 102 9.6 0.095 9.7 9.6 142
JOAO 0.068 46.0 282 22.8 0.028 0.030 105 10.0 0.076 99 10.1 1.48
JOAOV2 0.066 450 278 222 0.027 0.028 99 92 0.087 98 9.5 1.43
GraphMVP  0.070 469 285 263 0.031 0.033 112 104 0.082 103 10.2 1.63
3D Infomax 0.075 48.8 29.8 25.7 0.034 0.033 13.0 124 0.122 125 127 1.67
GEM 0.081 52.1 33.8 277 0.034 0.035 132 133 0.089 12,6 134 1.73
PosPred 0.067 40.6  25.1 209 0.024 0.035 109 102 0.115 103 102 1.46
3D-EMGP 0.057 371 213 182  0.020 0.026 9.3 87 0.092 8.6 8.6 1.38

Table 2: MAE (lower is better) on QM9. All methods share the same backbone as Base.

same 3D backbone as our method, ensuring fairness. Par-
ticularly, we leverage EGNN (Satorras, Hoogeboom, and
Welling 2021), a widely adopted equivariant GNN, as our
backbone. Details are deferred to Appendix B.2.

Main Results

Table 1 and 2 document the results of all pretraining meth-
ods on MD17 and QMY, respectively, where the underlined
numbers indicate the previous SOTAs on that task, and the
numbers in bold are the best results. We interpret the re-
sults by answering the questions as follows. I.How does our
3D-EMGP perform in general? It is observed from both Ta-
ble 1 and Table 2 that 3D-EMGP achieves the best perfor-
mance in most cases, and its general effectiveness is better
justified by checking the average MAE of the last column in
Table 1. Particularly for force prediction, the superiority of
3D-EMGP to other methods is more remarkable (3D-EMGP
achieves 0.0969, while the second best GraphCL is 0.1247),
probably because the design of our node-level force predic-
tion during pretraining is generalizable to the real force dis-
tribution after finetuning. 2. Are the 3D-aware pretraining
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tasks helpful? Compared with Base, 3D-EMGP consistently
delivers meaningful improvement on MD17, and gains bet-
ter performance on QM9 except for the evaluation on R2.
We conjecture that the quantity R? assessing Electronic spa-
tial extent is hardly recovered by the pretraining dataset,
hence incurring negative transfer for all pretraining meth-
ods. Interestingly, PosPred usually behaves promisingly on
MD17, although its 3D prediction objective is simple. 3.
How do the traditional 2D methods perform on 3D tasks?
Most 2D methods struggle, especially for force prediction
on MD17 and tasks on QM9. Taking MD17 as an example,
we observe a serious negative transfer phenomenon on sev-
eral 2D-pretraining baselines like EdgePred, GPT-GNN, and
InfoGraph. This may be due to the dissimilarity between the
pretraining 2D task and downstream 3D targets (Rosenstein
et al. 2005). Meanwhile, GraphCL and GraphM VP achieve
better results, because GraphM VP has considered the 3D in-
formation, while GraphCL employs the contrastive learn-
ing technique to capture the invariant information which
may exist in both 2D and 3D areas. Our method 3D-EMGP
achieves the best performance in most cases, which verifies



Proposed Components Average MAE

EFP INP RG Energy | Energy Force
Base 0.1191  0.2086
Ours v v v v 0.0876  0.0968
INP only v v v 0.0974  0.1350
EFP only v v v 0.0905 0.1193
Gaussian v v v 0.0912  0.1060
Distance | v' v 0.0931  0.1292
Direct v v v 0.0914  0.1267

Table 3: Ablation studies on MD17. ! Denoising on distance.

the effectiveness of our 3D pretraining task.

Ablation Studies

Contribution of each component We provide extensive
ablation results on MD17 to show how each component
in our model contributes in Table 3. In detail, we study
the following aspects. 1. We inspect the contributions of
the node-level task (i.e. EFP) and the graph-level task (i.e.
INP) by comparing our method with its variants without
EFP or INP. It is shown that both EFP and INP improve
the performance individually, and their combination leads
to more precise predictions. 2. To evaluate the importance
of the proposed Riemann-Gaussian (RG) distribution, we
relax the distribution in Eq. (9) as the Gaussian distribu-
tion p(X | X) = N(X,02I), violating the doubly E(3)-
invariance in Eq. (8). The results suggest that such relaxation
causes certain performance detriment. We also compare with
a variant which alternatively applies denoising on the E(3)-
invariant distance matrix. This surrogate does not fit in the
energy framework, and the performance also drops by a mar-
gin. This verifies the empirical significance of leveraging
Riemann-Gaussian distribution. 3. We analyze the necessity
of the proposed energy-based modeling. Instead of deriving
the force as the gradient of the energy model, it is also pos-
sible to straightly apply the equivariant output from EGNN
as the predicted force signal in the EFP loss in Eq. (7). We
name this variant as Direct. Results in Table 3 report that this
variant suffers higher MAEs. From an algorithmic point of
view, the energy-based strategy is able to better capture the
global patterns and therefore lead to preferable performance,
by first pooling the embeddings of all nodes as the energy
and then computing the gradient of energy as the force.

Performance with different backbones We further apply
our method to another two 3D backbones, SchNet (Schiitt
et al. 2017) and TorchMD-ET (Tholke and De Fabritiis
2021) to evaluate the generalization of our proposed self-
supervised tasks. The averaged MAEs of the MD17 force
prediction task are reduced by 36.1% and 6.9% for SchNet
and TorchMD-ET, respectively. The compelling improve-
ment verifies that our pretraining method is widely applica-
ble and generalizes well to a broad family of 3D backbones
consistently.
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Figure 3: Energy landscape of different pretrained models.

Visualization

To probe the representation space of different pretrained
models, we visualize the local energy landscape around a
given conformation. To do so, we first fix the pretrained rep-
resentation model and finetune an energy projection head
on MDI17 to fit ground-truth energy labels, in order to
project the pretrained representations onto the energy sur-
face. Note that there is initially no energy projection head
for other methods, and we manually add an MLP on top
of their backbone models similar to Eq. (2). After train-
ing the energy head, we select a random aspirin confor-
mation X from MD17 and randomly generate two direc-
tions Dy, Dy € R3*Y according to Gaussian distribu-
tion. We construct a 2-dimension conformation plane as
{X(4,7)|X(i,j) = X + iD1 + jDy}. For each point
by varying the values of ¢ and j, we calculate its output
energy by E; ; = E(pron(X(4,5))), where E, ppgn de-
note the energy projection head and the pretrained model,
respectively. Fig. 3 plots the energy landscape (i, j, F; ;)
for several compared approaches and our 3D-EMGP. We
interestingly find that the landscape by our method con-
verges towards the original conformation smoothly and de-
creasingly, which implies the observed conformation cor-
responds to a metastable state with locally-lowest energy
on the projected conformation plane. However, the 2D-
based pretrained models such as EdgePred, AttrMask, and
GraphCL deliver rugged landscapes. We speculate the rea-
son is that their knowledge acquired from the pretraining
process does not comply with the underlying energy distri-
bution. The Base method outputs a flat surface, as it is less
knowledgeable by solely learning from the small data.

Conclusion

In this work, we propose a general self-supervised pretrain-
ing framework for 3D tasks on molecules. It consists of a
node-level Equivariant Force Prediction (EFP) and a graph-
level Invariant Noise-scale Prediction (INP) task to jointly
extract the geometric information from a large-scale 3D
molecular dataset. Experiments on MD17 and QM9 show-
case the superiority of our method to conventional 2D coun-
terparts. Necessary ablations, visualizations, and analyses
are also provided to support the validity of our design.
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