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Abstract

In this paper, we study the problem of MOOC quality eval-
uation which is essential for improving the course mate-
rials, promoting students’ learning efficiency, and benefit-
ing user services. While achieving promising performances,
current works still suffer from the complicated interactions
and relationships of entities in MOOC platforms. To tackle
the challenges, we formulate the problem as a course rep-
resentation learning task-based and develop an Information-
aware Graph Representation Learning(IaGRL) for multi-
view MOOC quality evaluation. Specifically, We first build
a MOOC Heterogeneous Network (HIN) to represent the in-
teractions and relationships among entities in MOOC plat-
forms. And then we decompose the MOOC HIN into multi-
ple single-relation graphs based on meta-paths to depict the
multi-view semantics of courses. The course representation
learning can be further converted to a multi-view graph repre-
sentation task. Different from traditional graph representation
learning, the learned course representations are expected to
match the following three types of validity: (1) the agreement
on expressiveness between the raw course portfolio and the
learned course representations; (2) the consistency between
the representations in each view and the unified representa-
tions; (3) the alignment between the course and MOOC plat-
form representations. Therefore, we propose to exploit mu-
tual information for preserving the validity of course repre-
sentations. We conduct extensive experiments over real-world
MOOC datasets to demonstrate the effectiveness of our pro-
posed method.

Introduction
Massive open online course (MOOC) has been prevalent for
online tutoring and self-studying in recent decades by pro-
viding numerous course materials, intermediate feedback,
and interactions between student and instructors. Among
which, MOOC course quality evaluation is one of the vi-
tal tasks in MOOC platform management for helping im-
prove the course materials, promote students’ learning ef-
ficiency (Jiang et al. 2021), and benefit user services (e.g.,
course recommendation (Wang et al. 2022; Jiang et al.
2022a), cognitive diagnosis (Jiang et al. 2022b), etc).
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Current studies in MOOC quality evaluation lie in two
aspects: (1) manual evaluation (Wang et al. 2021), which
evaluates the course quality by domain experts based on
a pre-defined rubric; and (2) automated evaluation (Pérez-
Martı́n, Rodrı́guez-Ascaso, and Molanes-Lopez 2021; Be-
tanzos, Costa-jussà, and Belanche 2017), which judges the
course quality automatically based on historical records in
the platform. While achieving promising results, current
works still exhibit limitations: First of all, manual-based
methods are time-consuming and labor-intensive. And, in
most of cases, the experts do not have the complete domain
knowledge to evaluate every course on the MOOC platform.
Second, most of the automated methods utilize students’
reviews as the criteria for evaluating course quality. How-
ever, students’ evaluation of the quality of MOOCs is biased
and subjective, and cannot yield unified evaluations. In fact,
course quality evaluation in the MOOC platform is a com-
plicated process involving by multiple parties, which can be
examined from different views. Therefore, integrating se-
mantics and opinions from different views to inform unified
representations of the course becomes the key to reasonable
MOOC quality evaluation.

However, two unique challenges arise in achieving this
goal. First, how to design an appropriate data structure for
capturing complex interactions among different types of en-
tities in the MOOCs platform? Second, how should we guar-
antee the validity of the multi-view representations? Next,
we will outline how we tackle these challenges.

First, in a MOOCs platform, we observe that in addition to
the student and course, there exist multiple types of entities
and multiple types of relationships between pairs of differ-
ent entities. The complex MOOC data structures are always
represented in heterogeneous information networks (MOOC
HIN) (Shi et al. 2017). Considering the participation of mul-
tiple entities on the MOOC platform and the impact of inter-
actions between entities and courses on MOOC quality eval-
uation. It is difficult to obtain a comprehensive evaluation of
the MOOC quality if we merely depend on a single view.
Only utilizing a single type of interaction may overlook im-
portant relationships between courses and other entities. For
example, ”student click course” and ”teacher upload course”
have dissimilar semantics even though they are included in
the same course. These heterogeneous relationships provide
rich information from multi-view. Thus, it requires incorpo-
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rating these heterogeneous relationships into the represen-
tation learning of the course entities. To address the above
issues, we use meta-paths (Sun et al. 2017) as the guidance
to capture multi-view representations of courses in MOOC
heterogeneous information network.

Second, although multi-view node embedding can be ob-
tained by performing representation learning on MOOC
HIN, how guaranteeing the validity of the learned course
representations remains a challenge. Specifically, the valid-
ity of course representations lies in three aspects: (1) the
course representations should preserve the same semantics
as the raw course portfolio; (2) the representations in each
view should be consistent with the unified representations of
the course; (3) the course representations should be aligned
with the overall representations of the MOOC platform. The
three types of validity indicate strong correlations between
the three pairs of representations. Therefore, to ensure valid-
ity, we aim to maximize the three correlations between the
pair of course representations and the raw course portfolio,
the pair of unified course representations and each view, and
the pair of course representations and platform representa-
tions. In this paper, we exploit mutual information (MI), a
powerful correlation measure, to quantify the correlations in
each pair of representations.

In summary, we propose an Information-aware Graph
Representation Learning(IaGRL) for multi-view MOOC
quality evaluation. The main contributions are as follows:
• We formulate the problem of MOOC quality evaluation

as a multi-view graph representation learning task.
• We construct MOOC HIN and propose to exploit meta-

paths to extract the semantics of MOOC relationships in
different views.

• We identify three types of validity of course representa-
tions, and provide an information-aware course represen-
tation learning framework.

• We conduct extensive experiments over real-world
MOOC datasets to validate the effectiveness of our pro-
posed method.

Definitions and Problem Statement
We introduce the key definitions and the problem statement.
Some important notations are summarized in Table 1.

Definitions and Problem Statement
Definition 1 MOOC Heterogeneous Information Net-
work(HIN) A MOOC HIN is defined as G = (V, E) with
a node type mapping function ϕ : V → N and an edge
type mapping function ψ : E → R. Specifically, in MOOC
HIN, there are four types of nodes: students(denoted as U),
teachers(denoted as T), courses(denoted as C), and sub-
jects(denoted as S). And there are three types of links:
”click” which is to demonstrate the relation between stu-
dents and courses, ”upload” which is to demonstrate the re-
lation between teachers and courses, and ”include” which
is to demonstrate the relation between subjects and courses.
The MOOC HIN is defined as the following groups of
triplet facts:(1) <student, ”click”, course>, (2) <teacher,
”upload”, course>, and (3) <subject, ”include”, course>.

Symbol Definition
G A given MOOC heterogeneous graph

V, E Set of nodes, edges
v, e MOOC HIN node, edge
MP A set of meta-paths(MPs)
X The features matrix of courses
A Adjacency matrix base different MPs
D̃ Diagonal matrix base different MPs
h̃ The multi-view course representation
W The weights of GCN layer
h The unified course representation

αMPi The importance of each MP
M The platform representation
D Mutual information based discriminator

λq, λj , λs, λy The weight of different losses

Table 1: Symbol and Definitions

Definition 2 Meta-path based on MOOC HIN A meta-
path MP based on MOOC HIN is defined as a path in
the form of V1

E1→ V2
E2→ · · · El→ Vl+1(abbreviated as

V1,V2, · · · ,Vl+1), which describes a composite relation
E = E1 ◦ E2 ◦ · · · ◦ El between object V1,V2, · · · ,Vl+1,
where ◦ denotes the composition operator on relations. In
the MOOC HIN, two courses can be connected via multiple

paths, e.g., C
upload−→ T

upload−1

−→ C, C click−→ U
click−1

−→ C,

C
include−→ S

include−1

−→ C. A set of meta-paths are defined as
MP = {MP1,MP2, · · ·MP||MP ||}.

Definition 3 Problem Statement In this paper, we study
the problem of MOOC quality evaluation. We formulate
the problem as an information-aware graph representation
learning task. Formally, we aim to find a mapping function
f : G → h that takes the MOOC HIN G as input, and outputs
information-aware representations h = {h1, h2, ..., hN},
for evaluating the course quality on a MOOC platform.

Method
In this section, we first present an overview of our proposed
framework. Then, we introduce the multi-view course rep-
resentation learning with validity guarantee in detail.

Framework Overview
Figure 1 shows an overview of the proposed two-stage
framework: (1) Stage 1: multi-view course representation
of learning; and (2) Stage 2: course representation validity
guarantee. Specifically, in Stage 1, we extracted our three
meta-paths from the MOOC HIN and constructed the course
adjacency matrix under three different views through the
meta-path. Then, we proposed to learn the representation of
course under different views by using the graph convolu-
tional network(GCN) (Kipf and Welling 2016a) through the
encoder-decoder paradigm. By minimizing the reconstruc-
tion loss that follows the convention of contrastive learning
styles. In Stage 2, we exploit MI maximization to ensure
the three types of course representation validity, with (i) the
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Figure 1: Framework Overview.

agreement on expressiveness between the raw course port-
folio and the learned course representations; (ii) the con-
sistency between the representations in each view and the
unified representations; and (iii) the alignment between the
course and MOOC platform representations.

Course Representation Learning
Multi-View Representations. Given the MOOC
HIN G = (V, E) with a set of meta-paths MP =
{MP1,MP2, · · ·MP||MP ||} and the corresponding adja-
cency matrix A = {A1, A2, · · ·A|MP |}, and |MP | denotes
the number of meta-paths. Let X = {X1, X2, · · ·Xn}
denoted as the course attribute matrix of the MOOC HIN.
In this paper, the course attributes are represented by a
d-dimensional vector that describes the contents of the
course, including the headline, abstract, etc. The course
attribute matrix is generated through the Doc2Vec (Le and
Mikolov 2014) model.

For better generality, we learn multi-view representation
with GCN in an unsupervised fashion. We use generalized
advantage estimation(GAE) (Schulman et al. 2016) to learn
representation in an encode-decode paradigm. Specifically,
the encoder is a GCN with the following layer-wise propa-
gation rule, the multi-view course representation can be de-
noted as:

h̃ = (D̃
− 1

2 ÃD̃
− 1

2 )XW, (1)

where Ã = A + I is the adjacency matrix corresponds to

a single meta-path with self-connections and I is the iden-
tity matrix. D̃ii =

∑
i Ãij is the diagonal matrix, and W is

the weight. The decoder is an inner product of the learned
representation to recover the adjacency matrix:

Â = sigmoid(h̃h̃
T
) (2)

The objective is to minimize the reconstruction loss be-
tween the original adjacency matrix Ã and reconstructed
adjacency matrix Â. We follow the implementation of
VGAE (Kipf and Welling 2016b) to do the sampling and
loss optimization: we take connected neighbors as positive
nodes, and disconnected nodes as negative nodes, and sam-
ple a few of them to construct the data samples. We expect
positive samples to be connected, and negative samples to
be disconnected after reconstruction, thus the reconstruction
is converted to a classification task, which can be optimized
using cross-entropy loss.

Lq = −logÂpos − log(1− Âneg), (3)

where Âpos and Âneg are derived from the positive course
nodes pairs and the negative course node pairs respectively,
based on Equation 3.

Unified Course Representation. Going through the
GAE, we learn the representations for each meta-path. How-
ever, different meta-paths should not be considered equally.
To address this problem, we adopt the idea of heterogeneous
deep graph infomax(HDGI) (Ren et al. 2019), and utilize the
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self-attention mechanism to fuse the embedding of courses
learned under the guide of different meta-paths and gener-
ate the unified course embedding. Specifically, we learn the
self-attention weights for different meta-paths as follows:

h =

|MP |∑
i

att(h̃i), (4)

where att(·) indicates the self-attention function, and h in-
dicates the unified course representation, which has inte-
grated the self-attention weights of different meta-paths. In
this paper, we mainly focus on the course from a multi-view.
In order to make representations from different meta-paths
comparable, we transform each course’s representation from
a different view with a linear transformation. The parame-
ters are shared weight matrix W′ and shared bias vector b⃗.
Based on the distinguishing ability of views, we introduce
the shared attention vector q⃗ of different views to calculate
the importance of each view. The importance of the meta-
paths can be calculated as follows:

aMPi =
1

|MP |

|MP |∑
j=1

tanh(q⃗T · [W′ · h̃
MP i

j + b⃗]) (5)

Then, we use the softmax function to normalize the im-
portance of meta-paths, the normalized weight of each meta-
path can be calculated as follows:

αMPi =
exp(aMPi)∑|MP |

j=1 exp(aMPj )
(6)

The self-attention unified course representation h can be
represented as follows:

h =

|MP |∑
i=1

αMPi h̃i (7)

Validity Guarantee
Raw Portfolio-Representation Agreement. The learned
course representations are expected to achieve agreement
with the raw course portfolio in describing courses. We re-
fer to this as Raw Portfolio-Representation Agreement. We
use mutual information (MI) to quantify the agreement be-
tween the representation h learned by the course node in the
unified view and the representation X of the raw features of
the MOOC. Following the idea of DIM and DGI (Velick-
ovic et al. 2019), a Jensen Shannon MI estimator is defined
to estimate and maximize the MI between X and h:

MI(X, h) :=EX[−sp(−D(X, h(MP )))]+

EX̄[sp(D(X, h(MP )))],
(8)

where sp is the softplus function that sp(c)× log(1+ ec), X
is the positive sample set and X̄ is negative sample set. We
will present how we generate positive and negative samples
later. Since the noise-contrastive type objective with a stan-
dard binary cross-entropy (BCE) can effectively maximize
mutual information, we define the loss function as:

Lj = − 1

|MP |

|MP |∑
j=1

∑
i

EX[logDj(X
(MP j)
i , hi)]−

EX̄[log(1−Dj(X̃
(MP j)

i , hi))],
(9)

where Dj denotes a discriminator to justify the given pairs as
positive or negative. For the k-th view, we regard the positive
sample as the pair of (X(MP j)

i , hi) and the negative samples
as the pairs of (X̃(MP j)

i , hi).

Multi-View Consistency. Although we deconstruct het-
erogeneous graphs into different views, the course represen-
tations in each view are expected to be consistent with the
unified course representations in semantics, which is defined
as multi-view consistency. We propose to exploit MI to mea-
sure the multi-view consistency. First, we get the multi-view
representation h̃ and unified course representation h. Specif-
ically, h is obtained from self-attention on the one hand and
h̃ is obtained from the GCN encoder. Then, we use neural
network estimation MI (h; h̃) to maximize the mutual in-
formation between the unified course representation h and
multi-view representation h̃. We have a similar noise con-
trastive loss function:

Ls = − 1

|MP |

|MP |∑
j=1

∑
i

EX[logDs(hi, h̃
(MPj)

i )]−

EX̄[log(1−Ds(hi, h́
(MP j)

i ))],
(10)

where Ds denotes a discriminator for discriminating posi-
tive consistent pairs, hi is unified course representation.h́i is
the result of h̃ after random shuffling. For the k-th view, we
design the positive samples as the pairs of (hi, h̃

(MP j)

i ), and

the negative samples as the pairs of (hi, h́
(MP j)

i ). The ob-
jective is to minimize Ls, which is equivalent to maximize
MI(h, h̃).

Course-Platform Alignment. While there is no doubt
that the courses are different from each other, the course
representations are required to align with the MOOC plat-
form representations within the same semantic scope. To ac-
complish the course-platform alignment, we first obtain the
platform representation by considering it as the graph-level
representation of MOOC HIN for courses. Along this line,
we take the platform summary vector M by averaging over
all course representations:

M = σ(
1

N

N∑
i=1

hi), (11)

where σ is the sigmoid function and N is the number of
course nodes. We continue to leverage MI to capture the
course-platform alignment, by maximizing the MI between
In order to maximize course-platform alignment, we intro-
duce MI and then based on the relationship between the
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Jensen-Shanno degree and mutual information. We can max-
imize the mutual information between platform representa-
tion and unified course representation using the binary cross-
entropy loss of the discriminator as follows:

Ly = −
∑
i

EX[logDy(hi,M)]−

EX̄[log(1−Dy(h̄i,M))],

(12)

where Dy denotes a discriminator to provide probability
scores for sampled course-platform pairs, h is unified course
representation.h̄ is the result of h after random shuffling. We
design the positive samples as the pairs of (hi,M), and the
negative samples as the pairs of (h̄i,M). The objective is to
minimize Ly , which is equivalent to maximize MI(h,M).

Optimization
The loss of the model includes: (i) the contrastive learning
loss for graph reconstruction λq (Equation 3); (ii) the raw
portfolio-representation agreement learning loss λj (Equa-
tion 9); (iii) the multi-view consistency learning loss λs
(Equation 10); and (iv) the course-platform alignment learn-
ing loss λy (Equation 11). The objective is to minimize the
overall loss L as follows:

L = λqLq + λjLj + λsLs + λyLy (13)

where λq , λj , λs and λy are the weights for Lq , Lj , Ls and
Ly , respectively. The above loss can be optimized through
gradient descent, and the representations of nodes can be
learned when the optimization is completed.

Experiment
In the experiment, we aim to answer the following three re-
search questions:

• Q1. How is the performance of our proposed IaGRL in
the MOOC quality evaluation task?

• Q2. How do the meta-paths affect the course quality eval-
uation performance?

• Q3. How do the different learning losses affect the course
quality evaluation performance?

Then, we will introduce statistical information about real-
world MOOC data, and experiment settings and compare Ia-
GRL with several baselines on this data.

Data Description
We evaluate the performance over real-world MOOC data.
The data constitute a MOOC heterogeneous information net-
work containing 4 types of entities and 3 types of relations.
The course scores range from 0 to 5. In the data preprocess-
ing step, we filtered out users that have fewer than 3 links.
After data preprocessing, we split the datasets into two non-
overlapping sets: 20% of the datasets as the testing set and
the rest 80% as the training set. Table 2 shows the detailed
statistics of the dataset.

Properties Descriptions Statistics
Student Users who studied course 4931
Course Learning materials 10919
Teacher Users who uploaded course 1213
Subject An area of knowledge 35
Time Time period 2015-2018

Table 2: Statistics and descriptions of dataset

Baselines and Evaluation Metrics
We compare the performances of our method with the fol-
lowing baselines:
(1) MLP. The multilayer perceptron(MLP) is a feedforward
supervised artificial neural network structure. The MLP can
contain multiple hidden layers to realize the classification
modeling.
(2) DeepWalk. The DeepWalk model is a recently
proposed network embedding method that extends the
word2vec model (Mikolov et al. 2013) by truncated random
walks (Perozzi, Al-Rfou, and Skiena 2014).
(3) DeepWalk+F. The DeepWalk+F model not only adds
the neighbor features after the random walk but also adds
the attribute features of practice.
(4) GCN. The graph convolutional network(GCN) performs
information aggregation based on the Laplacian or adjacent
matrix of the complete graph (Kipf and Welling 2016a).
(5) GAE. The graph autoencoder(GAE) learns node repre-
sentation, we use an embedding layer to encode the node
with GCN (Schulman et al. 2016).
(6) GraphSAGE. The GraphSAGE proposes neighborhood
batch sampling to enable scalable training with max, min,
and LSTM aggregation functions (Hamilton, Ying, and
Leskovec 2017).
(7) GAT. The graph attention network(GAT) introduces a
multi-head attention mechanism into the aggregation func-
tion, which learns the importance of the neighborhood of
each node for information aggregation (Velickovic et al.
2017).
(8) GATv2. GATv2 solves the simple graph problem of GAT
using a static attention mechanism, a dynamic graph atten-
tion variant that is more expressive than GAT (Brody, Alon,
and Yahav 2021).

The last five are graph representation learning methods.
To evaluate the performance of the models for MOOC qual-
ity, we adopt two widely used evaluation metrics for multi-
classification performance, e.g., Accuracy and Macro-F1.
Specifically, Accuracy measures the evaluation accuracy
that the user scores successfully rated. And macro f1 help
to consider performance comprehensively in case of imbal-
anced data. For both metrics, the larger the value, the better
the performance.

Parameter Setting
For Deepwalk and Deepwalk+F, we set the number of walks
= 80, the size of representation = 128, the walk length = 20,
and the window size = 10. For GCN, GAE and GraphSAGE,
we set the number of layers = 2, the input feature size=128,
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the output feature size = 128, and the learning rate = 0.001.
For GAT and GATv2, we set the number of layers = 2, the
layer heads = [2,1], the input feature size = 128, the output
feature size = 128, and the learning rate = 0.003. For my
model we set the learning rate = 0.001, the l2 = 0.001, the
dropout = 0.1, the input feature = 128, and the out feature
= 128. The device we used was two RTX 6000 with 24GiB
memory and CUDA=11.2.

Overall Performance(Q1)
In this section, we compare the overall performance of
all models on the real-world dataset. In general, Figure 2
shows our model outperforms other baseline methods for
both Accuracy and Macro-F1 metric. Compared to MLP,
which is the representative of node attribute, random walk-
based methods (DeepWalk, Deepwalk+F), graph convo-
lution network-based methods (GCN, GAE, GraphSAGE,
GAT, GATv2), and information-based methods (our pro-
posed method) perform better in modeling MOOC heteroge-
neous network. Compared to DeepWalk and DeepWalk+F,
which is the random walk-based methods, our proposed
framework additionally considers heterogeneous graph em-
bedding and information-aware of the learned representa-
tion. Compared to graph convolution network-based meth-
ods, the information guarantee provided by our proposed
method further elevates the reasonability of the learned rep-
resentations. In summary, the results validate that incorpo-
rating multi-view and information-aware can improve the
quality of representation learning.

(a) Accuracy. (b) Macro-F1.

Figure 2: Overall comparisons of evaluation Accuracy and
Macro-F1 of our methods with other baselines.

Influence of Meta-paths(Q2)
In this part of the experiments, we analyze how meta-
paths affect the performance of methods. We consider both
single meta-path and their combinations in our method.
Specifically, we select three types of meta-paths to rep-
resent the relatedness between pair of courses, including
MP1: C → T

−1→ C, MP2: C → U
−1→ C and MP3:

C → S
−1→ C. To analyze the impact of meta-paths, we

study the performance in three aspects:(1)with single view
attention weights; (2)with single course-related meta-path
and their combinations on our method; and (3)with meta-
path on baselines.

Compared with attention weights. We calculate the im-
portance of the attention weights for each meta-path in our
method, the results are shown in table 3. From the table,
we can find the most important meta-path is MP1, from the
teacher view, follow by MP3(from the subject view) and
MP2(from the student view), respectively. It is easy to un-
derstand that when evaluating a course quality from multi-
ple views, the teacher’s influence on course quality is more
important. One interesting observation is that the student’s
view has the least impact on course quality, even less than
the subject view, which is an objective perspective. A possi-
ble explanation is that our data came from a MOOC platform
based on primary education. On the one hand, the student’s
cognitive level is in the primary state, on the other hand,
the students’ behavior of clicking courses is guided by the
teacher, which is less subjective.

Weights MP1 MP2 MP3

αMPi 0.4655 0.2242 0.3103

Table 3: The importance of each meta-path.

Compared with the different meta-paths combination.
We compare our method with both single meta-path and
their combinations. The results are shown in Table 4,
we can find that every single meta-path exhibits dif-
ferent performance, where the performance ranking is
MP1>MP3>MP2, and the combinations of single meta-
paths follow the same tendency. This illustrates that different
meta-paths indicate different relations and the combination
including more meta-paths will exhibit better performance,
and the best performance is achieved by combining all three
meta-paths.

Meta-path Accuracy Macro-F1
MP1 0.3596 0.1529
MP2 0.3407 0.1397
MP3 0.3543 0.1707

MP1 & MP2 0.3697 0.1536
MP1 & MP3 0.3864 0.1783
MP2 & MP3 0.3656 0.1742

MP1 & MP2 & MP3 0.4101 0.2011

Table 4: The results from different combinations of meta-
paths on our method.

Compared with meta-paths on baselines. And in order
to further verify the effect of meta-paths, we study the meta-
path on the baselines based on graph convolutional network
methods. The results are shown in Table 5, from Table 5,
we can find that compared with the original algorithms,
including meta-path combinations will show better perfor-
mance. Especially in the GCN, and GraphSAGE methods,
the growth of performance is quite obvious.
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Methods Accuracy Macro-F1
GCN 0.2368 0.0724

GCN & MPi=1,2,3 0.3466 0.0857
GAE 0.3501 0.1307

GAE & MPi=1,2,3 0.3555 0.1686
GraphSAGE 0.2770 0.1130

GraphSAGE & MPi=1,2,3 0.3620 0.1092
GAT 0.2914 0.0987

GAT & MPi=1,2,3 0.3187 0.1076
GATv2 0.3252 0.1026

GATv2 & MPi=1,2,3 0.3258 0.1220

Table 5: The results from different combinations of meta-
paths on baselines.

Analysis of Lj , Ls, Ly (Q3)

In order to analyze the contribution of representation raw
portfolio agreement, multi-view consistency and course-
platform alignment, we define six variants of our proposed
model: (1) MI-IaGRL-J, which adds Lj to the base model;
(2) MI-IaGRL-S, which adds Ls to the base model; (3) MI-
IaGRL-Y, which adds Ly to the base model; (4) MI-IaGRL-
J,S, which adds Lj and Ls to the base model; (5) MI-IaGRL-
J,Y, which adds Lj and Ly to the base model; and (6) MI-
IaGRL-S,Y, which adds Ls and Ly to the base model.

As shown in Figure 3, we compare the MI-IaGRL-J,
MI-IaGRL-S, MI-IaGRL-Y, MI-IaGRL-J,S, MI-IaGRL-J,Y,
MI-IaGRL-S,Y and MI-IaGRL in the experiment. When
the combination of loss functions increases from single to
two to three, the overall trend of metric values are increas-
ing. The results indicate that the integrated raw portfolio-
representation agreement, the multi-view consistency, and
the course-platform alignment significantly improve the per-
formance of MOOC quality evaluation.

(a) Accuracy. (b) Macro-F1.

Figure 3: Analysis of Lj , Ls, Ly .

Related Work

Our work is related to the following two domains of prior
work, including MOOC quality evaluation and graph repre-
sentation learning.

MOOC Quality Evaluation

Our work has a connection with MOOC quality evaluation.
Prior literature on MOOC quality evaluation lies in two as-
pects: (1) manual evaluation (Wang et al. 2021), and (2) au-
tomated evaluation (Pérez-Martı́n, Rodrı́guez-Ascaso, and
Molanes-Lopez 2021; Betanzos, Costa-jussà, and Belanche
2017). Manual-based methods evaluate the course quality by
domain experts based on a pre-defined rubric. For example,
Wang et al. discussed the quality analysis of instructional
design based on the ten-principle framework (Wang et al.
2021). The manual-based method can evaluate course qual-
ity accurately, but they are not suitable for large-scale appli-
cations. More and more automatic methods appear, such as,
Zhuo et al. designed a teaching quality assessment model on
the MOOC platform based on comprehensive fuzzy evalua-
tion (Zhuo and Dong 2017).

Graph Representation Learning

Different from the traditional graph optimization
method (Chen et al. 2023; ?) focusing on efficiency,
the graph embedding method focuses on information
extraction. Graph embedding aims to project nodes in
a graph into a d-dimensional vector space, in which the
representation of nodes can reflect the relationship between
nodes, and retain the semantic information of nodes. Graph
embedding methods can be categorized into homogeneous
graph embedding(node2vec (Grover and Leskovec 2016),
struct2vec (Ribeiro, Saverese, and Figueiredo 2017) and
Deepwalk (Perozzi, Al-Rfou, and Skiena 2014)), hetero-
geneous graph embedding(metapath2vec (Dong, Chawla,
and Swami 2017), HHNE (Wang, Zhang, and Shi 2019),
SHNE (Zhang, Swami, and Chawla 2019)). However, the
above methods ignore the mutual information. In order to
handle the information-aware of graphs, there are several
methods have been proposed, including DGI (Velickovic
et al. 2019), HDGI (Ren et al. 2019).

Conclusion

In this paper, we study the problem of MOOC course qual-
ity evaluation with MOOC heterogeneous information net-
works and propose an information-aware graph represen-
tation learning framework for multi-view MOOC quality
evaluation. Specifically, we first formulate the problem of
MOOC quality evaluation as a multi-view graph representa-
tion learning task. Second, we construct MOOC HIN and
propose to exploit meta-paths to extract the semantics of
MOOC relationships from different views. Third, we iden-
tify three types of validity of course representations, with
(i) the agreement on expressiveness between the raw course
portfolio and the learned course representations; (ii) the
consistency between the representations in each view and
the unified representations; and (iii) the alignment between
the course and MOOC platform representations. Finally, we
conduct extensive experiments over real-world MOOC data
to validate the effectiveness of our method.
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