Learnable Path in Neural Controlled Differential Equations
DOI:
https://doi.org/10.1609/aaai.v37i7.25969Keywords:
ML: Time-Series/Data Streams, ML: Deep Neural ArchitecturesAbstract
Neural controlled differential equations (NCDEs), which are continuous analogues to recurrent neural networks (RNNs), are a specialized model in (irregular) time-series processing. In comparison with similar models, e.g., neural ordinary differential equations (NODEs), the key distinctive characteristics of NCDEs are i) the adoption of the continuous path created by an interpolation algorithm from each raw discrete time-series sample and ii) the adoption of the Riemann--Stieltjes integral. It is the continuous path which makes NCDEs be analogues to continuous RNNs. However, NCDEs use existing interpolation algorithms to create the path, which is unclear whether they can create an optimal path. To this end, we present a method to generate another latent path (rather than relying on existing interpolation algorithms), which is identical to learning an appropriate interpolation method. We design an encoder-decoder module based on NCDEs and NODEs, and a special training method for it. Our method shows the best performance in both time-series classification and forecasting.Downloads
Published
2023-06-26
How to Cite
Jhin, S. Y., Jo, M., Kook, S., & Park, N. (2023). Learnable Path in Neural Controlled Differential Equations. Proceedings of the AAAI Conference on Artificial Intelligence, 37(7), 8014-8022. https://doi.org/10.1609/aaai.v37i7.25969
Issue
Section
AAAI Technical Track on Machine Learning II