
Confidence-Aware Training of Smoothed Classifiers for Certified Robustness

Jongheon Jeong*, Seojin Kim*, Jinwoo Shin
Korea Advanced Institute of Science and Technology (KAIST)

Daejeon, 34141 South Korea
{jongheonj, osikjs, jinwoos}@kaist.ac.kr

Abstract

Any classifier can be “smoothed out” under Gaussian noise to
build a new classifier that is provably robust to `2-adversarial
perturbations, viz., by averaging its predictions over the noise
via randomized smoothing. Under the smoothed classifiers,
the fundamental trade-off between accuracy and (adversar-
ial) robustness has been well evidenced in the literature: i.e.,
increasing the robustness of a classifier for an input can be
at the expense of decreased accuracy for some other in-
puts. In this paper, we propose a simple training method
leveraging this trade-off to obtain robust smoothed classi-
fiers, in particular, through a sample-wise control of robust-
ness over the training samples. We make this control feasi-
ble by using “accuracy under Gaussian noise” as an easy-to-
compute proxy of adversarial robustness for an input. Specifi-
cally, we differentiate the training objective depending on this
proxy to filter out samples that are unlikely to benefit from
the worst-case (adversarial) objective. Our experiments show
that the proposed method, despite its simplicity, consistently
exhibits improved certified robustness upon state-of-the-art
training methods. Somewhat surprisingly, we find these im-
provements persist even for other notions of robustness, e.g.,
to various types of common corruptions. Code is available at
https://github.com/alinlab/smoothing-catrs.

1 Introduction
Despite these tremendous advances in deep neural networks
for a variety of computer vision tasks towards artificial
intelligence, the broad existence of adversarial examples
(Szegedy et al. 2014) is still a significant aspect that reveals
the gap between machine learning systems and humans: for
a given input x (e.g., an image) to a classifier f , say a neu-
ral network, f often permits a perturbation δ that completely
flips the prediction f(x+ δ), while δ is too small to change
the semantic in x. In response to this vulnerability, there
have been tremendous efforts in building robust neural net-
work based classifiers against adversarial examples, either
in forms of empirical defenses (Athalye, Carlini, and Wag-
ner 2018; Carlini et al. 2019; Tramer et al. 2020), which are
largely based on adversarial training (Madry et al. 2018;
Zhang et al. 2019; Wang et al. 2020; Zhang et al. 2020c;
Wu, Xia, and Wang 2020), or certified defenses (Wong and
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Kolter 2018; Xiao et al. 2019; Cohen, Rosenfeld, and Kolter
2019; Zhang et al. 2020b), depending on whether the robust-
ness claim can be theoretically guaranteed or not.

Randomized smoothing (Lecuyer et al. 2019; Cohen,
Rosenfeld, and Kolter 2019), our focus in this paper, is cur-
rently a prominent approach in the context of certified de-
fense, thanks to its scalability to arbitrary neural network
architectures while previous methods have been mostly lim-
ited in network sizes or require strong assumptions, e.g.,
Lipschitz constraint, on their architectures: specifically, for
a given classifier f , it constructs a new classifier f̂ , where
f̂(x) is defined to be the class that f(x + δ) outputs most
likely over δ ∼ N (0, σ2I), i.e., the Gaussian noise. Then,
it is shown by Lecuyer et al. (2019) that f̂ is certifiably ro-
bust in `2-norm, and Cohen, Rosenfeld, and Kolter (2019)
further tightened the `2-robustness guarantee which is cur-
rently considered as the state-of-the-art in certified defense.

However, even with recent methods for adversarial de-
fense, including randomized smoothing, the trade-off be-
tween robustness and accuracy (Tsipras et al. 2019; Zhang
et al. 2019) has been well evidenced, i.e., increasing the ro-
bustness for a specific input can be at the expense of de-
creased accuracy for other inputs. For instance, with the cur-
rent best practices, Salman et al. (2020a) reports that the
accuracy of ResNet-50 on ImageNet degrades, e.g., 75.8%
→ 63.9%, by an `∞-adversarial training, i.e., optimizing the
classifier to ensure robustness at all the given training sam-
ples around an `∞-ball of size 4

255 . In addition, Zhang et al.
(2019) has shown that the (empirical) robustness of a clas-
sifier can be further boosted in training by paying more ex-
pense in accuracy. A similar trend can be also observed with
certified defenses, e.g., randomized smoothing, as the clean
accuracy of smoothed classifiers are usually less than those
one can obtain from the standard training on the same archi-
tecture (Cohen, Rosenfeld, and Kolter 2019).

Contribution. In this paper, we develop a novel train-
ing method for randomized smoothing, coined Confidence-
Aware Training for Randomized Smoothing (CAT-RS),
which incorporates a sample-wise control of target robust-
ness on-the-fly motivated by the accuracy-robustness trade-
off in smoothed classifiers. Intuitively, a natural approach
one can consider in response to the trade-off in robust train-
ing is to appropriately lower the robustness requirement for
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(a) Bottom-K loss (b) Worst-case loss

Figure 1: Illustration of the two proposed losses, i.e., the
(a) bottom-K and (b) worst-case losses. Each × represents
Gaussian noise around x. We aim to minimize the cross-
entropy loss only for ×’s marked as red for each case.

“hard-to-classify” samples while maintaining those for the
remaining (“easier”) samples: here, the challenges are (a)
which samples should we choose as either “hard-to-classify”
(or “easier”) for the control in training, and (b) how to con-
trol their target robustness. For both (a) and (b), the major
difficultly stems from that evaluating adversarial robustness
for a given sample is computationally hard in practice.

To implement this idea, we focus on a peculiar correspon-
dence from prediction confidence to adversarial robustness
that smoothed classifiers offer: due to its local-Lipschitzness
(Salman et al. 2019), achieving a high confidence at x from a
smoothed classifier also implies a high (certified) robustness
at x. Inspired by this, we propose to use the sample-wise
confidence of smoothed classifiers as an efficient proxy of
the certified robustness, and defines two new losses, namely
the bottom-K and worst-case Gaussian training, each of
those targets different levels of confidence so that the over-
all training can prevent low-confidence samples from being
enforced to increase their robustness.

We verify the effectiveness of our proposed method
through an extensive comparison with existing robust train-
ing methods for smoothed classifiers, including the state-
of-the-arts, on a wide range of benchmarks on MNIST,
Fashion-MNIST, CIFAR-10/100, and ImageNet. Our exper-
imental results constantly show that the proposed method
can significantly improve the previous state-of-the-art re-
sults on certified robustness achievable from a given neural
network architecture, by (a) maximizing the robust radii of
high-confidence samples while (b) reducing the risk of dete-
riorating the accuracy at low-confidence samples. More in-
triguingly, we also observe that such a training scheme also
helps smoothed classifiers to generalize beyond adversarial
robustness, as evidenced by significant improvements in ro-
bustness against common corruptions compared to other ro-
bust training methods. Our extensive ablation study further
confirms that each of both proposed components has an indi-
vidual effect on improving certified robustness, and can ef-
fectively control the accuracy-robustness trade-off with the
hyperparameter between the two proposed losses.

Related work. There have been continual attempts to pro-
vide a certificate on robustness of deep neural networks
against adversarial attacks (Gehr et al. 2018; Wong and

Kolter 2018; Mirman, Gehr, and Vechev 2018; Xiao et al.
2019; Gowal et al. 2019; Zhang et al. 2020b), and corre-
spondingly to further improve the robustness with respect
to those certification protocols (Croce, Andriushchenko, and
Hein 2019; Croce and Hein 2020; Balunovic and Vechev
2020).1 Randomized smoothing (Cohen, Rosenfeld, and
Kolter 2019) has attracted a particular attention among them,
due to its scalability to large datasets and its flexibility to
various applications (Rosenfeld et al. 2020; Salman et al.
2020b; Wang et al. 2021; Fischer, Baader, and Vechev 2021;
Wu et al. 2022) or other threat models (Li et al. 2021b; Yang
et al. 2020; Lee et al. 2019; Jia et al. 2020; Zhang et al.
2020a; Salman et al. 2022).

This work aims to improve adversarial robustness of ran-
domized smoothing, along a line of research on design-
ing training schemes specialized for smoothed classifiers
(Salman et al. 2019; Zhai et al. 2020; Jeong and Shin 2020;
Jeong et al. 2021). Specifically, we focus on the relation-
ship between confidence and robustness of smoothed classi-
fiers, a property rarely investigated previously but few (Ku-
mar et al. 2020; Jeong et al. 2021). We leverage the property
to overcome challenges in estimating sample-wise robust-
ness, and to develop a data-dependent adversarial training
which has been also challenging even for empirical robust-
ness (Wang et al. 2020; Zhang et al. 2021).

2 Preliminaries
Adversarial robustness. Consider a labeled dataset D =
{(xi, yi)}ni=1 sampled from P , where x ∈ Rd and y ∈
Y := {1, · · · ,K}, and let f : Rd → Y be a classifier.
Given that f is discrete, one can consider a differentiable
F : Rd → ∆K−1 to allow a gradient-based optimization as-
suming f(x) := arg maxk∈Y Fk(x), where ∆K−1 is proba-
bility simplex in RK . The standard framework of empirical
risk minimization to optimize f assumes that the samples in
D are i.i.d. from P and expect f to perform well given that
the future samples also follow the i.i.d. assumption.

However, in the context of adversarial robustness (and
for other notions of robustness as well), the i.i.d. assump-
tion on the future samples does not hold anymore: instead,
it assumes that the samples can be arbitrarily perturbed up
to a certain restriction, e.g., a bounded `2-ball, and focuses
on the worst-case performance over the perturbed samples.
One way to quantify this is the average minimum-distance
of adversarial perturbation (Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Carlini et al. 2019):

R(f ;P ) := E(x,y)∼P

[
min

f(x′)6=y
||x′ − x||2

]
. (1)

Randomized smoothing. The essential challenge in
achieving adversarial robustness in neural networks, how-
ever, stems from that directly evaluating (1) (and further op-
timizing it) is usually computationally infeasible, e.g., un-
der the standard practice that F is modeled by a complex,
high-dimensional neural network. Randomized smoothing

1A more extensive survey on certified robustness can be found
in Li et al. (2021a).
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(Lecuyer et al. 2019; Cohen, Rosenfeld, and Kolter 2019)
bypasses this difficulty by constructing a new classifier f̂
from f instead of letting f to directly model the robustness:
specifically, it transforms the base classifier f with a certain
smoothing measure, where in this paper we focus on the case
of Gaussian distributions N (0, σ2I):

f̂(x) := arg max
c∈Y

Pδ∼N (0,σ2I) (f(x+ δ) = c) . (2)

Then, the robustness of f̂ at (x, y), namely R(f̂ ;x, y), can
be lower-bounded in terms of the certified radiusR(f̂ , x, y),
e.g., Cohen, Rosenfeld, and Kolter (2019) showed that the
following bound holds which is tight for `2-adversary:

R(f̂ ;x, y) ≥ σ · Φ−1(pf (x, y)) =: R(f̂ , x, y) (3)
where pf (x, y) := Pδ(f(x+ δ) = y), (4)

provided that f̂(x) = y, otherwise R(f̂ ;x, y) := 0.2 Here,
we remark that the formula for certified radius (3) is es-
sentially a function of pf (4), which represents the predic-
tion confidence of f̂ at x, or equivalently, the accuracy of
f(x + δ) over δ ∼ N (0, σ2I). In other words, unlike stan-
dard neural networks, smoothed classifiers can guarantee a
correspondence from prediction confidence to adversarial
robustness - which is the key motivation of our method.

3 Confidence-aware Randomized Smoothing
We aim to develop a new training method to maximize the
certified robustness of a smoothed classifier f̂ , considering
the trade-off relationship between robustness and accuracy
(Zhang et al. 2019): even though randomized smoothing can
be applied for any classifier f , the actual robustness of f̂
depends on how much f classifies well under presence of
Gaussian noise, i.e., by pf (x, y) defined in (4). A simple way
to train f for a robust f̂ , therefore, is to minimize the cross-
entropy loss (denoted by CE below) with Gaussian augmen-
tation as in Cohen, Rosenfeld, and Kolter (2019):

min
F

E (x,y)∼P
δ∼N (0,σ2I)

[CE(F (x+ δ), y)] . (5)

In this paper, we extend this basic form of training to in-
corporate a confidence-aware strategy to decide which noise
samples δi ∼ N (0, σ2I) should be used sample-wise for
training f . Ideally, one may wish to obtain a classifier f
that achieves pf (x, y) ≈ 1 for every (x, y) ∼ P to max-
imize its certified robustness. In practice, however, such
a case is highly unlikely, and there usually exists a sam-
ple x that pf (x, y) should be quite lower than 1 to main-
tain the discriminativity with other samples: in other words,
these samples can be actually “beneficial” to be misclassi-
fied at some (hard) Gaussian noises, otherwise the classifier
has to memorize the noises to correctly classify them. On
the other hand, for the samples which can indeed achieve
pf (x, y) ≈ 1, the current Gaussian training (5) may not be
able to provide enough samples of δi for x throughout the

2Φ denotes the cumulative distribution function of N (0, 12).

training, as pf (x, y) ≈ 1 implies that f(x+ δ) must be cor-
rectly classified “almost surely” for δi ∼ N (0, σ2I).

In these respects, we propose two different variants of
Gaussian training (5) that address each of the possible cases,
i.e., whether (a) pf (x, y) < 1 or (b) pf (x, y) ≈ 1, namely
with (a) bottom-K and (b) worst-case Gaussian training,
respectively. During training, the method first estimates
pf (x, y) for each sample by computing their accuracy over
M random samples of δ ∼ N (0, σ2I), and applies differ-
ent forms of loss depending on the value. In the following
two sections, Section 3.1 and 3.2, we provide the details on
each loss, and Section 3.3 describes how to combine the two
losses and defines the overall training scheme.

3.1 Bottom-K Loss for Low-confidence Samples
Consider a base classifier f and a training sample (x, y) ∈
D, and suppose that pf (x, y) � 1, e.g., f̂ has a low-
confidence at x. Figure 1(a) visualizes this scenario: in this
case, by definition of pf (x, y) in (4), f(x + δ) would be
correctly classified to y only with probability p over δ ∼
N (0, σ2I), and this implies either (a) x+ δ has not yet been
adequately exposed to f during the training, or (b) x + δ
may be indeed hard to be correctly classified for some δ, so
that minimizing the loss at these noises could harm the gen-
eralization of f̂ . The design goal of our proposed bottom-K
Gaussian loss is to modify the standard Gaussian training
(5) to reduce the optimization burden from (b) while min-
imally retaining its ability to cover enough noise samples
during training for (a).

We first assume M random i.i.d. samples of δ, say
δ1, δ2, · · · , δM ∼ N (0, σ2I). One can notice that the ran-
dom variables 1[f(x+ δi) = y]’s are also i.i.d. each, which
follows the Bernoulli distribution of probability pf (x, y).
This means that, if the current pf (x, y) is the value one at-
tempts to keep instead of further increasing it, the number
of “correct” noise samples, namely

∑
i 1[f(x + δi) = y],

would follow the binomial distribution K ∼ Bin(M,p) -
this motivates us to consider the following loss that only
minimizes the K-smallest cross-entropy losses out of from
M Gaussian samples around x:

Llow :=
1

M

K∑
i=1

CE(F (x+ δπ(i)), y), (6)

where K ∼ Bin(M,pf (x, y)). Here, π(i) denotes the index
with the i-th smallest loss value in the M samples.

Yet, the loss defined in (6) may not handle the cold-start
problem on pf (x, y), e.g., at the early stage of the training
where x+ δ has not been adequately exposed to f , so that it
is uncertain whether the current pf (x, y) is optimal: in this
case, Llow can be minimized with an under-estimated pf ≈
0, potentially with samples those never optimize the cross-
entropy losses during training. Nevertheless, we found that
a simple workaround of clamping K can effectively handle
the issue, i.e., by using K+ ← max(K, 1) instead of K: in
other words, we always allow the “easiest” noise among the
M samples to be fed into f throughout the training.
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3.2 Worst-case Loss for High-confidence Samples
Next, we focus on the case when pf (x, y) ≈ 1, i.e., f̂ has a
high confidence at x, as illustrated in Figure 1(b). In contrast
to the previous scenario in Section 3.1 (and Figure 1(a)),
now the major drawback of Gaussian training (5) does not
come from the abundance of hard noises in training, but
from the rareness of such noises: considering that one can
only present a limited number of noise samples to f through-
out its training, naı̈vely minimizing (5) may not cover some
“potentially hard” noise samples, and this would result in a
significant harm in the final certified radius of the smoothed
classifier f̂ . The purpose of worst-case Gaussian training is
to overcome this lack of samples via an adversarial search
around each of the noise samples.

Specifically, for given M samples of Gaussian noise δi
as considered in (6), namely δ1, δ2, · · · , δM ∼ N (0, σ2I),
we propose to modify (5) to find the worst-case noise δ∗ (a)
around an `2-ball for each noise as well as (b) among the M
samples, and minimize the loss at δ∗ instead of the average-
case loss. To find such worst-case noise, our proposed loss
optimizes a given δi to maximize the consistency of its pre-
diction from a certain label assignment ŷ ∈ ∆K−1 per x:

Lhigh := max
i

max
‖δ∗i−δi‖2≤ε

KL(F (x+ δ∗i ), ŷ), (7)

where KL(·, ·) denotes the Kullback-Leibler divergence.
This objective is motivated by (Jeong and Shin 2020) that
the consistency of prediction across different Gaussian noise
controls the trade-off between accuracy and robustness of
smoothed classifiers. Notice from (7) that the objective is
equivalent to the cross-entropy loss if ŷ is assigned as (hard-
labeled) y, while we observe having a soft-labeled ŷ is ben-
eficial in practice: its log-probability, where the consistency
targets, can now be bounded so F (x + δ∗i )’s can also mini-
mize their variance in the logit space.

There can be various ways to assign ŷ for a given x. One
reasonable strategy, which we use in this paper by default, is
to assign ŷ by the smoothed prediction of another classifier
f̄ , pre-trained on D via Gaussian training (5) with some σ0.
This approach is (a) easy to compute, and (b) naturally re-
flects sample-wise difficulties under Gaussian noise, while
(c) maintaining the label information from y. Nevertheless,
we also confirm in Appendix G.1 that Lhigh is still effec-
tive even when ŷ is defined in a simpler way, namely by the
average of F (x+ δi)’s without the Gaussian pre-training.

In practice, we use the projected gradient descent (PGD)
(Madry et al. 2018) to solve the inner maximization in (7):
namely, we perform a T -step gradient ascent from each δi
with step size 2 · ε/T while projecting the perturbations to
be in the `2-ball of size ε. This procedure would find a noise
δ∗ that maximizes the loss around x, while maintaining the
Gaussian-like noise appearance due to the projected search
in a small ε-ball. In order to further make sure that the Gaus-
sian likelihood of δ∗ is maintained from the original δ, we
additionally apply a simple trick of normalizing the mean
and standard deviation of δ∗ to follow those of δ.

Comparison to SmoothAdv. The idea of incorporating an
adversarial search for the robustness of smoothed classifiers

has been also considered in previous works (Salman et al.
2019; Jeong et al. 2021): e.g., Salman et al. (2019) have pro-
posed SmoothAdv that applies adversarial training (Madry
et al. 2018) to a “soft” approximation of f̂ given f and M
noise samples:

x∗ = arg max
||x′−x||2≤ε

(
− log

(
1

M

∑
i

Fy(x′ + δi)

))
. (8)

Our method is different from the previous approaches in
which part of the inputs is adversarially optimized: i.e., we
directly optimize the noise samples δi’s instead of x, with
no need to assume a soft relaxation of f̂ . This is due to our
unique motivation of finding the worst-case Gaussian noise,
and our experimental results in Section 4 further support the
effectiveness of this approach.

3.3 Overall Training Scheme
Given the two losses Llow and Lhigh defined in Section 3.1
and 3.2, respectively, we now define the full objective of
our proposed Confidence-Aware Training for Randomized
Smoothing (CAT-RS). Overall, in order to differentiate how
to combine the two losses per sample basis, we use the
smoothed confidence pf (x, y) (4) as the guiding proxy:
specifically, we aim to apply the worst-case loss of Lhigh

only for the samples where pf (x, y) is already high enough.
In practice, however, one does not have a direct access to the
value of pf (x, y) during training, and we estimate this with
the M noise samples3 as done for Llow and Lhigh, i.e., by
p̂f (x, y) := 1

M

∑M
i=1 1[f(x + δi) = y]. Then, we consider

a simple and intuitive masking condition of “K = M” to
activate Lhigh, where K ∼ Bin(M, p̂f (x, y)) is the random
variable defined in (6) for Llow. The final loss becomes:

LCAT-RS := Llow + λ · 1[K = M ] · Lhigh, (9)

where 1[·] is the indicator random variable, and λ > 0. In
other words, the training minimizes Lhigh only when Llow

(6) minimizes the “full” cross-entropy losses for all the M
noise samples given around (x, y). The hyperparameter λ in
(9) controls the trade-off between accuracy and robustness
(Zhang et al. 2019) of CAT-RS: given that Lhigh targets sam-
ples that achieves high confidence (i.e., they are already ro-
bust), having larger weights on Lhigh results in higher certi-
fied robustness at large radii. In terms of computational com-
plexity, the proposed CAT-RS takes a similar training cost
with recent methods those also perform adversarial searches
with smoothed classifiers, e.g., SmoothAdv (Salman et al.
2019) and SmoothMix (Jeong et al. 2021).4 The complete
procedure of computing our proposed CAT-RS loss can be
found in Algorithm 1 of Appendix A.

4 Experiments
We evaluate the effectiveness of our proposed training
scheme based on various well-established image classifica-
tion benchmarks to measure robustness, including MNIST

3We use M = 4 for our method unless otherwise noted.
4A comparison of actual training costs is given in Appendix E.

8008



σ Methods ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian 0.424 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability 0.420 73.0 58.9 42.9 26.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv 0.544 73.4 65.6 57.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER 0.531 79.5 69.0 55.8 40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.552 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 0.553 77.1 67.9 57.9 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.562 76.3 68.1 58.8 48.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0 0.0
Stability 0.531 62.1 52.6 42.7 33.3 23.8 16.1 9.8 4.7 0.0 0.0 0.0
SmoothAdv 0.684 65.3 57.8 49.9 41.7 33.7 26.0 19.5 12.9 0.0 0.0 0.0
MACER 0.691 64.2 57.5 49.9 42.3 34.8 27.6 20.2 12.6 0.0 0.0 0.0
Consistency 0.720 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1 0.0 0.0 0.0
SmoothMix 0.737 61.8 55.9 49.5 43.3 37.2 31.7 25.7 19.8 0.0 0.0 0.0

CAT-RS (Ours) 0.757 62.3 56.8 50.5 44.6 38.5 32.7 27.1 20.6 0.0 0.0 0.0

1.00

Gaussian 0.511 47.1 40.9 33.8 27.7 22.1 17.2 13.3 9.7 6.6 4.3 2.7
Stability 0.514 43.0 37.8 32.5 27.5 23.1 18.8 14.7 11.0 7.7 5.2 3.1
SmoothAdv 0.790 43.7 40.3 36.9 33.8 30.5 27.0 24.0 21.4 18.4 15.9 13.4
MACER 0.744 41.4 38.5 35.2 32.3 29.3 26.4 23.4 20.2 17.4 14.5 12.1
Consistency 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8 11.3
SmoothMix 0.773 45.1 41.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7 12.1

CAT-RS (Ours) 0.815 43.2 40.2 37.2 34.3 31.0 28.1 24.9 22.0 19.3 16.8 14.2

Table 1: Comparison of ACR and approximate certified test accuracy (%) on CIFAR-10. For each column, we set our result
bold-faced if it improves the Gaussian baseline. We set the result underlined if it achieves the highest among the baselines.

Methods ACR 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Gaussian 0.875 44 38 33 26 19 15 12 9
Consistency 0.982 41 37 32 28 24 21 17 14
SmoothAdv 1.040 40 37 34 30 27 25 20 15
SmoothMix 1.047 40 37 34 30 26 24 20 17

CAT-RS (Ours) 1.071 44 38 35 31 27 24 20 17

Table 2: Comparison of ACR and approximate certified accuracy (%) on ImageNet. For each column, we set our result bold-
faced whenever it improves the Gaussian baseline. We set the result underlined if it achieves the highest among the baselines.

(LeCun et al. 1998), Fashion-MNIST (Xiao, Rasul, and Voll-
graf 2017), CIFAR-10/100 (Krizhevsky 2009), and Ima-
geNet (Russakovsky et al. 2015) (for certified robustness)5,
as well as MNIST-C (Mu and Gilmer 2019)6 and CIFAR-10-
C (Hendrycks and Dietterich 2019) (for corruption robust-
ness). For a fair comparison, we follow the standard protocol
and training setup of the previous works (Cohen, Rosenfeld,
and Kolter 2019; Zhai et al. 2020; Jeong and Shin 2020).7

Overall, the results show that our method can consistently
outperform the previous best efforts to improve the average
certified radius by (a) maximizing the robust radii of high-
confidence samples while (b) better maintaining the accu-

5Results on MNIST, Fashion-MNIST, and CIFAR-100 can be
found in Appendix C.

6Results on MNIST-C can be found in Appendix I.
7More details, e.g., training setups, datasets, and hyperparame-

ters, can be found in Appendix B.

racy at low-confidence samples.8 Moreover, the results on
CIFAR-10-C, a corrupted version of CIFAR-10, show that
our training scheme also helps smoothed classifiers to gener-
alize on out-of-distribution inputs beyond adversarial exam-
ples, as shown by a significant improvement in corruption
robustness compared to other robust training methods. We
also perform an ablation study, showing that, e.g., the hy-
perparameter λ in (9) between Llow and Lhigh can balance
the trade-off between robustness and accuracy well.

Baselines. We compare our method with an extensive list
of baseline methods in the literature of training smoothed
classifiers: (a) Gaussian training (Cohen, Rosenfeld, and
Kolter 2019) simply trains a classifier with Gaussian aug-
mentation (5); (b) Stability training (Li et al. 2019) adds a

8Although our experiments are mainly based on `2, we also pro-
vide results for `∞ adversary on CIFAR-10 in Appendix C.3.
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Clean 76.6 73.0 73.4 79.5 75.8 77.1 76.3

Gaussian 70.8 64.6 70.2 72.6 69.8 73.4 76.8
Shot 70.0 65.6 68.4 72.8 69.6 72.6 76.6
Impulse 70.2 61.6 69.0 74.0 70.4 73.6 75.6
Defocus 64.8 65.4 68.4 71.2 69.2 70.6 74.2
Glass 65.2 62.0 68.6 71.6 69.0 72.0 72.8
Motion 66.2 62.4 67.2 72.2 70.8 69.6 71.6
Zoom 65.2 64.2 65.6 70.6 68.4 71.4 75.4
Snow 67.0 64.6 64.0 70.8 67.0 69.2 71.4
Frost 65.6 63.0 64.0 69.0 66.8 70.2 67.8
Fog 52.4 38.8 45.4 53.8 49.2 50.4 51.4
Bright 71.0 70.6 67.6 73.8 73.2 73.8 76.4
Constrast 39.4 30.0 34.8 42.8 35.6 36.4 37.8
Elastic 64.4 63.4 64.6 71.0 66.4 69.8 71.4
Pixel 66.4 67.6 68.6 74.4 69.8 69.8 76.2
JPEG 67.8 66.8 68.6 70.8 68.4 70.8 76.2

mAcc 64.4 60.7 63.7 68.8 65.6 67.7 70.1

Table 3: Comparison of certified accuracy at r = 0.0 (%)
on CIFAR-10-C. We report the average across five different
corruption severities. We set the highest and runner-up val-
ues bold-faced and underlined, respectively.

cross-entropy term between the logits from clean and noisy
images; (c) SmoothAdv (Salman et al. 2019) employs ad-
versarial training for smoothed classifiers (8); (d) MACER
(Zhai et al. 2020) adds a regularization that aims to max-
imize a soft approximation of certified radius; (e) Consis-
tency (Jeong and Shin 2020) regularizes the variance of con-
fidences over Gaussian noise; (f) SmoothMix (Jeong et al.
2021) proposes a mixup-based (Zhang et al. 2018) adversar-
ial training for smoothed classifiers. Whenever possible, we
use the pre-trained models publicly released by the authors
to reproduce the results.

Evaluation metrics. We follow the standard evaluation
protocol for smoothed classifiers (Salman et al. 2019; Zhai
et al. 2020; Jeong and Shin 2020; Jeong et al. 2021):
specifically, Cohen, Rosenfeld, and Kolter (2019) has pro-
posed a practical Monte-Carlo-based certification proce-
dure, namely CERTIFY, that returns the prediction of f̂ and
a lower bound of certified radius, CR(f, σ, x), over the ran-
domness of n samples with probability at least 1 − α, or
abstains the certification. Based on CERTIFY, we consider
two major evaluation metrics: (a) the average certified ra-
dius (ACR) (Zhai et al. 2020): the average of certified radii
on the test set Dtest while assigning incorrect samples as 0:

ACR :=
1

|Dtest|
∑

(x,y)∈Dtest

[CR(f, σ, x) · 1f̂(x)=y], (10)

and (b) the approximate certified test accuracy at r: the
fraction of the test set which CERTIFY classifies correctly

with the radius larger than r without abstaining. We use
n = 100, 000, n0 = 100, and α = 0.001 for CERTIFY, fol-
lowing previous works (Cohen, Rosenfeld, and Kolter 2019;
Salman et al. 2019; Jeong and Shin 2020; Jeong et al. 2021).

4.1 Results on CIFAR-10
Table 1 shows the performance of the baselines and our
model on CIFAR-10 for σ ∈ {0.25, 0.5, 1.0}. We also plot
the approximate certified accuracy over r in Figure 5 (of Ap-
pendix C.3). For the baselines, we report best-performing
configurations for each σ in terms of ACR among reported
in previous works, so that the hyperparameters of the same
method can vary over σ (the details can be found in Ap-
pendix B.2). Overall, CAT-RS achieves a significant im-
provement of ACR compared to the baselines. In case of
σ = 0.25 and σ = 0.5, CAT-RS clearly offers a better trade-
off between the clean accuracy and robustness compared to
other baselines. Especially, CAT-RS achieves higher approx-
imate certified accuracy for all radii compared to Smooth-
Mix in case of σ = 0.5. For σ = 1.0, the ACR of our method
significantly surpasses the previous best model, SmoothMix,
by 0.773 → 0.815. The improvement of CAT-RS is most
evident in σ = 1.0. This means that our proposed CAT-RS
can be more effective at challenging tasks, where it is more
likely that a given classifier gets a more diverse confidence
distribution for the training samples, so that our proposed
confidence-aware training can better play its role.

4.2 Results on ImageNet
In this section, we compare the certified robustness of our
method on ImageNet (Russakovsky et al. 2015) dataset for
σ = 1.0. We evaluate the performance on the uniformly-
subsampled 500 samples in the ImageNet validation dataset
following (Cohen, Rosenfeld, and Kolter 2019; Jeong and
Shin 2020; Salman et al. 2019; Jeong et al. 2021). The re-
sults shown in Table 2 confirm that our method achieves the
best results in terms of ACR and certified test accuracy com-
pared to the considered baselines, verifying the effectiveness
of CAT-RS even in the large-scale dataset.

4.3 Results on CIFAR-10-C
We also examine the performance of CAT-RS on CIFAR-10-
C (Hendrycks and Dietterich 2019), a collection of 75 repli-
cas of the CIFAR-10 test dataset, which consists of 15 differ-
ent types of common corruptions (e.g., fog, snow, etc.), each
of which contains 5 levels of corruption severities. Similarly
to (Sun et al. 2021), for a given smoothed classifier trained
on CIFAR-10, we report ACR and the certified accuracy at
r = 0.0 for each corruption type of CIFAR-10-C after aver-
aging over five severity levels, as well as their means over the
types, i.e., as the mean-ACR (mACR) and mean-accuracy
(mAcc), respectively. We uniformly subsample each cor-
rupted dataset with size 100, i.e., to have 7,500 samples in
total, and use σ = 0.25 throughout this experiment.

Table 3 summarizes the results on the certified accuracy
at r = 0.0 (the results on ACR is given in Appendix). Over-
all, CAT-RS significantly improves mAcc compared to other
methods, i.e., for 11 out of 15 corruption types. In other
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Figure 2: Comparison of certified accuracy of CAT-RS ablations. For (a) and (b), we train ResNet-20 on CIFAR-10 (σ = 0.5),
while (c) is based on MNIST (σ = 1.0) for varying control hyperparameters. The detailed results can be found in Appendix G.2.

words, CAT-RS can improve smoothed classifiers to gener-
alize better on unseen corruptions, at the same time main-
taining the robustness for such inputs. It is remarkable that
the observed gains are not from any prior knowledge about
multiple corruption (Hendrycks et al. 2020, 2021) (except
for Gaussian noise), but from a better training method. Given
the limited gains from other baseline methods on CIFAR-
10-C, we attribute that the sample-dependent calibration of
training objective, a unique aspect of CAT-RS compared
to prior arts, is important to explain the effectiveness of
CAT-RS on out-of-distribution generalization: e.g., although
SmoothAdv also adopts adversarial search in training simi-
larly to CAT-RS, it could not improve mAcc on CIFAR-10-C
from Gaussian.

4.4 Ablation Study
In this section, we conduct an ablation study to further an-
alyze individual effectiveness of the design components in
our method. Unless otherwise specified, we use ResNet-
20 (He et al. 2016) and test it on a uniformly subsampled
CIFAR-10 test set of size 1,000. We provide more ablations
on the loss design and the detailed results in Appendix G.

Effect of λ. In CAT-RS, λ introduced in (9) controls
the relative contribution of Lhigh over Llow. Here, Fig-
ure 2(a) shows the impact of λ to the model on varying
λ ∈ {0.25, 0.5, 1.0, 2.0, 4.0}, assuming σ = 0.5. The results
show that λ successfully balances the trade-off between ro-
bustness and clean accuracy (Zhang et al. 2019). In addition,
Figure 2(c) further verifies that CAT-RS offers more effec-
tive trade-off compared to other baseline training methods,
as further discussed later in this section.

Effect of M . We investigate the effect of the number of
noise M . Figure 2(b) illustrates the approximate test certi-
fied accuracy with varying M ∈ {1, 2, 4, 8}. The robustness
of the smoothed classifier increases asM increases, sacrific-
ing its clean accuracy. For large M , the classifier can incor-
porate the information of many Gaussian noises and take ad-
vantage of increasing pf (4). Therefore, the smoothed clas-
sifier can provide a more robust prediction.

Accuracy-robustness trade-off. To further validate that
our method can exhibit a better trade-off between accuracy

and robustness compared to other methods, we additionally
compare the performance trends between clean accuracy and
certified accuracy at r = 2.0 as we vary a hyperparameter
to control the trade-off, e.g., λ (9) in case of our method.
We use σ = 1.0 on MNIST dataset for this experiment.
We choose Consistency and SmoothMix for this compari-
son, considering that they also offer a single hyperparameter
(namely λ and η, respectively) for the balance between accu-
racy and robustness similar to our method, while both gen-
erally achieve good performances among the baselines con-
sidered. The results plotted in Figure 2(c) show that CAT-RS
indeed exhibits a higher trade-off frontier compared to both
methods, which confirms the effectiveness of our method.
More detailed results can be found in Appendix F.

5 Conclusion
This paper explores a close relationship between confidence
and robustness, a natural property of smoothed classifiers yet
neural networks cannot currently offer. We have successfully
leveraged this to relax the hard-to-compute metric of adver-
sarial robustness into an easier concept of prediction confi-
dence. Consequently, we propose a practical training method
that enables a sample-level control of adversarial robustness,
which has been difficult in a conventional belief. We believe
our work could be a useful step for the future research on
exploring the interesting connection between adversarial ro-
bustness and confidence calibration (Guo et al. 2017), and
even towards the out-of-distribution generalization, through
the randomized smoothing framework.
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