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Abstract

We leverage probabilistic models of neural representations
to investigate how residual networks fit classes. To this end,
we estimate class-conditional density models for representa-
tions learned by deep ResNets. We then use these models to
characterize distributions of representations across learned
classes. Surprisingly, we find that classes in the investigated
models are not fitted in an uniform way. On the contrary: we
uncover two groups of classes that are fitted with markedly
different distributions of representations. These distinct modes
of class-fitting are evident only in the deeper layers of the
investigated models, indicating that they are not related to
low-level image features. We show that the uncovered struc-
ture in neural representations correlate with memorization of
training examples and adversarial robustness. Finally, we com-
pare class-conditional distributions of neural representations
between memorized and typical examples. This allows us to
uncover where in the network structure class labels arise for
memorized and standard inputs.

Introduction

Neural networks are vastly over-parametrized models. This
flexible parameter space makes it quite difficult to answer ba-
sic questions about internal representations learned by these
models. For a long time it was not even clear whether two
identical networks trained on the same task learn similar sets
of representations. That said, the picture begin to change in
recent years with the introduction of new tools to analyse
internal representations in neural networks. First, Raghu et al.
(2017) and Morcos, Raghu, and Bengio (2018) proposed
canonical correlation analysis-based similarity measures for
neural representations. Subsequently, Kornblith et al. (2019)
proposed a kernel-based similarity score and found signifi-
cant representational similarity between networks trained to
solve closely related tasks. Machinery for analysis of neural
representations was then extended by Jamroz, Kurdziel, and
Opala (2020), who proposed a non-parametric density model
for features learned by neural networks. They used this model
to show that memorizing networks learn more complex rep-
resentations than networks that can exploit patterns in data.
So far neural representations were studied from the per-
spective of features learned by network layers. In this work
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we extend this line of research to investigate class represen-
tations learned by neural networks. To this end, we estimate
class-conditional distributions of neural representations and
use them as proxies to the representations of classes learned
by the network. This allows us to make several important
contributions. First, we find that ResNets do not fit classes
in an uniform way. On the contrary, we observe two distinct
modes of class fitting evident in the deeper layers of these
networks. We characterize class-conditional distributions of
neural representations in the two groups of classes and pro-
pose a likely explanation for the observed differences. Next,
we demonstrate that the uncovered structure in class represen-
tations translates to observable differences in memorization
of input examples. To this end, we leverage tractable memo-
rization measures recently proposed by Feldman and Zhang
(2020). We also demonstrate that the two groups of classes
differ in adversarial robustness. Finally, we leverage class-
conditional distributions of neural representations to uncover
where in the network structure classes are fit and to compare
this process for memorized and typical inputs.

See Jamroz and Kurdziel (2022)! for the extended version
of this paper, including the appendix and initial results for
Vision Transformer and MLP-Mixer models. We provide the
source code and our density and memorization estimates.”

Probabilistic Model for Class Representations

Our goal in this work is to characterize representations of
classes in neural networks. While the class membership in-
formation is typically available for a large set of observations,
namely the training set, combining it into representations of
classes is a non-trivial task. The main hurdle here comes from
the stochastic nature of neural representations. Specifically, a
neural representation inferred for some input x can be seen as
an outcome of sampling x from the data distribution. Clearly,
a reasonable notion of a class representation should capture
the outcome of this sampling. We therefore propose to use
class-conditional distributions of inputs’ representations as
proxies to neural representations of classes. Concretely, we
fit tractable density models to sets of neural representations
and then use these models to characterize distributions of
representations in classes.

Uhttps://arxiv.org/abs/2212.00771
“https://github.com/mjamroz90/dnn-class-fitting



We capture the distributions of neural representations
with the hierarchical Bayesian model that was recently used
by Jamroz, Kurdziel, and Opala (2020) to investigate net-
works that fit random labels. Jamroz, Kurdziel, and Opala
used this model to characterize representations of kernels in
convolutional layers. A neural representation in their work
was therefore defined as a vector of kernel responses over a
fixed sequence of inputs, averaged across spatial dimensions.
Our goal, however, is not to investigate features learned by
convolutional kernels, but to characterize—in distributional
settings—representations of inputs from the learned classes.
We therefore adopt a different construction for neural repre-
sentations. Specifically, in modern variable-resolution convo-
lutional models input to the classification head is frequently
constructed by global average pooling of the output feature
maps. We follow a similar construction for representations of
inputs in our class-conditional density models. In particular,
consider a network layer [ with a sequence of convolutional
kernels: k%, kb, ..., kl—where d is the layer width—and let
x € C be an input observation from class C'. We construct
the representation of x at layer [ as the vector of respective
kernel activations averaged across spatial dimensions:

nn (x) = [avg,pool(kll(x)), avg_pool(kb(x)), ...,

avg,pool(kil(x))] .
Activation vectors for all inputs x € C' collectively form a
set of observations that is then explained with the density
model. Because all input observations are sampled from C,
the model estimates the class-conditional distribution for C'.

ey

Density Model

The hierarchical Bayesian model used by Jamroz, Kurdziel,
and Opala (2020) explains a set of observations x € D—
e.g. a set of neural representations of some network inputs—
with a mixture of multivariate normal distributions with an
unknown number of components:
a ~ Gamma(l,1),
G| a~ DP(NIW(6y), ),
Mk, Ek ~ Ga
T | pr, By ~ N (pg, Zi).

The prior over component parameters is constructed
as a Dirichlet Process (DP) with Normal-Inverse-
Wishart (NIW) base distribution. A mixture of this form
is consistent in total variation for a large family of continuous
distributions (Ghosal and Van der Vaart 2017) and admits
an efficient collapsed Gibbs sampler (CGS) for the poste-
rior over component parameters (Neal 2000). Shortly, CGS
constructs a Markov chain over assignments of observations
to components: (¢, €a, €3, . . .). Under the model in Eq. (2),
the conditional posterior predictive distribution p(x* | D, ¢;)
over a new observation * given the set of assignments c¢; has
a closed-form solution (Jamroz, Kurdziel, and Opala 2020).
This conditional predictive distribution can be leveraged to
construct a tractable Monte Carlo approximation to the full
posterior predictive distribution:
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The average here is taken over the assignments sampled by
CGS, i.e. over the Markov chain steps.

The closed-form solution for the predictive distribution
conditioned on component assignments p(x* | D, ¢;) gives
a simple sampling strategy for the full posterior predictive:
sample a component assignment ¢; from the Markov chain
and then sample «* from the induced conditional distribu-
tion p(x* | D, ¢;). This sampling scheme can be used to
compare the posterior predictive distribution with another
distribution ¢ (*) that has a tractable density. Specifically,
the samples can be used to construct a Monte Carlo approx-
imation to the relative entropy—or Kullback-Leibler (KL)
divergence—from ¢ (x*) to p(x* | D):
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where x¥, are sampled from p (z* | D, ¢;). As proposed by
Jamroz, Kurdziel, and Opala, the estimate in Eq. (4) can be
used to quantify the complexity of neural representations. In
this case the reference distribution ¢ (x*) is chosen to be the
maximum entropy distribution that explains only the location
and the scale of D, i.e. the diagonal Gaussian with the mean
and the variances estimated from D.

In this work we use the divergence from the maximum
entropy distribution to characterize the complexity of class-
conditional distributions of neural representations. We also
use Eq. (4) to compare posterior predictive distributions es-
timated for different classes. Specifically, let p (x* | F) be
the posterior predictive distribution under model in Eq. (2)
induced by a set of neural representations . Because the den-
sity in this posterior predictive is tractable (Eq. (3)), we can
use Eq. (4) to estimate the KL divergence from p (x* | F)
to p(x* | D). To this end, we simply set the reference distri-
bution g (x*) to be the posterior predictive p (x* | F).

Standard CGS exhibits relatively slow mixing. To speed-
up the estimation of predictive distributions, in this work we
sample posterior parameters using a variant of this algorithm
with blocked Gibbs sampling (Jensen, Kjerulff, and Kong
1995). See Appendix for more details.

Memorization in Neural Networks

Recently, Feldman (2020) proposed a theoretical framework
that explains the role of input memorization when fitting a
long-tailed data distribution, i.e. a population of input exam-
ples characterized by many infrequent components. They con-
sider a case where some of the examples in an n-element train
set come from sub-populations with frequency below 1/n.
Such examples are statistically indistinguishable from noise
or mislabelled data. Consequently, their fitting requires mem-
orization. Importantly, Feldman showed that memorization
in these settings is in fact necessary to minimize the gener-
alization error. They also proposed a measure for the degree
of input memorization. Specifically, given a learning algo-
rithm A and an example (x, t), Feldman defines the degree
of memorization of (x,t) as the probability of predicting ¢



for input x when (x, t) is observed during training, relative
to the probability of the correct prediction when (x,t) is
absent from the training data. A score of 1.0 therefore corre-
sponds to an example that is memorized in every training run,
whereas a score of 0.0 corresponds to an example with no
memorization. This definition assumes that .4 is a stochastic
learning algorithm, for example stochastic gradient descent.
In a follow-up work Feldman and Zhang (2020) proposed a
computationally-efficient approximation to this memoriza-
tion score and used it to estimated memorization in two pop-
ular image classification benchmarks, namely CIFAR-100
and ImageNet. They found that in both cases convolutional
neural networks memorize a non-trivial part of the train set.

Feldman and Zhang work opens an avenue for investigat-
ing mechanisms behind memorization in deep networks. In
particular, previous research focused on models where mem-
orization of specific examples was induced artificially, e.g.
by corrupting the labels or the network input (Zhang et al.
2017; Arpit et al. 2017). Memorization estimates can, how-
ever, be used to investigate memorization in neural networks
that learn from uncorrupted data. We use this opportunity to
uncover the relationship between representations of classes
in neural networks and the degree of input memorization.
We also leverage class-conditional density models of neural
representations to investigate where in the network structure
classes arise for typical and memorized examples.

Experimental Setup

We conduct our experiments on two popular image datasets:
CIFAR-100 (Krizhevsky 2009) and Mini-ImageNet (Vinyals
et al. 2016). For CIFAR-100 we use the memorization scores
published by Feldman and Zhang (2020).> To avoid potential
discrepancies between these estimates and our experimental
conditions, we replicate important aspects of their training
setup. Concretely, we investigate representations learned by
a ResNet50 network that was trained by closely following
hyper-parameters reported in (Feldman and Zhang 2020). To
confirm our findings, we also repeat these experiments with
another residual convolutional network, namely ResNet18. In
this case we estimated the necessary memorization scores by
following the Algorithm 1 in (Feldman and Zhang 2020). To
this end, we trained 2000 network instances (¢rials in Algo-
rithm 1 therein) in order to estimate the required probabilities
of correct prediction. For the Mini-ImageNet experiments
we collected images from the provided training, validation
and test subsets, and then split them randomly into 50, 000
training and 10, 000 test examples. We then estimated mem-
orization scores for the training images. These experiments
were also carried out on the ResNet50 and ResNetl8 ar-
chitectures. However, to lessen the computational burden
associated with estimation of memorization, we modified the
original architectures by introducing a 3-pixel stride in the
first convolutional layer. All other experimental details and
training hyper-parameters match those used with the CIFAR-
100 dataset. We provide memorization scores estimated for
the CIFAR-100 and Mini-ImageNet datasets alongside this
paper. Finally, it is worth noting that Feldman and Zhang

3 Available at: https://pluskid.github.io/influence-memorization
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published memorization scores also for the ImageNet dataset.
However, due to the cost of estimating class-conditional den-
sity models and related quantities on the ImageNet scale, we
ultimately decided to focus on the Mini-ImageNet dataset.

ResNet architecture has four stages that correspond to
progressively smaller spatial dimensions. We extract neural
activations immediately after the summation operation at the
end of each stage (See Appendix for details). In each case
we collect activations for the entire train set and use them to
calculate neural representations (Eq. 1). This gives us four
sets of neural representations spaced evenly across the net-
work depth. Importantly, our main findings come from the
analysis of the representations in the last stage, i.e. the in-
put to the classification head. We use representations from
the intermediate stages only to show how class representa-
tions form across the network depth. While in principle we
could analyse representations from each residual block, this
would have no bearing on the our main findings and would
significantly increase the computational cost of experiments.

To obtain representations of classes we estimate the mix-
ture model in Eq. (2) independently for each combination of
the class label and the network stage. One difficulty in mod-
elling ResNet representations comes from the width of this
network: neural representations have up to 2048 dimensions.
Estimating Gaussian mixture models in this many dimensions
is expensive. To avoid this issue, we reduce the dimensional-
ity of the collected representations via Singular Value Decom-
position (SVD). In each case we retain enough dimensions to
preserve most of the variance in the data set (See Appendix
for details). It is worth noting that SVD preprocessing was
used before in investigations of neural representations, e.g.
by Raghu et al. (2017) and by Jamroz, Kurdziel, and Opala
(2020). Importantly, Raghu et al. found that intrinsic dimen-
sionality of neural representations—in their case the number
of SVD directions needed to match the performance of a com-
plete network—is much smaller than the number of neurons
in the corresponding network layer, which justify the SVD
pre-processing step.

To estimate the posterior distributions in the density mod-
els (Eq. (2)) we perform, in each case, 400 block collapsed
Gibbs sampler steps (i.e. passes over the dataset). We use
a block size of b = 4 observations for both datasets. Af-
terwards, we discard initial 320 Gibbs steps and include
every 4th of the remaining steps in the Monte Carlo esti-
mates (Eqs. (3) and (4)). Following Jamroz, Kurdziel, and
Opala (2020), we put a data-derived, weakly-informative
prior on the parameters of Gaussian components. To this end,
we adopt the values of prior hyper-parameters (6 in Eq. (2))
used in that work.

How Residual Networks Fit Classes

We begin our analysis by characterizing representations of
classes learned from the two image datasets. First, for each
class C' and each network stage we calculate mean and stan-
dard deviation of class-conditional log-densities (Eq. 3) of
examples x € C. Results for the third and fourth stage are
reported in Fig. 1. Results for the first two stages are in the
Appendix. Already, we see an unexpected structure: class
representations in the last two stages display an almost phase
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Figure 1: Mean and standard deviation of class-conditional log-densities estimated for inputs from each class. Classes on the
vertical axis are sorted according to the mean class-conditional density.

transition-like change in class-conditional log-densities. That
is, we observe two groups of classes that cluster around
vastly different density values. Equally striking, classes in
these groups typically differ by an order of magnitude in
the standard deviation of the estimated class-conditional
log-densities. Specifically, estimates for examples from the
classes clustered around the higher class-conditional density
typically have an order of magnitude lower variance. These
observations agree between the two image datasets and the
two architectures used in the experiment. Importantly, we
did not found a similar structure in the representations from
the first two stages, indicating that the observed phenomenon
is not related to low-level features of the inputs (See Ap-
pendix). We also replicated this experiment using a plain
(i.e. non-residual) convolutional network. This time we did
not observe distinct modes of class fitting in any of the net-
work layers (See Appendix). This implies that the observed
structure is not simply a product of the datasets used in the
experiments, but is related to the residual architecture. In
summary, we observe two distinct modes of class fitting in
the last two stages of ResNet models.

We now focus on the highest-level class representations,
i.e. representations constructed by the last stage of the net-
work. First, we split classes into two groups according to the
estimated mean log-density values, namely low- and high-
density classes (marked on Figure 1, stage 4). To this end, we
sort classes according to their mean log-densities and find
interval (C;, C;11) in this sequence with the largest mean
log-density difference. We use center of this interval to assign
classes to the two groups. Note that we group entire classes,
not individual input examples.

The most straightforward explanation for the observed
differences between the uncovered groups could be that the
high-density classes simply have more spatially compact dis-
tributions of neural representations. In other words, examples
from these classes could have more similar high-level neural
representations. Our results show that this simple explana-
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tion is incorrect. Specifically, for each class C' we calculated
the mean distance ||svd (nn; (x)) —svd (nn; (y)) || between
neural representations of examples x,y € C' (Eq. (1), after
dimensionality reduction with SVD). We also estimated the
complexity of its class representation, namely the relative en-
tropy of its posterior predictive distribution p (z* | * € C)
from the reference maximum entropy distribution ¢ (x*)
(Eq. (4), and the paragraph below). Results are reported in
Fig. 2. Clearly, the high-density classes are not more spa-
tially compact at the neural representation level than the
low-density classes. However, their posterior predictive dis-
tributions have vastly larger complexity than the posterior
predictive distributions of the low-density classes. In other
words, representations of the high-density classes are vastly
more non-Gaussian. Together with the high average class-
conditional density of their examples, these results point to
a different explanation: in representations of high-density
classes, the probability mass is concentrated in a number of
compact but spatially separated modes. This suggests that
at the neural representation level high-density classes are
formed by a collection of compact components.*

Class Representations Correlate with
Memorization and Adversarial Robustness

Our results so far uncover an unexpected structure in the rep-
resentations of learned classes. An immediate question that
follows from this observation is: does this structure correlate
with some phenomena observed in neural networks? We iden-
tify two such phenomena: memorization of input examples
and adversarial robustness.

*One could ask in this place: is this larger number of components
observed in the posterior over parameters of model (2)? We do
observe larger number of components sampled by CGS for high-
density classes. However, we do not report these numbers, as—for
technical reasons—estimation of component counts is fragile. See
Appendix for details.
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Figure 2: Relative entropies of class-conditional distributions of neural representations and mean intra-class distances between
representations. Each class corresponds to one blue and one red mark. Dashed line: least-squares fit to relative entropies.

To demonstrate the relationship between input memoriza-
tion and class representations, we sorted the training exam-
ples according to their estimated class-conditional log-density
and then split this ordering into 50 equally sized bins. We then
calculated for each bin the mean and the standard deviation
of memorization scores and class-conditional log-densities
of examples assigned to it. We also calculated the ratio of
examples belonging to the low- and the high-density classes.
Finally, for each bin we trained a separate ResNet model
without using the training examples assigned to that bin. We
then calculated the F-score of this model on the examples
from the bin. Results are reported in Fig. 3.

Even though memorization scores exhibit large variance,
averaging across density bins uncovers a difference in their
distribution between the low- and the high-density classes.
More precisely, up to the transition point between the low-
and the high-density classes, the degree of memorization of
an input examples decreases—on average—with increasing
class-conditional log-density. This agrees with an intuition
that increasing class-conditional density translates to an in-
put example that is increasingly similar at the neural repre-
sentation level to many other class members. However, the
trend changes abruptly with the transition to the high-density
classes. The transition is marked by an abrupt increase in av-
erage memorization of input examples, which subsequently
remains largely independent of the class-conditional den-
sity. These observations are corroborated with the calculated
F-scores, which are in close agreement with mean memoriza-
tion scores.

At first glance, results in Fig. 3 may seem counter-intuitive.
However, we argue that they corroborate the long-tail hypoth-
esis put forward by Feldman (2020). Concretely, our results
indicate that distributions of neural representations in the
high-density classes have many distinct components. That is,
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the high-density classes are formed from smaller subpopula-
tions of examples with distinct neural representations. The
frequency of each such subpopulation in the training data will
be below the class frequency. Feldman’s hypothesis suggests
that in order to minimize the generalization error, the learning
model may need to memorize some of the examples from
these subpopulations. And indeed, we observe an increase
in the degree of memorization when the distribution of input
examples switches from the low- to the high-density classes.

Compact and spatially separated components in the high-
density classes should—intuitively—be less robust to an ad-
versarial attack. In particular, a relatively small input pertur-
bation may move the representation of the attacked example
outside of its component. This could be verified by compar-
ing low- and high-density classes w.r.t the robustness against
a selection of adversarial attacks. However, given the vast
number of attacks proposed so far, we to opt to explore this
hypothesis in an attack-agnostic way. To this end, we eval-
uate the performance of a provable adversarial defense in
function of the class-conditional density. Concretely, we take
the training examples split into density bins and for each bin
train a smoothed classifier proposed by Cohen, Rosenfeld,
and Kolter (2019) without using the examples from the bin.
We use ResNet networks as the base (smoothed) models. We
then evaluate the CERTIFY procedure (Cohen, Rosenfeld,
and Kolter 2019) for the examples from the held-out bin (See
Appendix for details). The procedure either abstains from
prediction or returns a certified radius r and the predicted
class. Importantly, Cohen, Rosenfeld, and Kolter proved that
if not abstaining, CERTIFY returns with high-probability the
class that will be predicted by the smoothed classifier for
inputs no further than r from the certified example. Note,
however, that the smoothed classifier need not agree with the
base classifier. In this sense it trades classification accuracy
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Figure 3: Relationship between class conditional log-density, input memorization and adversarial robustness. Low/high-density
fraction: fraction of points in a bin from the low-/high-density classes.

for provable robustness.

In Fig. 3 we report per-bin certification radius (mean and
standard deviation), fraction of inputs for which CERTIFY did
not abstain (classification rate) and F-score of the smoothed
classifier. Results confirm that high-density classes correlate
with lower adversarial robustness: transition from the low- to
the high-density regime coincide with abrupt decrease in cer-
tified radii and F-scores of the smoothed classifier. CERTIFY
is also slightly more likely to abstain in high-density classes.

Where Neural Networks Fit Classes

We also use class-conditional distributions of neural rep-
resentations to uncover where in the network architec-
ture classes are fit and to show to what extent memoriza-
tion influences this process. To this end, we selected from
each dataset examples with memorization score above 0.9.
Additionally, we selected approx. equal number of ex-
amples with the lowest memorization estimates and an
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equal number of randomly chosen examples. We estimated
the class-conditional posterior predictive distributions sep-
arately for the three chosen subsets of examples. Next,
we estimated the KL divergences between predictive den-
sities of every class pair (Eq. (4)). Note that for a pair
of classes (P,Q) we estimate the KL divergence from
p(nn; (x) | x € P) to p(nn (x) | x € Q) and the diver-
gence from p (nn; (x) | x € Q) to p (nny (x) | x € P). The
asymmetry of the KL divergence therefore does not alter
the conclusions of this experiment. To recover meaningful
predictive densities, we restrict this analysis to classes that
have at least 100 representatives in all three subsets.

Figure 4 reports mean estimated between-class KL di-
vergences, together with one standard deviation intervals.
Additional results are reported in the Appendix. Clearly, in-
put memorization is not fixed to some specific parts of the
network: class-fitting progresses similarly for memorized
and typical examples, although memorized examples induce
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Figure 4: Kullback-Leibler divergences between class-conditional predictive densities.

slightly less distinct class representations. Importantly, class
representations are formed mostly between the second and
the third stage of the ResNet model. This agrees with the ob-
servation that distinct groups of classes are evident in the third
and the fourth network stage, but not in the first two stags.

Related Work

Several recent works investigate representations learned by
neural networks. The first algorithm to uncover similarities
between representations in these models was proposed by
Raghu et al. (2017). In crux, they use SVD to remove nui-
sance factors from network activations, and then uncover
shared representations via canonical correlation analysis.
Subsequently, Morcos, Raghu, and Bengio (2018) refined
this approach with a novel method for combining canon-
ical directions, while Kornblith et al. (2019) proposed a
Hilbert-Schmidt Independence Criterion-based metric for
comparing neural representations. Next, Jamroz, Kurdziel,
and Opala (2020) proposed probabilistic models for represen-
tations learned by kernels in convolutional networks. They
showed that networks that memorize random labels learn
significantly more complex representations than generalizing
networks. Note that while we use a similar set of of prob-
abilistic tools, our goal is not to characterize distributions
of features learned by network units. Instead, we use class-
conditional probabilistic models to capture a notion of class
representations in neural networks.

A growing line of research touch on the memorization
of input examples by neural networks. Zhang et al. (2017)
demonstrate that neural networks can easily fit a dataset with
randomly permuted labels, often despite explicit regulariza-
tion during training. Arpit et al. (2017) compare networks
that fit corrupted labels and networks trained on uncorrupted
data with respect to the way they fit input examples. Zhang
et al. (2018) proposes a new augmentation method that en-
courages the model to interpolate linearly between training
examples. Their results suggest that such augmentation can
prevent neural networks from memorizing random datasets
and make them less prone to adversarial attacks. Effects of
memorization were also covered by Neyshabur et al. (2017),
who derived several metrics for the degree of memorization
by bounding the Lipschitz constant in the model’s transfor-
mation. Finally, Feldman (2020, 2021); Feldman and Zhang
(2020) propose an alternative perspective on memorization.
They consider a learning task where data is assumed to follow
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a long-tailed distribution with many infrequent components.
Feldman shows that in this scenario minimization of the gen-
eralization error requires memorizing some of the examples.

Szegedy et al. (2014) demonstrated vulnerability of neu-
ral networks to an adversarial attack. Subsequently, Good-
fellow, Shlens, and Szegedy (2015) proposed a simple
method for constructing adversarial examples. These results
prompted significant research efforts on adversarial attacks,
defence strategies and certification of models’ predictions—
see Huang et al. (2020) for a recent survey.

Conclusions

In this work we used Bayesian mixture models with un-
known number of components to investigate representations
of classes in residual convolutional networks. Our main find-
ing is that classes in investigated neural models are fit in
two distinct ways. Namely, we uncover a group of classes
in which high-level neural representations appear to form
compact and spatially separated components. We showed
that examples from these classes are memorized to a higher
degree than examples with intermediate class-conditional
log-density estimates. We also showed that these classes are
less robust to an adversarial attack. Finally, we used class-
conditional density models to uncover where in the network
structure class representations are formed for typical and
memorized examples.

Our findings gives further experimental support for the
perspective on memorization proposed in (Feldman 2020;
Feldman and Zhang 2020). In particular, Feldman (2020)
argues that memorization of examples from infrequent com-
ponents is necessary to minimize generalization error in learn-
ing tasks where data comes from a long-tailed distribution.
We do observe increased memorization in classes that ap-
pear to be formed from distinct—at the neural representation
level—subpopulations of examples. While we do not claim
to have a theoretical explanation for why representations of
these classes are so strikingly different than representations
of low-density classes, we point out that current convolu-
tional architectures evolved largely through experimental
optimization of performance on several image classification
benchmarks. Feldman and Zhang (2020) identify cases in
these benchmarks where memorization of certain inputs im-
prove predictions on evaluation sets. Therefore, it may simply
be that convolutional networks used today were unwittingly
optimized to fit classes the way we observe in this work.
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