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Abstract

Federated learning (FL) emerges as a popular distributed learn-
ing schema that learns a model from a set of participating users
without sharing raw data. One major challenge of FL comes
with heterogeneous users, who may have distributionally dif-
ferent (or non-iid) data and varying computation resources.
As federated users would use the model for prediction, they
often demand the trained model to be robust against mali-
cious attackers at test time. Whereas adversarial training (AT)
provides a sound solution for centralized learning, extending
its usage for federated users has imposed significant chal-
lenges, as many users may have very limited training data
and tight computational budgets, to afford the data-hungry
and costly AT. In this paper, we study a novel FL strategy:
propagating adversarial robustness from rich-resource users
that can afford AT, to those with poor resources that cannot
afford it, during federated learning. We show that existing FL
techniques cannot be effectively integrated with the strategy
to propagate robustness among non-iid users and propose an
efficient propagation approach by the proper use of batch-
normalization. We demonstrate the rationality and effective-
ness of our method through extensive experiments. Especially,
the proposed method is shown to grant federated models re-
markable robustness even when only a small portion of users
afford AT during learning. Source code can be accessed at
https://github.com/illidanlab/FedRBN.

1 Introduction
Federated learning (FL) (McMahan et al. 2017) is a learning
paradigm that trains models from distributed users or partic-
ipants (e.g., mobile devices) without requiring raw training
data to be shared, alleviating the rising concern of privacy
issues when learning with sensitive data and facilitating learn-
ing deep models by enlarging the amount of data for training.
In a typical FL algorithm, each user trains a model locally
using their own data and a server iteratively aggregates users’
intermediate models, converging to a model that fuses train-
ing information from all users.

A major challenge in FL comes from two types of the user
heterogeneity. One type of heterogeneity is distributional
differences in training data collected by users from diverse
user groups, namely data heterogeneity (Fallah, Mokhtari,
and Ozdaglar 2020). The heterogeneity should be carefully
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handled during the learning as a single model trained by
FL may fail to accommodate the differences and sacrifices
model accuracy (Yu, Bagdasaryan, and Shmatikov 2020). An-
other type of heterogeneity is the difference of computing
resources, named hardware heterogeneity, as different types
of hardware used by users usually result in varying computa-
tion budgets. For example, consider an application scenario
of FL from mobile phones (Hard et al. 2019), where differ-
ent types of mobile phones (e.g., generations of the same
brand) may have drastically different computational power
(e.g., memory or CPU frequency). As the model size scales
with task complexities, the ubiquitous hardware heterogene-
ity may expel a great number of resource-limited users from
the FL process, reduces training data and therefore calls for
hardware-aware alternatives (Diao, Ding, and Tarokh 2021).

The negative impacts of the heterogeneity become aggra-
vated when an adversarially robust model is desired but its
training is not affordable by some users. The essence of ro-
bustness comes from the unnatural vulnerability of models
against visually imperceptible noise that can significantly mis-
lead model predictions. To gain robustness, a straightforward
extension of FL, federated adversarial training (FAT), can be
adopted (Zizzo et al. 2020; Reisizadeh et al. 2020), where
each user trains models with adversarially noised samples,
namely adversarial training (AT) (Madry et al. 2018). Despite
the robustness benefit by AT, prior studies pointed out that the
AT is data-thirsty and computationally expensive (Shafahi
et al. 2019a). Given the fact that each individual user may not
have enough data to perform AT, involving a fair amount of
users in FAT becomes essential, but may also induce higher
data heterogeneity from diverse data sources. Meanwhile,
the increasingly intensive computation can be prohibitive es-
pecially for resource-limited users, that could be 3-10 times
more costly than the standard equivalent (Shafahi et al. 2019a;
Zhang et al. 2019). As such, it is often unrealistic to enforce
all users in a FL process to conduct AT locally, despite the
fact that the robustness is indeed strongly desired or even
required for all users. This conflict raises a challenging yet
interesting question: Is it possible to propagate adversarial
robustness in FL so that resource-limited users can efficiently
benefit from robust training of resource-sufficient users even
if the latter’s data distribute differently?

Motivated by the question above, we formulate a novel
learning problem called Federated Robustness Propagation
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(FRP). We consider a rather common non-iid FL setting that
involves budget-sufficient users (AT users) that conduct ad-
versarial training, and budget-limited ones (ST users) that can
only afford standard training. The goal of FRP is to propagate
the adversarial robustness from AT users to ST users, espe-
cially when they have different data distributions. In ??, we
show that independent AT by users without FL (local AT)
will not yield a robust model since each user has scarce train-
ing data. Directly extending an existing FL algorithm, e.g.,
FedAvg (McMahan et al. 2017) or a heterogeneity-mitigated
one FedBN (Li et al. 2020b) with AT treatments, dubbed FA-
TAvg and FATBN, give very limited capability of robustness.
In this paper, we first provide a novel insight on the failure of
the traditional method that robust BNs has non-trivial gaps
among domains. Even if ST users can borrow the BN param-
eters from other resource-sufficient AT users, the integrated
model will not be robust on the ST users, due to the data
heterogeneity among users.

As conducting AT is so inefficient for ST users, we pro-
pose a novel method Federated Robust Batch-Normalization
(FedRBN) to facilitate effective and efficient sharing of ad-
versarial robustness among users with non-iid data. Our con-
tributions are summarized as follows. 1) We reformulate the
device- and data-heterogeneous federated adversarial learn-
ing into a novel propagation problem (FRP). 2) We propose
a novel and efficient solution for robustness sharing and en-
hancement. First, we propagate robustness by aggregating the
desired knowledge adaptively from multiple AT users to ST
users efficiently embedded in few personalized (BN) param-
eters. Second, to promote the transferability of robust BNs,
we calibrate non-personalized parameters when preserving
the robustness of shared noise-aware BNs. 3) Extensive ex-
periments demonstrate the feasibility and effectiveness of
the proposed method. Here, we highlight some experimental
results from Section 5. When only 20% of non-iid users used
AT during learning, the proposed FedRBN yields robustness,
competitive with the best all-AT-user result by only a 6%
drop (out of 62%) on robust accuracy. Note that even if our
method with 100% AT users increase the upper bound of
robustness, such a bound is usually not attainable in the pres-
ence of resource-limited users that cannot afford AT during
learning.

2 Related Work
Federated learning for robust models. The importance of
adversarial robustness in the context of federated learning,
i.e., federated adversarial training (FAT), has been discussed
in a series of recent literature (Zizzo et al. 2020; Reisizadeh
et al. 2020; Kerkouche, Ács, and Castelluccia 2020; Chen
et al. 2022). Zizzo et al. (Zizzo et al. 2020) empirically evalu-
ated the feasibility of practical FAT configurations (e.g., ratio
of adversarial samples) augmenting FedAvg with AT but only
in iid and label-wise non-iid scenarios. The adversarial attack
in FAT was extended to a more general affine form, together
with theoretical guarantees of distributional robustness (Rei-
sizadeh et al. 2020; Chen et al. 2022). It was found that in
a communication-constrained setting, a significant drop ex-
ists both in standard and robust accuracies, especially with
non-iid data (Shah et al. 2021). In addition to the challenges

investigated above, this work studies challenges imposed by
hardware heterogeneity in FL, which was rarely discussed.
Especially, when only limited users have devices that afford
AT, we strive to efficiently share robustness among users, so
that users without AT capabilities can also benefit from such
robustness.

Robust federated optimization. Another line of related
work focuses on the robust aggregation of federated user up-
dates (Kerkouche, Ács, and Castelluccia 2020; Fu et al. 2019).
Especially, Byzantine-robust federated learning (Blanchard
et al. 2017) aims to defend malicious users whose goal is to
compromise training, e.g., by model poisoning (Bhagoji et al.
2018; Fang et al. 2020) or inserting model backdoor (Bag-
dasaryan et al. 2018). Various strategies aim to eliminate the
malicious user updates during federated aggregation (Chen,
Su, and Xu 2017; Blanchard et al. 2017; Yin et al. 2018;
Pillutla, Kakade, and Harchaoui 2020). However, most of
them assume the normal users are from similar distributions
with enough samples such that the malicious updates can be
detected as outliers. Therefore, these strategies could be less
effective on attacker detection given a finite dataset (Wu et al.
2020). Even though both the proposed FRP and Byzantine-
robust studies work with robustness, they have fundamental
differences: the proposed work focus on the robustness dur-
ing inference, i.e., after the model is learned and deployed,
whereas Byzantine-robust work focus on the robust learning
process. As such, the proposed approach can combine with all
Byzantine-robust techniques to provide training robustness.

3 New Problem: Federated Robustness
Propagation

In this section, we will review AT, present the unique chal-
lenges from hardware heterogeneity in FL and formulate
the challenge of Device- and Data-Heterogeneous Federated
Adversarial Learning resulting a new learning problem: feder-
ated robustness propagation (FRP). In this paper, we assume
that a dataset D includes sampled pairs of images x ∈ Rd
and labels y ∈ Rc from a distribution D. Though our dis-
cussion limits the data as images in this paper, the method
can be easily generalized to other data forms. We model a
classifier, mapping from the Rd input space to classification
logits f : Rd → Rc, by a deep neural network (DNN) with
batch-normalization (BN) layers. Generally, we split the pa-
rameters of f into two parts: (µ, σ2) including all mean and
variance in all BN layers and θ in others. To specify a BN
structure, e.g., BNc with identity name c in multiple candi-
dates, we use the notation f(x;BNc). Whenever not causing
confusion, we use the symbol of a model and its parame-
ters interchangeably. For brevity, we slightly abuse E[·] for
both empirical average and expectation and use [N ] to denote
{1, . . . , N}.

3.1 Standard Training and Adversarial Training
An adversarial attack applies a bounded noise δε : ‖δε‖ ≤ ε
to an image x such that the perturbed image Aε(x) , x+ δε
can mislead a well-trained model to give a wrong prediction.
The norm ‖·‖ can take a variety of forms, e.g., L∞-norm for
constraining the maximal pixel scale. A model f is said to
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be adversarially robust if it can predict labels correctly on
a perturbed dataset D̃ = {(Aε(x), y)|(x, y) ∈ D}, and the
standard accuracy on D should not be greatly impacted.

Consider the general learning objective: minf L(f,D) =
E(x,y)∈D[`(f ;x, y)]. A user performs standard training
(ST) if ` = `c is a standard classification loss on clean
images, for example, cross-entropy loss `CE(f(x), y) =
−
∑c
t=1 yt log(f(x)t) where t is the class index and f(x)t

represents the t-th output logit. In contrast, a user performs
adversarial training (AT) if ` = (`a + `CE)/2 where `a is an
adversarial classification loss on noised images. A popular in-
stantiation of `a is based on PGD attacks (Madry et al. 2018;
Tsipras et al. 2019): `a(f ;x, y) = max‖δ‖≤ε `(f(x+ δ), y),
where ‖·‖ is the L∞-norm. With `c and `a, we can accord-
ingly define LST and LAT .

3.2 Federated Robust Propagation for Device-
and Data-Heterogeneous Federated
Adversarial Learning

To formulate the Device- and Data-heterogeneous Feder-
ated Adversarial Learning (DDFAL), We start with a typical
data-heterogeneous FL setting: a finite set of non-identical
distributions Di for i ∈ [C], from which a set of datasets
{Dk}Kk=1 are sampled and distributed to K users’ devices.
Meanwhile, in the co-existing device-heterogeneous setting,
the users from distinct domains related with Di expect to
learn together while optimize different objectives based on
their resource constraints: Some users can afford AT training
(AT users from group S) whereas the remaining users cannot
afford and use standard training (ST users from group T ).
Confined with the resource constraints and various data do-
mains, federated robustness propagation (FRP) reformulate
the DDFAL as the goal to efficiently transfer the robustness
from AT users to ST users at minimal computation and com-
munication costs while preserve data locally. Formally, the
FRP objective minimizes:

FRP({fk}; {Dk|Dk ∼ Di}) ,
∑
k∈T LST(fk, Dk)

+
∑
k∈S LAT(fk, Dk). (1)

In the federated setting, each user’s model is trained sepa-
rately when initialized by a global model, and is aggregated
to a global model at the end of each epoch. A popular aggre-
gation technique is FedAvg (McMahan et al. 2017), which
averages parameters by f = 1

K

∑K
k=1 akfk with normaliza-

tion coefficients ak proportional to |Dk|. The most related
setting to our work is FAT (Zizzo et al. 2020). But different
from FAT, FRP defined in Eq. (1) formalizes two types of
user heterogeneity that commonly exist in FL. The first one
is the hardware heterogeneity where users are divided into
two groups by computation budgets (S and T ). Besides, data
heterogeneity is represented as Di differing by domain i. We
limit our discussion as the common feature distribution shift
(on x) in contrast to the label distribution shift (on y), as
previously considered in (Li et al. 2020b).
New Challenges in FRP. We emphasize that jointly address-
ing the two types of heterogeneity in Eq. (1) forms a new
challenge, distinct from either of them considered exclu-
sively. First, the scarcity of the AT group worsens the data

heterogeneity for additional distribution shift in the hidden
representations from adversarial noise (Xie and Yuille 2019).
That means even if two users are sampled from the same dis-
tribution, their classification layers may operate on different
distributions.

Second, the data heterogeneity makes the transfer of ro-
bustness non-trivial (Shafahi et al. 2019b). Hendrycks et
al. (Hendrycks, Lee, and Mazeika 2019) discussed the trans-
fer of models adversarially trained on multiple domains and
massive samples. Later, Shafahi et al. (Shafahi et al. 2019b)
firstly studied the transferability of adversarial robustness
from one data domain to another by fine-tuning. Distin-
guished from all existing work, the FRP problem focuses
on propagating robustness from multiple AT users to multi-
ple ST users who have diverse distributions and participate
in the same federated learning. Thus, fine-tuning all source
models in ST users is often not possible due to prohibitive
computation costs.

4 New Method: Federated Robust
Batch-Normalization (FedRBN)

To address the challenges in FRP, we propose a novel feder-
ated learning method that propagates robustness using batch-
normalization (BN). Recall that BN mitigates the layer dis-
tributional shifts and greatly stabilizes the training of very
deep networks (Ioffe and Szegedy 2015). A BN layer maps a
biased variable to a normalized one by

BN(x;µ, σ) , w x−µ√
σ2+ε0

+ b, (2)

where µ and σ2 are the estimated mean and variance over
all non-channel dimensions, and ε0 is a small value to avoid
zero division. Since w and b are not distribution-dependent
but trainable parameters, we omit them from the notation
BN(x;µ, σ), for brevity.

Revisit the role of BN in handling data heterogeneity.
It is known that batch-normalization can model the inter-
nal distributions of activations and mitigate the distribution
shifts by normalization. Therefore, it has been applied to
cases where data distribution shifts occur. The basic princi-
ple is to apply different BNs for different distributions, by
which the output of BN will be distributionally aligned. In
this paper, two kinds of distribution biases are of our interest
and their corresponding mitigation methods can be unified
into the same principle: (1) Feature biases and LBN. When
users collect data from different sources, their data consists
of features biased by different environments. Though locally
trained BNs tend to characterize the biases, the differences
captured are immediately forgotten by a global averaging, for
instance, in FedAvg. With the insight, FedBN (Li et al. 2020b)
adopts localized batch-normalization (LBN) for each user,
which will be eliminated from the global averaging. Thus,
FedBN outputs K models with LBNs: {(θ, µk, σ2

k)}Kk=1.
(2) Adversarial biases and DBN. Recently, (Xie and Yuille
2019) showed that adversarial samples are distributionally
biased from clean samples especially in the internal acti-
vations of DNN, although the biases are almost invisible
in the image. Such biases substantially lower robustness
gained from adversarial training. Thus, Xie et al. (Xie et al.
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2020) proposed a dual batch-normalization (DBN) struc-
ture which redirects noised and cleans inputs to different
BNs during training: BNa(x;µa, σ

2
a) given a adversarially-

noised x and BNc(x;µ, σ2) given clean x. For example, the
adversarial training will instead optimize `c(f(x; BNc)) +
`a(f(x; BNa)). After training, it is recommended to use BNa
for improved robustness. Though not as accurate as BNc,
BNa are still accurate.

(1) Joint use of LBN and DBN in FRP and its limita-
tion. Because of the co-occurrence of feature heterogene-
ity and adversarial training in FRP, it is natural to adopt
both LBN and DBN in FL. We name the combination as
FATBN+DBN. That admits an extended set of BN parame-
ters, (µk, σ

2
k) (clean), and (µa,k, σ

2
a,k) (adversarial), for user

k. Since the essence of LBN and DBN are well established, it
should be natural to use them together when two kinds of bi-
ases present. Interested readers may be referred to Appendix
for qualitative evidence of such essence. Later in benchmark
experiments (c.f. Table 2), we also show that the joint use
boosts the robustness than using one of them exclusively.

However, the accuracy boosting comes with the challenges
as device- and data-heterogeneity presents simultaneously.
Because of lower computation capacities, ST users cannot
afford the AT due to the limited computation resources. With-
out globally aggregating DBNs, ST users have to leave one
branch of DBN blank or random, because no adversarial sam-
ples are provided to tune them. The missing branch makes
the ever-successful method inapplicable with the device het-
erogeneity. Trivial fixture like using local BNc (Fixture 1) or
making the BNa (Fixture 2) globally averaged can not fill
in the performance gap, because either the clean or global
BN has obvious distributional biases against the desired ones.
We visualize such gaps between local BNc and local BNa in
Appendix. We also empirically evaluate the gaps in Table 2 to
show that Fixture 1 (FedRBN λ = 0) and 2 (FATAvg+DBN)
in FRP (20% and MNIST cases) cannot gain comparable
robustness (RA) as in the fully AT cases (All). Thus, an effi-
cient manner without heavy computation overhead is desired
to fill the gap.

(2) Fill in the missing statistics in the DBN via theory-
guided adaptive propagation. To address the limitation of
the above combination, we propose a simple estimation of
the missing BNa with global averaging:

µ̂a,k = 1
|S|
∑
j∈S αjµa,j , σ̂

2
a,k = 1

|S|
∑
j∈S αjσ

2
a,j , (3)

where αj is a normalized weight. As Eq. (3) is simply a linear
operation, the estimation is very efficient due to the small
portion of BN parameters in a deep network. To find an ideal
α minimizing the adversarial loss during inference, below we
theoretically show that the divergence of a clean pair bounds
the generalizable adversarial loss, given bounded adversarial
bias.

Lemma 4.1 (Informal state). Suppose the divergence be-
tween any data distribution D and its adversarial one D̃
is bounded by a constant, i.e., dH∆H(D̃,D) ≤ dε where
dH∆H is H∆H-divergence in hypothesis space H. If a tar-
get model is formed by Eq. (3) of models trained on a set
of source datasets {Dsi}, its generalization error on the

Figure 1: Penultimate layer representations of clean samples
(left) and adversarial samples (right) visualized by a Digits
model and SVHN-domain users. The visualization projects
400 randomly-selected samples into the first three classes
of SVHN datasets following (Müller, Kornblith, and Hinton
2019). Representations are computed by trained (blue) or
transferred (red) BNa. The model is trained by 100%-AT
(blue) or 1-domain-AT (red) user. In the latter setting, BNa
is propagated according to Eq. (3).

target D̃t is upper bounded by the weighted summation∑
i αidH∆H(Dsi , Dt) of paired divergence given Dt ∼ Dt.
The lemma extends an existing bound for federated domain

adaptation (Peng et al. 2019b), and shows that the general-
ization error on the unseen target noised distribution D̃t is
bounded by the αi-weighted standard distribution gaps.

Results in Lemma 4.1 and the domain gaps between ad-
versarial samples motivate us to set αj to be reversely pro-
portional to the divergence between Dk and Dj . Since other
users’ data are not available, directly modeling the divergence
is by data is prohibitive. Fortunately, as clean BN statistics
characterize each user’s data distributions, we can use a layer-
averaged similarity to approximate the weight, i.e.,

αj = SoftmaxT
[

1
L

∑L
l=1 Siml(Dk, Dj)

]
, (4)

where SoftmaxT (qj) is a tempered softmax function:
exp(qj/T )/

∑
j∈S exp(qj/T ). T equals 0.01 by default

in this paper. The l-th-layer similarity is approximated
by the BN statistics: Siml(Dk, Dj) = [cos(µlk, µ

l
j) +

cos(σ2
k
l
, σ2
j
l
)]/2 given cos(x, y) = x>y/ ‖x‖ ‖y‖.

(3) Reduce biases in conv-layers via pseudo-noise cal-
ibration. Lemma 4.1 suggests that the optimal divergence
will be no better than the divergence by the model from the
most similar source. When all source datasets are from do-
mains distinguished from the target domain, then estimated
BN parameters by Eq. (3) cannot further compress diver-
gence and improve adversarial losses. In Fig. 1, we show the
non-reducible domain gap between MNIST and SVHN: the
transferred BNa yields a much less discriminative representa-
tions than the locally trained BNa during training. In addition,
we surprisingly observe that the clean discrimination is not
well transferred, either. The observation implies that though
non-BN parameters are trained and adapted towards different
domains, the single-domain BNa still cast biases into the rep-
resentations even for clean samples. To fix this, we propose
a clean adaptation of the federated model, which calibrates
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Algorithm 1: FedRBN: user-end training
1: Input:User budget type (AT or ST), initial parameters θ (AT)

or (θ, µ̂a, σ̂2
a) (ST) of the model f from the server, adversary

Aε(·), dataset D
2: for mini-batch {(x, y)} in D do
3: `c ← E(x,y)[`CE(f(x;BNc), y)]
4: Update (µ, σ2) of BNc
5: if user budget type is AT then
6: Perturb data x̃← Aε(f(x;BNa))
7: L← 1

2

{
`c + E(x̃,y)[`CE(f(x̃;BNa), y)]

}
8: Update (µa, σ

2
a) of BNa

9: else
10: * Replace BNa parameters with (µ̂a, σ̂

2
a) *

11: * L← (1− λ)`c +λE(x,y)[`CE(f(x;BNa), y)] *
12: end if
13: Optimize L to update θ by gradient descent
14: end for
15: Upload (θ, µ, σ2, µa, σ

2
a) (AT) or (θ, µ, σ2) (ST)

Algorithm 2: FedRBN: server-end training

1: Input:An initial model f with BN parameters (µ̂a, σ̂
2
a) and

other non-BN parameters θ, K users belonging to S (AT) or T
(ST) sets, total iteration number τ

2: for t ∈ {1, . . . , τ} do
3: Send global model θk to users indexed by k ∈ S and

(θtk, µ̂a,k, σ̂
2
a,k) to users indexed by k ∈ T

4: In parallel, users train their models by Algorithm 1
5: Receive users’ parameters:

{(θk, µk, σ2
k)}k∈T and {(θk, µk, σ2

k, µk,a, σ
2
k,a)}k∈S

6: Average parameters: θ ← 1
K

∑K
k=1 θk

7: * Use {(µk, σ2
k, µk,a, σ

2
k,a)}k∈S to estimate adversarial BN

parameters {(µ̂k,a, σ̂2
k,a)}k∈T by Eq. (3) *

8: end for
9: ReturnK models parameterized by {(θ, µk, σ2

k, µk,a, σ
2
k,a)}k

non-BN parameters by local clean features only: (1) Given
the estimated (µ̂a,k, σ̂

2
a,k), keep the two parameters frozen to

avoid statistic interference from clean samples. As the dis-
tributional biases between domains are typically larger than
that between clean and adversarial statistics, freezing BNa
can impede catastrophic forgetting of the critical robustness
knowledge. (2) Optimize an augmented ST loss:

(1− λ)`CE
(
fk(x; BNc), y

)
+ λ`CE

(
fk(x; BNa), y

)
, (5)

where the second term, pseudo-noise calibration (PNC)
loss, augments the robustness by BNa without computation-
intensive adversarial attacks. If without the domain gap,
fk(x; BNa) will bias the outputs on clean input x, which
functions like noising the training process. Otherwise, frozen
BNa can calibrate the other parameters to mitigate the dis-
tributional bias such that the robustness encoded in BNa is
transferable. In Eq. (5), the hyper-parameter λ is set to be 0.5
by default, which provides a fair trade-off between robustness
and accuracy. A smaller λ can be used to trade in robustness
for accuracy, or vice versa.

We are now ready to present the proposed BN-based
FRP algorithm: Federated Robust Batch-Normalization (Fe-

dRBN). On the user side (Algorithm 1), we introduce a stan-
dard loss in addition to the standard federated adversarial
training. The loss is embarrassingly simple and easy to imple-
ment in two lines, as highlighted. On the server side (Algo-
rithm 2), we follow the same practice as FedAvg to aggregate
models and average (perhaps weighted if users’ sample sizes
differs). Different from FedAvg, we drop unnecessary pa-
rameter sharing like sending BN parameters to AT users
and leverage the globally shared BN parameters to estimate
missing BNa parameters.

Efficiency and privacy of BN operations. Since BN
statistics are only a tiny portion of any networks and do
not require back-propagation, an additional set of BN statis-
tics will marginally impact the efficiency (Wang et al. 2020).
During training, the communication cost is almost the same
as the most popular FL method, FedAvg (McMahan et al.
2017), with a small portion of additional BN parameters. On
the user side, the major computation overhead comes from
the additional loss, which doubles the complexity of a ST
user. However, the overhead is much cheaper than adversarial
training, which typically requires multiple iterations (e.g.,
7 steps (Madry et al. 2018)) of gradient descent for attacks.
Many existing FL designs such as FedAvg have privacy con-
cerns (Li et al. 2020a; Fallah, Mokhtari, and Ozdaglar 2020;
Xiong et al. 2021, 2022), and sharing local statistics can also
contribute to potential privacy leakage (Geiping et al. 2020).
Though not the scope of this work, we can implement protec-
tion by applying differential privacy mechanism (Dwork et al.
2006) on the BN statistic estimation, where a minor Gaussian
noise is injected on every statistic update in Algorithm 1.

5 Experiments
Datasets and models. To implement a non-iid scenario, we
adopt a close-to-reality setting where users’ datasets are sam-
pled from different distributions. We used two multi-domain
datasets for the setting. The first is a subset (30%) of DIGITS,
a benchmark for domain adaption (Peng et al. 2019b). DIGITS
has 28× 28 images and serves as a commonly used bench-
mark for FL (Caldas et al. 2019; McMahan et al. 2017; Li
et al. 2020a). DIGITS includes 5 different domains: MNIST
(MM) (Lecun et al. 1998), SVHN (SV) (Netzer et al. 2011),
USPS (US) (Hull 1994), SynthDigits (SY) (Ganin and Lem-
pitsky 2015), and MNIST-M (MM) (Ganin and Lempitsky
2015). The second dataset is DOMAINNET (Peng et al. 2019a)
processed by (Li et al. 2020b), which contains 6 distinct do-
mains of large-size 256× 256 real-world images: Clipart (C),
Infograph (I), Painting (P), Quickdraw (Q), Real (R), Sketch
(S). For DIGITS, we use a convolutional network with BN
(or DBN) layers following each conv or linear layers. For
the large-sized DOMAINNET, we use AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) extended with BN layers after
each convolutional or linear layer following prior non-iid FL
practice (Li et al. 2020b).

Training and evaluation. For AT users, we use n-step
PGD (projected gradient descent) attack (Madry et al. 2018)
with a constant noise magnitude ε. Following (Madry et al.
2018), we use ε = 8/255, n = 7, and attack inner-loop
step size 2/255, for training, validation, and test. We uni-
formly split the dataset for each domain into 10 subsets for
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Figure 2: Evaluating FRP performance with different FRP settings.

DIGITS and 5 for DOMAINNET, following (Li et al. 2020b),
which are distributed to different users, respectively. Accord-
ingly, we have 50 users for DIGITS and 30 for DOMAIN-
NET. Each user trains local model for one epoch per com-
munication round. We evaluate the federated performance by
standard accuracy (SA), classification accuracy on the clean
test set, and robust accuracy (RA), classification accuracy on
adversarial images perturbed from the original test set. All
metric values are averaged over users. We defer other details
of experimental setup such as hyper-parameters to appendix,
and focus on discussing the results.

5.1 Comprehensive Study
To further understand the role of each component in FedRBN,
we conduct a comprehensive study on its properties. In ex-
periments, we use three representative federated baselines
combined with AT: FedAvg (McMahan et al. 2017), Fed-
Prox (Li et al. 2020a), and FedBN (Li et al. 2020b). We use
FATAvg to denote the AT-augmented FedAvg, and similarly
FATProx and FATBN. To implement hardware heterogeneity,
we let 20%-per-domain users from 3/5 domains (of DIGITS)
conduct AT.

Ablation Studies. We study how BN should be used at
inference time when LBN and DBN are already integrated
into federated training. Thus, we evaluate trained models with
users’ local BNc and BNa transmitted from the global estima-
tion. We also compare two kinds of weighting strategy for es-
timating transferable BNa parameters: uniform weights (uni)
or the proposed cosine-similarity-based weights for soruce
users. In Table 1, we present the results with λ ∈ {0, 0.5} for
PNC losses. When λ = 0, we only share robustness through
customizing BNa for each target ST user without PNC losses
and the propagated BNs is more effective on the Digits than
on DomainNet, because DomainNet is a more complicated
task involving higher domain divergence. As the domain gap
overwhelms the gap between adversarial samples and clean
samples (also see representation comparison in appendix),
the BNc outperforms the BNa surprisingly on RA. As we
formerly discussed, the non-reducible domain gap in adver-
sarial training motivates our development of PNC loss. With
PNC loss (λ = 0.5), we significantly improves the robust-
ness and accuracy and the performance approaches the all-AT

λ test BN weight Digits DomainNet

All 20% MNIST All 20% Real
RA RA RA RA RA RA

0 BNc 52.8 41.9 34.6 35.5 22.1 15.4
0 tran. BNa uni 62.0 50.6 41.5 35.7 19.8 13.2
0 tran. BNa cos 62.0 51.0 41.5 35.7 21.4 12.8

0.5 BNc 52.8 50.0 42.2 35.5 26.5 21.0
0.5 tran. BNa uni 62.0 55.4 51.5 35.7 27.5 26.4
0.5 tran. BNa cos 62.0 55.8 58.5 35.7 28.1 26.4

Table 1: Ablation of different test-time BNs.

results. In addition, either with or without PNC losses, the
cos-weighting strategy consistently improves the robustness
compared to non-informative uniform weights.
Impacts from data heterogeneity. To study the influence

of different AT domains, we set up an experiment where
AT users only reside on one single domain. For simplicity,
we let each domain contains a single user as in (Li et al.
2020b) and utilize only 10% of DIGITS dataset. The single
AT domain plays the central role in gaining robustness from
adversarial augmentation and propagating to other domains.
The task is hardened by the non-singleton of gaps between
the AT domain and multiple ST domains and a lack of the
knowledge of domain relations. Results in Fig. 2a show the
superiority of the proposed FedRBN, which improves RA for
more than 10% in all cases with small drops in SA. We see
that RA is the worst when MNIST serves as the AT domain,
whereas RA propagates better when the AT domain is SVHN
or SynthDigits. A possible explanation is that SVHN and
SynthDigits are more visually distinct than the rest domains,
forming larger domain gaps.
Impacts from hardware heterogeneity. We vary the num-
ber of AT users in training from 1/N (most heterogeneous) to
N/N (homogeneous) to compare the robustness gain. Fig. 2b
shows that our method consistently improves the robustness.
Even when all domains are noised, FedRBN is the best due
to the use of DBN. When not all domains are AT, our method
only needs half of the users to be noised such that the RA is
close to the upper bound (fully noised case).
Other comprehensive studies in Appendix for interested
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LBN DBN Digits DomainNet

AT users All 20% MNIST All 20% Real

Metrics RA SA T RA SA T RA SA T RA SA T RA SA T RA SA T

FedRBN λ = 1 X X 62.0 84.9 7.4 60.6 86.5 2.5 60.8 83.9 2.5 35.7 61.6 127.9 27.6 56.0 42.6 28.2 58.3 39.1
FedRBN λ = 0.5 X X 62.0 84.9 7.4 55.8 87.3 2.9 58.5 86.5 2.9 35.7 61.6 127.9 28.1 62.5 51.2 26.4 63.9 48.0
FedRBN λ = 0 X X 62.0 84.9 7.4 51.0 83.5 2.2 41.5 80.2 2.2 35.7 61.6 127.9 21.4 62.5 38.4 12.8 56.1 34.6

FATAvg+DBN X 60.0 83.8 7.4 48.8 82.8 2.2 40.2 79.9 2.2 27.6 52.8 127.9 16.6 58.9 38.4 13.0 54.8 34.6
FATBN X 60.0 87.3 7.4 41.2 86.4 2.2 36.5 86.4 2.2 35.2 60.2 127.9 20.3 63.2 38.4 15.7 64.7 34.6
FATAvg 58.3 86.1 7.4 42.6 84.6 2.2 38.4 84.1 2.2 24.6 47.4 127.9 15.4 57.8 38.4 10.7 57.9 34.6
FATProx 58.5 86.3 7.4 42.8 84.5 2.2 38.1 84.1 2.2 24.8 47.1 127.9 14.5 57.3 38.4 10.4 57.1 34.6
FedRob 13.1 13.1 7.4 20.6 59.3 1032 17.7 48.9 645 - - - - - - - - -

Table 2: Benchmarks of robustness propagation, where we measure the per-epoch computation time (T ) by counting ×1012

times of multiplication-or-add operations (MACs) to evaluate the efficiency.

readers, where we studied the λ-governed trade-off, the con-
vergence curves, detailed ablation studies of FL.

5.2 Comparison to Baselines
To demonstrate the effectiveness of the proposed FedRBN,
we compare it with baselines on two benchmarks. We repeat
each experiment for three times with different seeds from
{1, 2, 3}. We introduce two more baselines: a proposed
baseline combining FATAvg with DBN, personalized
meta-FL extended with FAT (FATMeta) (Fallah, Mokhtari,
and Ozdaglar 2020) and federated robust training (Fe-
dRob) (Reisizadeh et al. 2020). Because FedRob requires a
project matrix of the squared size of image and the matrix
is up to 2562 × 2562 on DOMAINNET which does not
fit into a common GPU, we exclude it from comparison.
Given the same setting, we constrain the computation cost
in the similar scale for cost-fair comparison. We evaluate
methods on two FRP settings. 1) Propagate from a single
domain. In reality, a powerful computation center may
join the FL with many other users, e.g., mobile devices.
Therefore, the computation center is an ideal node for
the computation-intensive AT. Due to limitations of data
collection, the center may only have access to a single
domain, resulting gaps to most other users. We evaluate how
well the robustness can be propagated from the center to
others. 2) Propagate from a few multi-domain AT users.
In this case, we assume that to reduce the total training
time, ST users are exempted from the AT tasks in each
domain. Thus, an ST user wants to gain robustness from
other same-domain users, but the different-domain users may
hinder the robustness due to the domain gaps in adversarial
samples.
Benchmark. Table 2 shows that our method outperforms
all baselines for all tasks, while it associates to only small
overhead (for optimizing PNC losses) compared to the
full-AT case. Importantly, we show that only 20% users
and less than 33% time complexity of the full-AT setting
are enough to achieve robustness comparable to the best
fully-trained baseline. Contradicting FATAvg+DBN and
FATBN confirmed the importance of DBN in robustness but
also show its limitation on handling data heterogeneity. Thus,
FedRBN (λ = 0) is proposed to simultaneously address
data and hardware heterogeneity by efficiently propagating

Attack PGD PGD MIA MIA AA LSA SA
(n, ε) (20,16) (100,8) (20,16) (100,8) (-, 8) (7, -) -

FedRBN 42.8 54.5 39.9 52.2 48.3 73.5 84.2
FATBN 28.6 41.6 27.0 39.7 31.0 64.0 84.6
FATAvg 31.5 43.4 30.0 41.5 32.9 63.3 84.2

Table 3: Evaluation of RA with various attacks on Digits. n
and ε are the step number and the magnitude of attack.

robustness through BNs. To fully exploit the robustness
complying users’ hardware limitations, the PNC loss (λ > 0)
is used and improves the robustness significantly. When
λ = 1, the trained inclines to be more robust but less accurate
on clean samples. Instead, λ = 0.5 provides a fairly nice
trade-off between accuracy and robustness, for which we use
the parameter generally.
Stronger attacks. To fully evaluate the robustness, we
experiment with more attack methods, including MIA
(Dong et al. 2018), AutoAttack (AA) (Croce and Hein 2020)
and LSA (Narodytska and Kasiviswanathan 2016). Even
evaluated by different attacks (see Table 3), our method
still outperforms others. Especially, a strong score-based
blackbox attacks such as Square Attack (Andriushchenko
et al. 2020) (included in AA) can avoid the trip fake
robustness.

6 Conclusion
In this paper, we investigate a novel problem setting, federate
propagating robustness, and propose a FedRBN algorithm
that transfers robustness in FL through robust BN statistics.
Supplementary is at https://arxiv.org/abs/2106.10196.
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