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Abstract

Pareto Front Learning (PFL) was recently introduced as an
effective approach to obtain a mapping function from a given
trade-off vector to a solution on the Pareto front, which solves
the multi-objective optimization (MOO) problem. Due to the
inherent trade-off between conflicting objectives, PFL offers a
flexible approach in many scenarios in which the decision mak-
ers can not specify the preference of one Pareto solution over
another, and must switch between them depending on the situ-
ation. However, existing PFL methods ignore the relationship
between the solutions during the optimization process, which
hinders the quality of the obtained front. To overcome this
issue, we propose a novel PFL framework namely PHN-HVI ,
which employs a hypernetwork to generate multiple solutions
from a set of diverse trade-off preferences and enhance the
quality of the Pareto front by maximizing the Hypervolume
indicator defined by these solutions. The experimental results
on several MOO machine learning tasks show that the pro-
posed framework significantly outperforms the baselines in
producing the trade-off Pareto front.

1 Introduction
Multi-objective optimization has been shown prevalent in
many machine learning applications with conflicting objec-
tives such as in computer vision (Hong et al. 2013; Yuan,
Liu, and Yan 2012; Ánh et al. 2022), speech & natural lan-
guage processing (Chen et al. 2015; Wu and Huang 2015),
and recommender system (Hadash, Shalom, and Osadchy
2018; Milojković et al. 2019; Le and Lauw 2020, 2021),
etc. (Sener and Koltun 2019) states that multi-task learning
can be formulated as a multi-objective optimization (MOO)
problem, in which the optimal decisions need to be taken in
the presence of trade-offs between two or more conflicting
objectives. Typically in MOO problems, the set of optimal
solutions is called Pareto front, in which each solution on
the front represents different trade-off between the objectives.
However, most of the recent MOO algorithms must know the
trade-off in advance or require a separate model to be trained
for each point on the Pareto front (Navon et al. 2021). This
limits the flexibility as there are many situations in which
the user can only make a trade-off decision on the fly, such
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as selecting between the shortest but congested route and
the farther but more sparse one, or adapting the investment
strategy when the marketplace changes.

For that reason, (Lin et al. 2020; Navon et al. 2021; Ruchte
and Grabocka 2021) recently explore and develop a research
direction called Pareto Front Learning (PFL), which attempts
to approximate the entire Pareto front. However, these works
only update the weights in the optimization algorithms by
a random preference vector at each iteration, bringing with
them restrictions in MOO that render them inappropriate for
the PFL problem (see Section 5 for more details), and ig-
noring the dynamic relationship between the Pareto optimal
solutions. We argue that this information is crucial in pro-
ducing a high-quality Pareto front because having a variety
of solutions representing different trade-off preferences be-
tween the objective functions offers us a global view of the
current Pareto front. Therefore, we propose to use hypervol-
ume indicator to guide the optimization process. Specifically,
we build upon the work of (Navon et al. 2021) to allow the
derivation of multiple Pareto optimal solutions from multiple
preference vectors, followed by the hypervolume (defined
by the obtained solutions) maximization step to improve the
learnt Pareto front.

Contributions. Our contributions can be summarized in
the following:

• Firstly, we provide a mathematical formulation of PFL
with Hypernetwork, which originally introduced in
(Navon et al. 2021).

• Secondly, we propose a novel framework, namely PHN-
HVI that improves PFL problem using multi-sample hy-
pernetworks and hypervolume indicator maximization.

• Thirdly, we conduct comprehensive experiments on sev-
eral multi-task learning datasets to validate the effective-
ness of PHN-HVI compared to baseline methods.

Organization. Section 2 provides the background knowl-
edge for the PFL problem. In Section 3, we describe our
framework PHN-HVI and its efficient variant with the parti-
tioning algorithm. In Section 4, we review related work in the
literature and briefly discuss both of their accomplishments
and shortcomings. In Section 5, we conduct experiments
from comparison and provide a model behavior analysis. We
conclude the paper in Section 6 and discuss possible research
directions as future work.
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Figure 1: Multi-Sample Hypernetwork framework

2 Preliminary
Multi-task learning seeks to find θ∗ ∈ Θ to optimize J loss
functions as described in the following:

θ∗ = argmin
θ

E(x,y)∼pD
L (y, f (x; θ)) (1)

L (y, f (x; θ)) = {L1 (y, f (x; θ)) , . . . ,LJ (y, f (x; θ))}

in which, pD denotes the data distribution, Lj (·, ·) : Y ×
Y → R>0, ∀j ∈ {1, . . . , J} denotes the j− th loss function,
and f (x; θ) : X × ϑ→ Y denotes the neural network with
parameter θ.

Definition 1 (Dominance). A solution θa is said to dominate
another solution θb if

Lj(y, f(x, θa)) ≤ Lj(y, f(x, θb)), ∀j ∈ {1, ..., J}

and L(y, f(x, θa)) ̸= L(y, f(x, θb)). We denote this rela-
tionship as θa ≺ θb.

Definition 2 (Pareto optimal solution). A solution θa is called
Pareto optimal solution if there exists no θb such as θb ≺ θa.

Definition 3 (Pareto front). The set of Pareto optimal is
Pareto set, denoted by P , and the corresponding images in
objectives space are Pareto front Pf = L(y, f(x,P)).

In (Navon et al. 2021), the authors introduced the term
Pareto Front Learning. Here we provide a mathematical for-
mulation of Pareto Front Learning with Hypernetwork, which
sets the basis for our proposed framework in Section 3:

Definition 4 (PFL with Hypernetwork). Pareto Front Learn-
ing is a one-shot optimization approach to approximate the
entire Pareto front by solving problem:

ϕ∗ = argmin
ϕ∈Rn

Er∼pSJ ,(x,y)∼pD
F (L(y, f(x, θr)), r)

s.t. θr = h(r, ϕ) ∈ P , h(Ω, ϕ∗) = P
(2)

where h : SJ ×Φ→ Θ, random variable r is the preference
vector that formulates a trade-off between loss functions,
SJ = {λ ∈ RJ

>0 :
∑

j λj = 1} is the set feasible values of
random variable r and pSJ is a random distribution on SJ
and F (·, ·) : SJ × RJ → R is an extra criterion function,
which helps us map a given preference vector with a Pareto
optimal solution.

3 Multi-Sample Hypernetwork
Multi-Sample Hypernetwork samples p preference vec-
tors ri and use h(·, ϕ) to generate p target networks
f(·, θi), i ∈ {1, . . . , p} where θi = h(ri, ϕ). Denote Li =
(L1(y, f

(
x; θi

)
), . . . ,LJ(y, f

(
x; θi

)
)) is the vector of loss

values, and L(Θ, x, y) =
[
L1, . . . ,Lp

]
. Choose pSJ as

Dir(α). Different from (Navon et al. 2021), Multi-Sample
Hypernetwork is designed to solve:

min
ϕ

Eri∼Dir(α)
(x,y)∼pD

Q(L(Θ, x, y)) +

p∑
i=1

F (ri,Li) (3)

where Q : RJ → R is a monotonically decreasing func-
tion, meaning ∀θb ∈ ΘB∃θa ∈ ΘA : θa ≺ θb ⇒
Q(L(ΘA, x, y)) < Q(L(ΘB , x, y)) or ∇Q(L(Θ, x, y)) cre-
ate a Pareto improvement, and F : SJ × RJ → R is a
complete function, for example, {argminL∈Pf

F (r,L) :

∀r ∈ SJ} = Pf .

HV Indicator Hypernetwork
HV Indicator Hypernetwork (PHN-HVI ) solves the problem:

min
ϕ
−E ri∼Dir(α)

(x,y)∼pD

HV (L(Θ;x, y)) + λ

p∑
i=i

cos(r⃗i, L⃗i) (4)

Lemma 1 ((Fleischer 2003)). If HV (L(Θ;x, y)) is maximal,
then θi ∈ P , i ∈ {1, . . . , p}.
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The Hypervolume (HV) function will maximize the hyper-
volume of the Pareto front, pushing the Pareto front approxi-
mated by hypernetwork to the truth Pareto front. Meanwhile,
the cosine similarity penalty function will spread the Pareto
front and get the Pareto optimal solution close to the given
preference vector. It is clear that cosine similarity is a func-
tion with a complete property, HV is a monotonic function.

Using hypervolume gradient algorithm of the independent
p neural networks described in (Emmerich and Deutz 2014),
we obtain the following, which is scalable for Domination-
Ranked Fronts (Wang et al. 2017; Deist et al. 2020):

∇Li [−HV (L(Θ;x, y))]

=

(
−∂HV (L(Θ;x, y))

∂L1(y, f(x, θi))
, . . . ,−∂HV (L(Θ;x, y))

∂Lp(y, f(x, θi))

)
(5)

We can approximate the descent direction of HV function for
parameter ϕ based on (5) by:

d = −
p∑

i=1

J∑
j=1

∂HV (L(Θ;x, y))

∂Lj(θi, f(x, θi))

∂L(θi, f(x, θi))
∂ϕ

(6)

The final update direction of HV Indicator Hypernetwork is:

dupdate = d− λ

p∑
i=1

∂

∂ϕ

(
r⃗iL⃗(y, f

(
x; θi

)
)

∥r⃗i∥∥L⃗(y, f (x; θi))∥

)
(7)

It should be noted that ϕ is the only parameter for PHN-HVI
that has to be optimized. On the inference phase, PHN-HVI
just needs one vector r to provide a corresponding Pareto
local optimum θr.

Partitioning Algorithm
It is necessary to sample the preference vectors r1, . . . , rp

to cover the objective space evenly to make HV and cosine
similarity interact well. This is quite simple in 2D space using
p+ 1 vectors {cos( iπ2p , sin(

iπ
2p )} to partition the object space

into p subregions Ωi, i = 1, ...p and randomly sample the
vector ri of subregion Ωi. However, how to take a partitioned
random sample in any dimensional J space? A good partition
with N subregions must satisfy:

∪Ni=1(Ω
i) = SJ and Ωi′ ∩i′ ̸=i Ω

i = ∅ (8)

Base on (Das and Dennis 2000), we define subregions Ωi by
points u = (u1, . . . , uJ) ∈ U ⊂ SJ such that:

u1 ∈ {0, δ, 2δ, . . . , ..., 1} s.t
1

δ
= k ∈ N∗ (9)

If 1 < j < J − 1, mi =
δ
ui
, 1 ≤ i < j − 1, we have:

uj ∈ {0, δ, . . . , (p−
j−1∑
i=1

mi)δ}, uJ = 1−
J−1∑
j=1

uj (10)

Using the Delaunay triangulation algorithm (Edelsbrunner
and Seidel 1985) for these points, we obtain the required
partition. Figure 2 is the illustrative result of the algorithm
in 3D space. However, the number of points u ∈ U in the

Figure 2: Partitioning algorithm with J = 3, δ = 0.2

space RJ and k = 1
δ is

(J+k−1

k

)
. Therefore, we will not

be able to freely set the number of rays p for the HV Indi-
cator Hypernetwork, and the number of partitions also in-
creases exponentially as J and k increase, resulting in huge
amount of computation. Therefore, we will only use the par-
tition sampling algorithm for the 2-objective optimization
problem and still randomly sample the preference vectors
r1, . . . , rp ∼ Dir(α) with optimization problems of 3 or
more objective functions.

Algorithm 1: PHN-HVI optimization algorithm

1: while not converged do
2: if J = 2 then
3: r1, . . . , rp ∼ partition sampling
4: else
5: r1, . . . , rp ∼ Dir(α)
6: end if
7: Compute

[
θi := h(ri, ϕ)

]p
i=1

8: Compute d by Equation (6)

9: dupdate := d− λ
∑p

i=1
∂
∂ϕ

(
r⃗iL⃗(y,f(x;θi))

∥r⃗i∥∥L⃗(y,f(x;θi))∥

)
10: ϕ←− ϕ− η × dupdate
11: end while
12: return ϕ

Stein Variational Hypernetwork
Beside Hypervolume maximization, it is also possible to in-
tegrate the multi-sample hypernetwork with Stein variational
gradient descent (Liu, Tong, and Liu 2021) for profiling the
Pareto front. Similar to PHN-HVI , Stein variational hyper-
network generates p target networks.

Denote g(ϕ, ri) is min norm vector in the convex hull
CHLi of the gradients∇ϕLi:

g(ϕ, ri) = argmin
g∈CHLi

∥g∥2 (11)

We can approximate the update direction for an input trade-
off vector ri as follows:

di =

p∑
i′=1

[
g(ϕ, ri

′
)k(Li,Li′)−∇ϕk(Li,Li′)

]
(12)
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where k(Li,Li′) = det(2πσ2I)−
1
2 exp(− 1

2σ2 ∥Li − Li′∥2).
The update direction of the hypernetwork’s parameter is:

dupdate =

p∑
i

di − λ

p∑
i=1

∂

∂ϕ

(
r⃗iL⃗(y, f

(
x; θi

)
)

∥r⃗i∥∥L⃗(y, f (x; θi))∥

)
(13)

This demonstrates the flexibility of using Multi-Sample
Hypernetworks to enable the iterative update of a set of so-
lution points simultaneously to push them toward the Pareto
front. However, we reserve the investigation of this aspect for
future work.

4 Related Work
Multi-Objective Optimization. Rather than a single solu-
tion, MOO aims to find a set of Pareto optimal solutions
with different trade-offs. For small-scale multi-objective opti-
mization problems, genetic algorithms such as VEGA (Schaf-
fer 1985), NSGA-III (Deb and Jain 2014), etc. are popular
methods for finding a set of well-distributed Pareto opti-
mal solutions in a single run. Scalarization algorithms (the
Tchebysheff method (Steuer and Choo 1983) and its variants)
use weighted functions to transform several objectives into
a single objective, but, these methods need convex function
conditions to approximate the entire Pareto front. Therefore,
(Thang et al. 2020) used a monotonic optimization approach
to obtain an approximation of the weakly Pareto optimal
set for solving strictly quasiconvex multi-objective program-
ming, a general case of convex multi-objective programming.
Another approach, as developed by (Fliege and Svaiter 2000),
(Désidéri 2012) find a common descent direction of all ob-
jectives at each iteration, as a result, they cannot take in
decision-makers preferences on the problem.

Multi-Task Learning. The use of MOO in machine learn-
ing, particularly for Multi-Task Learning, is not new. Some
algorithms approach task balancing, such as (Kendall, Gal,
and Cipolla 2018) (homoscedastic uncertainty), (Chen et al.
2018) (balance learning), etc. (Sener and Koltun 2019) used
Frank-Wofle algorithm to solve the constrained optimization
problem of MGDA (Désidéri 2012), while (Yu et al. 2020)
corrects the direction of conflict gradients. Due to their ap-
proach to balanced solutions, these methods are not suitable
for simulating trade-offs between objectives.
Using preference vectors, (Lin et al. 2019) may identify a va-
riety of solutions by breaking down a multitask learning prob-
lem into several subproblems of many subspaces, whereas
(Mahapatra and Rajan 2020) can precisely identify the Pareto
optimal solution belonging to inverse ray. (Ma, Du, and Ma-
tusik 2020) has the ability to locate Pareto optimal solutions
close to a given Pareto optimal solution. The Pareto front
with finite points approximated by several neural networks
is another research direction. (Deist et al. 2021) has done
this using Hypervolume Maximization. The techniques for
calculating the gradient of the hypervolume were created by
(Emmerich and Deutz 2014), and (Wang et al. 2017; Deist
et al. 2020) further improved them. To increase the entropy
of these points, (Liu, Tong, and Liu 2021) combined MGDA
(Désidéri 2012) with Stein Variational Gradient Descent (Liu
and Wang 2016). Unfortunately, as the number of preference

vectors and objective functions rises, the computational cost
of these algorithms becomes impractical.

Hypernetwork and Pareto Front Learning. Hypernet-
work, which generates weights for other networks (target
networks), can be applied to large-scale problems by using
chunking (Ha, Dai, and Le 2017). The result in (Lin et al.
2020) is poor since they constructed a hypernetwork but did
not explicitly map a preference vector with a Pareto optimal
solution. (Navon et al. 2021) presented PHN-LS and PHN-
EPO, which combine optimization techniques like Linear
Scalarization (LS) and EPO (Mahapatra and Rajan 2020)
with hyperwork, to approximate the complete Pareto front
in a single training. As a result, the two models still contain
the features and drawbacks of these techniques. In order to
tackle PFL, (Ruchte and Grabocka 2021) combined prefer-
ence vectors with data using a single network and used the LS
loss function together with cosine similarity. However, it is
still unclear how to concatenate preference vectors with arbi-
trary data, and not all situations allow for efficient interaction
between LS and cosine similarity.

5 Experiments
For all methods base on hypernetwork, we use a feed-forward
network with various outputs to parameterize h(ϕ, r). The
target network’s weight tensor is produced by each output in
a distinct way. Specifically, the input r is first mapped using a
multi-layer perceptron network to a higher dimensional space
in order to create shared features. A weight matrix for each
layer in the target network is created by passing these features
across fully connected layers. Experiments demonstrate that
PHN-HVI outperforms other methods.

Baselines: We compare PHN-HVI 1 with the current state-
of-the-art of PFL methods: PHN-LS, PHN-EPO (Navon
et al. 2021), and COSMOS (Ruchte and Grabocka 2021).

Evaluation Metric: The area dominated by Pareto front
is known as Hypervolume (Zitzler and Thiele 1999). The
higher Hypervolume, the better Pareto front.

Training Settings: Our target network has the same archi-
tecture as the baselines in all experiments. For toy examples,
the optimization processes are run for 10,000 iterations, and
200 evenly distributed preference vectors are used for testing.
On multi-task problems, the dataset is split into three subsets:
training, validation, and testing. The model with the highest
HV in the validation set will be evaluated. All methods are
evaluated by the same well-spread preference vectors.

All experiments and methods in this paper are imple-
mented with Pytorch (Paszke et al. 2019) and trained on
a single NVIDIA GeForce RTX3090.

Toy Examples
In this section, we will investigate the quality of the Pareto
front generated by PHN-HVI and the PFL baselines using
the following toy examples:
Problem 1 (Liu, Tong, and Liu 2021)

L1(θ) = (θ)2 , L2(θ) = (θ − 1)2, s.t. θ ∈ R (14)

1We publish the code at https://github.com/longhoangphi225/
MultiSample-Hypernetworks
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Figure 3: Toy 2D plots. The red curves are truth Pareto front. The blue points are approximate Pareto fronts

Figure 4: Toy 3D plots

Problem 2 (Lin et al. 2019)

L1(θ) = 1− exp{−∥θ − 1/
√
d∥22},

L2(θ) = 1− exp{−∥θ + 1/
√
d∥22}

s.t θ ∈ Rd, d = 100

(15)

Problem 3

L1(θ) = cos2(θ1) + 0.2, (16)

L2(θ) = 1.3 + sin2(θ2)− cos(θ1)− 0.1 sin5(22π cos2 θ1)

s.t θ ∈ R2

Problem 4 (DTLZ4 with 3 Objective Functions)

L1(θ) = cos(θ1
π

2
) cos(θ2

π

2
)(

10∑
i=3

(θi − 0.5)2 + 1), (17)

L2(θ) = cos(θ1
π

2
) sin(θ2

π

2
)(

10∑
i=3

(θi − 0.5)2 + 1),

L3(θ) = sin(θ1
π

2
)(

10∑
i=3

(θi − 0.5)2 + 1),

s.t θ ∈ R10, 0 ≤ θi ≤ 1

Since the objective function in Problem 1 is convex, prac-
tically all methods—in particular PHN-LS—perform well.
Due to the concave form of the Pareto front in Problem 2,
all of the solutions produced by PHN-LS gravitate to two
ends, but COSMOS, a method that combines LS with con-
sine similarity, can be effective in this situation. However,
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Method Multi-MNIST Multi-Fashion Fash.+MNIST Drug Jura SARCOS
PHN-EPO 2.868 2.238 2.815 1.226 0.933 0.932
PHN-LS 2.859 2.219 2.764 1.208 0.932 0.934
COSMOS 2.959 2.324 2.838 NA 0.933 0.830

PHN-HVI 3.012 2.408 2.967 1.294 0.946 0.949

Table 1: Results compared to the state-of-the-art methods on Hypervolume

Figure 5: Pareto fronts are generated by methods

it is highly problematic in Problem 3 when LS and cosine
similarity function are in direct conflict.
As a result of its disconnected Pareto front, Problem 3
presents a difficult challenge. In view of hypernetwork-
based method, we have Lj(h(ϕ, r)) is smooth function,
because Lj(θ) is smooth, and h(ϕ, r) is smooth (because
h is represented by a neural network). So on, if θ =
h(ϕ, r), ∃d0, dj , ϵj ∈ R+, ∀r′ ∈ Ω : ∥r′ − r∥ < d0 ⇒
θ′ ∈ B(θ, di) : ∥Lj(θ

′) − Lj(θ)∥ < ϵi, j ∈ {1, . . . , J}.
Therefore as consequence, in order to approximate the entire
Pareto front, PHN-LS and PHN-HVI must give some point
that is not a Pareto optimal solution. And EPO Search, which
combines uniformity function, common direction gradient
descent, and a controlled increase or decrease in the objective
function, prevents PHN-EPO from generating a non-Pareto
Optimal solution, resulting in the generation of just a por-
tion of the Pareto front. In this case, PHN-LS and PHN-HVI
are better than PHN-EPO, because they still can profile the
Pareto front by removing the dominated solutions.

We use the sigmoid function to address constraints in Prob-
lem 4. Using the sampling technique which is described in
Section 3, we use 231 uniform 3D rays. In Figure 4, PHN-LS
entirely fails, COSMOS and PHN-EPO offer solutions that
are widespread but a little chaotic, while PHN-HVI produces
solutions that result in a pretty uniform distribution.

Image Classification
Three benchmark datasets—Multi-MNIST, Multi-Fashion,
and Multi-Fashion+MNIST (Lin et al. 2019) are used in
our evaluation. For each dataset, we have a two-objective
multitask learning problem that asks us to categorize the
top-left (task left) and bottom-right (task right) items (task
right). Each dataset has 20,000 test set instances and 120,000
training examples. 10% of the training data are used for the
validation split. Multi-LeNet (Sener and Koltun 2019) is
the network that all approaches aim to reach. We set p =

16, λ = 5 on the Multi-MNIST dataset, p = 16, λ = 4 on the
Multi-Fashion dataset, and Multi-Fashion+MNIST dataset
for PHN-HVI .

In Quadrant I, we evaluate every methods using 25 uni-
formly distributed preference vectors. The results are shown
in Table 1 and Figure 5. The HV was calculated by reference
point (2, 2). The Pareto front of PHN-HVI outperforms and
covers the baselines entirely. The Pareto Front is generated
by other techniques, especially PHN-LS, that are not widely
dispersed. There are numerous solutions on the Pareto front
of PHN-HVI that may be achieved that are superior to a
single task.

Text Classification and Regression

In this investigation, we concentrated on the Drug Review
dataset (Gräßer et al. 2018). This dataset comprises user
evaluations of particular medications, details on pertinent
ailments, and a user score that shows general satisfaction.
We examine two tasks: (1) regression-based prediction of the
drug’s rating and (2) classify the patient’s condition.

This dataset consists of 215063 samples. 10% of the data
which has conditions with insufficient user feedback are re-
moved. Following that are 100 condition labels and 188155
samples. The dataset has a ratio of 0.65/0.10/0.25 for train/-
val/test. Target network is TextCNN (Kim 2014). The hyper-
parameters for the PHN-HVI model are p = 16, λ = 4. Test
rays is 25 evenly preference vectors. The reference point for
hypervolume is (2, 2).

In this case, PHN-HVI has a greater hypervolume than
previous techniques and still permits the Pareto front to move
deeper. For COSMOS, due to the mapping from a preference
vector r, to the huge dimensionality of the embedding feature,
it does not converge.
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Multi-Output Regression
To demonstrate the viability of our strategy in high-
dimensional space, we conduct experiments on 2 datasets:

- Jura (Goovaerts et al. 1997): In this experiment, the
goal variables are zinc, cadmium, copper, and lead (4 tasks),
whereas the predictive features are the other metals, the
type of land use, the type of rock, and the position coor-
dinates at 359 different locations. The dataset has a ratio of
0.65/0.15/0.20 for train/val/test.

- SARCOS (Vijayakumar 2000): The goal is predict per-
tinent 7 joint torques (7 tasks) from a 21-dimensional input
space (7 joint locations, 7 joint velocities, 7 joint accelera-
tions). There are 4449 and 44484 examples on testing/training
set. As validation set, 10% of the training data are used.

The target network in both experiments is a Multi-Layer
Perceptron with 4 hidden layers containing 256 units. We set
p = 8, λ = 0.001 for PHN-HVI on both two datasets. The
reference point for calculating HV is (1, 1, . . . , 1). PHN-HVI
outperforms all other baselines in terms of Hypervolume.

Ablation Study
Number of Rays p. Figure 6 demonstrates that the quality
of the Pareto front increases with the number of rays, but up
to a certain point, adding more rays no longer significantly
improves the results. That means our framework doesn’t
require too many sampling rays to get a good performance.

Partition. As shown in Figure 7, partitioning algorithm
makes it easier for the cosine similarity function and the HV
function to cooperate and enhances PHN-HVI performance.

Cosine Similarity. The cosine similarity function is criti-
cal in the convergence of PHN-HVI and helps in the spread
of the Pareto Front. In Figure 8, if λ is very large (λ = 100),
Pareto Front is very widely dispersed, but it is quite shallow.
If λ is very small (λ = 0.1), PHN-HVI can’t generate Pareto
Front. Therefore, selecting a suitable lambda that balances
the HV function and the cosine similarity function is critical
for the PHN-HVI to work effectively.

Figure 6: Performance of PHN-HVI when p varies

6 Conclusion and Future Work
In this paper, we propose PHN-HVI with Multi-Sample Hy-
pernetwork, which utilizes a variety of trade-off vectors si-
multaneously, followed by hypervolume maximization to
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Figure 8: The impact of hyperpareter λ

improve the PFL problem. This approach also opens up a
wide range of potential research directions. On one hand,
it is necessary to investigate theoretically for which objec-
tive functions the hypernetwork-based PFL methods will
guarantee the convergence. On the other hand, it is shown
that hypernetwork-based PFL can not approximate well
disconnected-Pareto fronts. Hence, the question of whether
PFL may be solved effectively without hypernetwork is very
crucial to consider.
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