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Abstract

Applications abound in which optimization problems must be
repeatedly solved, each time with new (but similar) data. An-
alytic optimization algorithms can be hand-designed to prov-
ably solve these problems in an iterative fashion. On one
hand, data-driven algorithms can “learn to optimize” (L2O)
with much fewer iterations and similar cost per iteration as
general-purpose optimization algorithms. On the other hand,
unfortunately, many L2O algorithms lack converge guaran-
tees. To fuse the advantages of these approaches, we present
a Safe-L2O framework. Safe-L2O updates incorporate a safe-
guard to guarantee convergence for convex problems with
proximal and/or gradient oracles. The safeguard is simple and
computationally cheap to implement, and it is activated only
when the data-driven L2O updates would perform poorly
or appear to diverge. This yields the numerical benefits of
employing machine learning to create rapid L2O algorithms
while still guaranteeing convergence. Our numerical exam-
ples show convergence of Safe-L2O algorithms, even when
the provided data is not from the distribution of training data.

Introduction
Solving scientific computing problems often requires use
of efficient optimization algorithms. Data-driven algorithms
can execute in far fewer iterations and with similar cost per
iteration as state-of-the-art general purpose algorithms. In-
spired by one such algorithm, ISTA, (Gregor and LeCun
2010) proposed treating entries in fixed matrices/vectors of
the algorithm as learnable parameters that can vary by iter-
ation. These entries were fine-tuned to obtain optimal per-
formance on a data set for a fixed number of iterations. Em-
pirically, this approach converged with a roughly a 20-fold
reduction in computational cost compared to the original an-
alytic algorithm. Related works also showed numerical suc-
cess (reviewed below). These efforts open the door to a new
class of algorithms and analyses. Analytic optimization re-
sults often provide worst-case convergence rates, and lim-
ited theory exists pertaining to instances drawn from a com-
mon distribution. Most L2O methods have little or no con-
vergence guarantees, especially on data distinct from what is
seen in training. Indeed, LISTA and ALISTA (reviewed be-
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low) have linear convergence to a sparse signal when train-
ing finds proper parameters, i.e. it is possible they converge.
This work addresses the inquiry:

Can a safeguard be added to L2O algorithms to guarantee
convergence without significantly hindering performance?

A safeguard is anything that identifies when a “bad” L2O
update (due to poorly trained parameters, lack of generaliza-
tion, out-of-distribution inputs, or any other reasons) would
occur and what to do in place of that “bad” update. Infor-
mally, what a safeguard does can be summarized by gener-
ating a sequence {xk} with updates of the form

xk+1 =

{
L2O Update if update is “good”

Fallback Update otherwise.
(1)

We provide an affirmative answer to the question for convex
problems with gradient and/or proximal oracles by provid-
ing such a safeguard and replacing “bad” L2O updates with
updates from analytic methods. Since a trade-off is formed
between per iteration costs and ensuring convergence, below
we clarify properties for a “practical” L2O safeguard.

1. The safeguard should ensure certain forms of worst-case
convergence similar to analytic algorithms.

2. The safeguard must only use known quantities related to
convex problems (e.g. objective values, gradient norms).

3. Both L2O and Safe-L2O schemes should perform identi-
cally on “good” data with comparable per-iteration costs.

4. The safeguard should kick in only when “bad” L2O up-
dates would otherwise occur.

The core challenge is to create a simple safeguard that
kicks in only when needed. Unlike classic optimization al-
gorithms, exceptional L2O algorithms do not necessarily ex-
hibit the behavior that each successive iterate is “better” than
the current iterate (i.e. are not monotonically improving).
Loosely speaking, this means there are cases where an L2O
scheme that gets “worse” for a couple iterates yields a better
final output than an L2O scheme that is required to get “bet-
ter” at each iterate. The intuition behind why this can be ac-
ceptable is we are interested in the final output of the L2O al-
gorithm and L2O schemes may learn “shortcuts.” From this
insight, we deduce a safeguard should exhibit a form of trail-
ing behavior, i.e. measure progress of previous iterates and
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only require that updates are “good” on average. If the safe-
guard triggers too often, then the Safe-L2O scheme’s flexi-
bility and performance are limited. If it triggers too rarely,
then the Safe-L2O scheme may exhibit highly oscillatory
behavior and converge slowly.

In addition to L2O updates, our method uses a safeguard
condition with the update formula from a conventional algo-
rithm. When the “good” condition holds, the L2O update is
used; when it fails, the formula from the conventional algo-
rithm is used. In the ideal case, L2O updates are applied of-
ten and the conventional algorithm formula provides a “fall-
back” for exceptional cases. This fallback is designed to-
gether with the safeguard condition to ensure convergence.
This also implies, even when an L2O algorithm has a fixed
number of iterations with tunable parameters, the algorithm
may be extended to an arbitrary number of iterations by ap-
plying the fallback to compute latter updates (see Figure 1).

Review of L2O Methods. A seminal L2O work in the
context of sparse coding was by (Gregor and LeCun 2010).
Numerous follow-up papers also demonstrated empirical
success at constructing rapid regressors approximating it-
erative sparse solvers for compression, nonnegative matrix
factorization, compressive sensing and other applications
(Sprechmann, Bronstein, and Sapiro 2015; Wang, Ling,
and Huang 2016; Wang et al. 2016; Hershey, Roux, and
Weninger 2014; Yang et al. 2016). A summary of unfolded
optimization procedures for sparse recovery is given by
(Ablin et al. 2019) in Table A.1. Some works have inter-
preted LISTA in various ways to provide proofs of differ-
ent convergence properties (Giryes et al. 2018; Moreau and
Bruna 2017). Others have investigated structures related to
LISTA (Xin et al. 2016; Blumensath and Davies 2009; Borg-
erding, Schniter, and Rangan 2017; Metzler, Mousavi, and
Baraniuk 2017), providing results varying by assumptions.
(Chen et al. 2018) introduced necessary conditions for the
LISTA weight structure to asymptotically achieve a linear
convergence rate. This was followed by (Liu et al. 2019),
which further simplified the weight conditions and provided
a result stating that, with high probability, the convergence
rate of LISTA is at most linear. The mentioned results are
useful, yet can require intricate assumptions and proofs spe-
cific to the sparse coding problems. We refer readers to the
recent survey (Chen et al. 2022) for a comprehensive L2O
overview. Our work is about optimization, i.e. minimization
of an objective function, while some L2O works focus on in-
verse problems wherein optimization is used as a surrogate.

Our safeguarding scheme is related to existing works
in Krasnosel’skiı̆-Mann (KM) methods. The SuperMann
scheme (Themelis and Patrinos 2019) presents a KM
method that safeguards in a more hierarchical manner than
ours and solely refers to the current iterate residuals (plus
a summable sequence). Additionally, a similar safeguarding
setup has been used for Anderson accelerated KM methods
(Zhang, O’Donoghue, and Boyd 2018). These methods are
not designed with L2O in mind and differ from our approach
both in the assumptions used and update formulas.

Our Contribution. We provide a simple framework,
Safe-L2O, for wrapping data-driven algorithms with con-
vergence guarantees. This framework can be used with all

L2O algorithms that solve convex problems for which prox-
imal and/or gradient oracles are available. We give multiple
safeguarding procedures in a general setting and a simple
procedure for utilizing machine learning methods to instill
knowledge from available data.

Fixed Point Methods
Fixed-point iteration abstracts most of the convex optimiza-
tion methods that are based on gradient and/or proximal or-
acles, and those methods are targets of recent L2O acceler-
ations. Our method is based on examining the fixed-point
residual, and so it applies to a wide variety of L2O meth-
ods, even complicated first-order methods (e.g. ADMM and
primal-dual methods) where the underlying problems can in-
clude constraints. To provide a brief background, here we
overview fixed point methods. Denote the set of fixed points
of each operator T : Rn → Rn by fix(T ) , {x : Tx = x}.
For an operator T with a nonempty fixed point set (i.e.
fix(T ) 6= ∅), we consider the fixed point problem

Find x? such that x? ∈ fix(T ). (2)

See Table 1 for examples of the operator T in convex mini-
mization. We focus on fixed point iteration to give a general
approach for creating sequences that converge to solutions
of (2) and, thus, of the corresponding optimization problem.

The following definitions are used throughout. An opera-
tor T : Rn → Rn is nonexpansive if it is 1-Lipschitz,1 i.e.

‖T (x)− T (y)‖ ≤ ‖x− y‖, for all x, y ∈ Rn. (3)

An operator T is averaged if there exists ϑ ∈ (0, 1) and
a nonexpansive operator Q : Rn → Rn such that T =
(1 − ϑ)I + ϑQ, with I the identity. A classic theorem (see
Theorem 1) states sequences generated by successively ap-
plying an averaged operator converge to a fixed point. In
this work, each operator T is averaged. This method comes
from (Krasnosel’skiı̆ 1955) and (Mann 1953), which yielded
adoption of the name Krasnosel’skiı̆-Mann (KM) method.
Theorem 1. If an averaged operator T : Rn → Rn has a
nonempty fixed point set and a sequence {xk} with arbitrary
initial iterate x1 ∈ Rn satisfies the update relation

xk+1 = T (xk), for all k ∈ N, (4)

then there is a solution x? ∈ fix(T ) to (2) such that the
sequence {xk} converges to x?.

We briefly discuss the use of resolvents in conventional
algorithms. Consider a convex function f : Rn → R with
subgradient ∂f and α > 0, the resolvent Jα∂f of α∂f is
defined by Jα∂f (x) , (I + α∂f)−1(x), i.e.

Jα∂f (x) = {y : (x− y)/α ∈ ∂f(y)} (5)

and the reflected resolvent of ∂f is

Rα∂f (x) , (2Jα∂f − Id)(x) = 2Jα∂f (x)− x. (6)

If f is closed, convex, and proper, then the resolvent is pre-
cisely the proximal operator, i.e.

Jα∂f (x) = proxαf (x) , arg min
z∈Rn

αf(z)+
1

2
‖z−x‖2. (7)

1The Euclidean norm on Rn is denoted by ‖ · ‖.
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Problem Method Fallback Operator T

min f(x) Gradient Descent Id− α∇f

min f(x) Proximal Point proxαf

min{g(x) : x ∈ C} Projected Gradient projC ◦ (Id− α∇g)

min f(x) + g(x) Proximal Gradient proxαf ◦ (Id− α∇g)

min f(x) + g(x) Douglas-Rachford 1
2
(Id +Rα∂f ◦Rα∂g)

min
(x,z)∈Ω

f(x) + g(z) ADMM 1
2

(
Id +RαA∂f∗(AT ·) ◦Rα(B∂g∗(BT ·)−b)

)
minf(x) s.t. Ax = b Uzawa Id + α

(
A∇f∗(−AT ·)− b

)
minf(x) s.t. Ax = b Proximal Method of Multipliers Jα∂L

minf(x) + g(Ax) Primal-Dual Hybrid Gradient JM−1∂L

Table 1: Averaged operators for well-known algorithms. We assume α > 0 and, when α is multiplied by a gradient, we also
assume α < 2/L, with L the Lipschitz constant for the gradient. The dual of a function is denoted by a superscript ∗, and
Ω = {(x, z) : Ax + Bz = b}. Operators J and R are defined in equations () and (6), respectively. The block matrix M is
M = [α−1Id, AT ;−A, β−1Id]. In each case, L is the Lagrangian associated with the presented problem.

Proximal operators for several well-known functions can be
expressed by explicit formulas (e.g. see page 177 in (Beck
2017)). It can be shown thatRα∂f is nonexpansive and Jα∂f
is averaged (Bauschke and Combettes 2017). Table 1 pro-
vides examples of these operators in well-known algorithms.

Safeguarded L2O Method

Algorithm 1 L2O Network (No Safeguard)

1: L2O(d; Θ) :
2: x1 ← x̃ C Initialize inference
3: for k = 1, 2, . . . ,K C Loop for each layer
4: xk+1 ← TΘk(xk; d) C L2O Update
5: return xK+1 C Output inference

This section presents the Safe-L2O framework. The safe-
guard acts as a wrapper around a data-driven algorithm,
which is formulated in practice as a neural network. Each
L2O operator, denoted throughout by TΘk , is parameterized
by layerwise weights Θ = (Θ1, ...,ΘK). Input data d is
used to define an optimization problem (e.g. the measure-
ment vector in a least squares problem). To make this de-
pendence clear, we often write T (·; d). Often TΘk(·; d) can
be viewed as forming one or multiple layers of a feed for-
ward network. Thus, we interpret NΘ(d) in Algorithm 1 as
a feed forward network. In addition to an L2O operator TΘk ,
our Safe-L2O method uses a fallback operator T (unrelated
to TΘk ) and a scalar sequence {µk}. Here T defines an av-
eraged operator from the update formula of a conventional
optimization algorithm. Each µk defines a reference value to
determine whether a tentative L2O update is “good.” Each
reference value µk in our safeguarding schemes is related
to a combination of ‖yi − T (yi; d)‖ and ‖yi − xi‖ among
previous iterates i = 1, . . . , k, where yi = TΘi(xi; d).

Algorithm 2 Safeguarded L2O (Safe-L2O)

1: Safe-L2O(L2O(d; Θ), T, α, β)
2: x0 ← x̃, x1 ← x̃, y1 ← TΘ1(x1), k ← 1

3: µ1 ← α−1 · (‖y1 − T (y1; d)‖+ β‖y1 − x1‖)
4: while ‖xk − xk−1‖ > ε or k = 1

5: yk ← TΘk(xk; d)

6: if ‖yk − T (yk; d)‖+ β‖yk − xk‖ ≤ αµk
7: xk+1 ← yk

8: else
9: xk+1 ← T (xk; d)

10: Update safeguard µk+1

11: k ← k + 1

12: return xk

We propose the Safe-L2O scheme in Algorithm 2. As
shown in Line 1, a safeguarded L2O operator consists of
an L2O network L2O(d; Θ), a fallback operator T , and a
parameter α ∈ (0, 1). Here Θ = (Θ1, . . . ,ΘK) forms layer-
wise weights Θk that define the L2O update TΘk at the k-th
iteration. These weights are trained beforehand via standard
training methods (see the Appendices). Table 1 shows some
choices of the fallback operator T for different optimization
problems and algorithms In Line 2, the initial iterate x1 is
chosen to be an arbitrary (but fixed) vector x̃. The initial it-
erate µ1 of the safeguard sequence {µk} is initialized using
the initial iterate x1, an L2O update y1, and the fallback op-
erator T in Line 3. From Line 4 to Line 11, a repeated loop
occurs to compute each update xk+1. In Line 5 the L2O op-
erator is applied to the current iterate xk get a tentative up-
date yk. This yk is “good” if the the inequality in Line 6
holds. In such a case, the L2O update is assigned to xk+1 in
Line 7. Otherwise, the fallback T is used to get update xk+1
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in Line 9. The initial iterate µ1 is defined so x2 = y1, i.e.
the first L2O update is always accepted. The safeguard is up-
dated in Line 10. Note α gives flexibility in how quickly an
L2O update must converge to be “good” (smaller α requires
faster convergence) and β > 0 ensures L2O residuals are
summable. Table 2 gives schemes to update the safeguard.

Below are standard assumptions used to prove the main
result. The first enables a fixed point formulation.
Assumption 1. For input data d, the optimization prob-
lem has a solution and there is an operator T such that i)
fix(T (·; d)) is the solution set and ii) T (·; d) is averaged.
The next assumption ensures used L2O updates approach
solutions. This is done by computing the safeguard value,
which is a fixed point residual with the fallback operator.
Assumption 2. Here α ∈ [0, 1), β ∈ (0,∞) and the safe-
guard {µk} is monotonically decreasing such that

‖T (xk; d)− xk‖ ≤ µk, for all k ∈ N, (8)
and there exists ζ ∈ (0, 1) such that

µk+1 ≤ ζµk, whenever xk+1 is an L2O update. (9)
Our proposed methods for choosing the sequence {µk}

satisfy Assumption 2 (see Table 2). These methods are adap-
tive in the sense that each µk depends upon the weights Θk,
iterate xk and (possibly) previous weights and iterates. Each
safeguard parameter µk also remains constant in k except
for when the sum of residual norms ‖xk+1 − T (xk+1)‖ and
‖yk − xk‖ decreases to less than a geometric factor of µk.
This allows each µk to trail the value of the residual norm
‖xk − T (xk)‖ and the residual norm to increase in k from
time to time. This trailing behavior provides flexibility to
the L2O updates. Our main result is below and is followed
by a corollary justifying use of the schemes in Table 2 (both
proven in the appendix).
Theorem 2. If {xk} is a sequence generated by the inner
loop in Safe-L2O and Assumptions 1 and 2 hold, then {xk}
converges to a limit x?d ∈ fix(T (·; d)), i.e. xk → x?d.

Corollary 1. If {xk} is generated by the inner loop in Safe-
L2O and Assumption 1 holds, and {µk} is generated using a
scheme outlined in Table 2 with α ∈ [0, 1) and β ∈ (0,∞),
then xk → x?d ∈ fix(T (·; d)).

We summarize the safeguard schemes in Table 2 as fol-
lows. The GS method decreases µk be a fixed geometric fac-
tor at each update. The EMA method exponentially averages
all past and current residual sums where µk is/was modified.
The RT method sets µk to be the last residual norm sum to
be “good”, i.e. satisfy the Ck inequality. We find EMA to be
the most practical safeguard due to its adaptive nature.
Remark 1. The appropriate frequency for the safeguard to
trigger can be estimated by tuning L2O parameters for opti-
mal performance on a training set without safeguarding and
then using a validation set to test various safeguards with
the L2O scheme. To avoid possible confusions, note we are
not trying to prove the convergence of any standalone L2O
algorithm. We instead 1) alarm on an L2O update when it
may break convergence, 2) replace it with a fallback update,
and 3) show the resulting “hybrid optimization” converges
to a solution of the provided optimization problem.

Training and Averaged Operator Selection
Safe-L2O may be executed via inferences of a feed forward
neural network. The input into the network is the data d,
often in vector form. Input d is usually the observation we
have, based on which we optimize over the variable of in-
terest. For example, the LASSO problem in (12) is used for
sparse coding, where the goal is to recover a unknown sparse
vector x? from its noisy measurements d = Ax? + ε. As-
suming A is known beforehand, the input to the Safe-L2O
model is the observation d. In other cases, the dictionary A
can change and also be part of the input to the model. We
include case-by-case discussions about what the inputs for
each numerical example.

Each layer of the Safe-L2O model is designed so that its
input is xk, to which it applies either an L2O or fallback
update (following the Safe-L2O method), and outputs xk+1

to the next layer. The set over which Θ is minimized, may
be chosen with great flexibility. For each application of the
algorithm, the fallback operator depends upon the data d.

The “optimal” choice of parameters Θ depends upon the
application. Suppose each d is drawn from a common distri-
butionD. Then a choice of “optimal” parameters Θ? may be
identified as those for which the expected value of φ(xK ; d)
is minimized among d ∼ D, where φ(· ; d) : Rn → R is an
appropriate cost function and K is a fixed positive integer.
Mathematically, this means Θ? solves the problem

min
Θ

Ed∼D[φ(xK(Θ; d); d)], (10)

where we emphasize the dependence of xK on Θ and d by
writing xK = xK(Θ; d). Examples for φ include the origi-
nal objective function (i.e. φ(x; d) = f(x; d)) and the fixed
point residual ‖x− T (x; d)‖. We approximately solve (10)
by sampling data {dn}Nn=1 from D and minimizing an em-
pirical loss function. Summaries for training are outlined in
the appendices. Note different learning problems than (10)
may be used (e.g. the min-max problem used by adversarial
networks (Goodfellow et al. 2014)).

Numerical Examples
This section presents examples using Safe-L2O.2 We numer-
ically investigate i) the convergence rate of Safe-L2O rela-
tive to corresponding conventional algorithms, ii) the effi-
cacy of safeguarding procedures when inferences are per-
formed on data for which L2O fails intermittently, and iii)
the convergence of Safe-L2O schemes even when the ap-
plication of L2O operators is not theoretically justified. We
first use L2O from ALISTA (Liu et al. 2019) on a synthetic
LASSO problem. We then use LISTA on a LASSO problem
for image processing, differentiable linearized ADMM (Xie
et al. 2019) on a sparse coding problem. In all three types of
problems, the input data d to the L2O models is generated by
d = Ax? + ε where ε is white Gaussian noise and x? is the
hidden variable that we want to recover through a dictionary
A, which is generated and beforehand and fixed. In these
experiments, the ground-truth vector x? are sampled from a
distribution, which characterizes the distribution of data of

2Code is on GitHub: github.com/VITA-Group/Safe L2O
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Figure 1: Plot of error versus iteration for ALISTA example. Here ISTA is the classic algorithm, ALISTA is the L2O operator
in Algorithm 1 and Safe-L2O is the safeguarded version of ALISTA in Algorithm 2. Trained with φd = fd. Inferences used
α = 0.99 and EMA(0.25). In (b), how often the L2O update is “bad” and the safeguard activates for Safe-L2O is indicated in
reference to the right vertical axis. This plot shows the safeguard is used only when k = 2, k = 7, and k = 12.

NAME UPDATE FORMULA

Geometric Sequence
GS(θ)

µk+1 =

{
θµk if Ck holds,
µk otherwise.

Decrease µk by factor θ for “good” residuals.

Recent Term
RT

µk+1 =

{
‖xk+1 − T (xk+1; d)‖+ β‖xk+1 − xk‖ if Ck holds,

µk otherwise.
Take µk to be most recent “good” residual.

Exponential
Moving Average

EMA(θ)

µk+1 =

{
θ
(
‖xk+1 − T (xk+1; d)‖+ β‖xk+1 − xk‖

)
+ (1− θ)µk−1 if Ck holds,

µk otherwise.
Exponentially average µk with the latest “good” residuals.

Table 2: Rules for updating µk. Here α, θ ∈ (0, 1), β ∈ (0,∞), and Ck is the statement ‖yk−T (yk; d)‖+β‖yk−xk‖ ≤ αµk.

interest along with the dictionary. We denote the distribu-
tion of the input data as D. Besides these “linear” examples,
we also validate Safe-L2O on a distribution of LASSO prob-
lems where the dictionary A also changes and is part of the
input to the L2O models. In this case, the distributions of
the dictionaries and ground-truth vectors together character-
ize the input distribution D.

In each example, f?d denotes the optimal value of the ob-
jective f(x; d) among all possible x. Performance is mea-
sured using a modified relative objective error:

Relative Error = Rf,D(x) ,
Ed∼D[f(x; d)− f?d ]

Ed∼D[f?d ]
, (11)

where the expectations are estimated numerically (see the
appendices for details). We use (11) rather than the expecta-
tion of relative error to avoid high sensitivity to outliers.

Our numerical results are shown in several plots. When
each iterate xk is computed using data d drawn from the
same distribution Ds that was used to train the L2O algo-

rithm, we say the performance is on the “seen” distribution
Ds. These plots form the primary illustrations of the speedup
of L2O algorithms as compared to conventional optimiza-
tion algorithms. When each d is drawn from a distribution
Du that is different than Ds, we refer to Du as the unseen
distribution. These plots show the ability of the safeguard
to ensure convergence. A dotted plot with square markers
is also added to show the frequency of safeguard activations
among test samples, with the reference axis on the right hand
side of the plots. We extend the Safe-L2O methods beyond
their training iterations by applying the fallback operator
T ; we demarcate where this extension begins by changing
the Safe-L2O plots from solid to dashed lines. As Safe-L2O
convergence holds whenever β > 0, we can set β to be arbi-
trarily small (e.g. below machine precision); for simplicity,
we use β = 0 in the experiments (as, even in this case, it can
be shown that iterates approach the solution set). Implemen-
tation details for each experiment are in the appendices.
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Figure 2: Plot of error versus iteration for LISTA denoising. Here ISTA is the classic algorithm, LISTA is the L2O operator
in Algorithm 1 and Safe-L2O is the safeguarded version of LISTA in Algorithm 2. Trained with φd = fd. Inferences used
α = 0.99 and EMA(0.25). In (b), how often the L2O update is “bad” and the safeguard activates for Safe-L2O is indicated in
reference to the right vertical axis. This plot shows the safeguard is used intermittently for k > 2.

ALISTA for LASSO
Here we consider the LASSO problem for sparse coding.
Let x? ∈ R500 be a sparse vector and A ∈ R250×500 be a
dictionary. We assume access is given to noisy linear mea-
surements d ∈ R250, where ε ∈ R250 is additive Gaussian
white noise and d = Ax? + ε. Even for underdetermined
systems, when x? is sufficiently sparse and τ ∈ (0,∞) is an
appropriately chosen regularization parameter, x? can often
be reasonably estimated by solving the LASSO problem

min
x∈Rn

f(x; d) ,
1

2
‖Ax− d‖22 + τ‖x‖1, (12)

where ‖ · ‖2 and ‖ · ‖1 are the `2 and `1 norms, respectively.
A classic method for solving (12) is the iterative shrinkage
thresholding algorithm (ISTA) (e.g. see (Daubechies, De-
frise, and Mol 2004)).3 Liu et al. (2019) present the L2O
scheme ALISTA that we implement here. This L2O model
L2O is parameterized by Θk = (θk, γk) ∈ R2.

Linearized ADMM
Let A ∈ R250×500 and d ∈ R250 be as in the LASSO
problem. Here we apply the L2O scheme differentiable lin-
earized ADMM of Xie et al. (2019) to the closely related
sparse coding problem

min
x∈Rn

‖Ax− d‖1 + τ‖x‖1. (13)

The L2O scheme (D-LADMM) and fallback linearized
ADMM (LiADMM) operator T are in the appendices along
with implementation details. Plots are provided in Figure 3.

LISTA for Natural Image Denoising
To evaluate our safeguarding mechanism in a more realistic
setting, we apply safeguarded LISTA to a natural image de-
noising problem. In this subsection, we learn a LISTA-CP

3This is a special case of the proximal-gradient in Table 1.

model (Chen et al. 2018) to perform natural image denois-
ing. During training, L2O LISTA-CP model is trained to re-
cover clean images from their Gaussian noisy counterparts
by solving (12). In (12), d is the noisy input to the model,
and the clean image is recovered with d̂ = Ax?, where
x? is the optimal solution. The dictionary A ∈ R256×512

is learned on the BSD500 dataset (Martin et al. 2001) by
solving a dictionary learning problem (Xu and Yin 2014).
During testing, however, the learned L2O LISTA-CP is ap-
plied to unseen pepper-and-salt noisy images. Comparison
plots are provided in Figure 2.

AdaLISTA: Dictionary as Part of Inputs

Here we consider the same LASSO problem (12) as in Sub-
section but make the dictionary A part of the inputs to
the L2O model (i.e. able to change across samples). Ab-
erdam, Golts, and Elad (2021) present a new L2O scheme
AdaLISTA that is trained to quickly solve a distribution
of LASSO problems with varying dictionaries. AdaLISTA
has a different parameterization scheme from the original
LISTA (Gregor and LeCun 2010) to enable the adaptivity to
the dictionaries. The L2O model L2O in AdaLISTA is pa-
rameterized by ζ = (θ, γ) ∈ R2 and two weight matrices
W1,W2 ∈ Rm×m where the dictionary A has shape m× n.
The two matrices are shared by operators in all iterations.

We mainly follow the settings in (Aberdam, Golts, and
Elad 2021). Specifically, we let x? ∈ R70 be sparse vec-
tors with random supports of cardinality s = 6 and a single
fixed dictionary A′ ∈ R50×70. We assume access is given
to noiseless linear measurements d ∈ R50 = Ax?, where A
is uniformly sampled from all column-permuted variants of
A′. Figure 4 and 5 show summary plots, from which we have
similar observations as in the ALISTA experiments with a
single fixed dictionary.
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Figure 3: Plot of error versus iteration for LiADMM. Here LiADMM is the classic algorithm, L2O LiADMM is the L2O
operator in Algorithm 1 and Safe-L2O is the safeguarded version of L2O LiADMM in Algorithm 2. Inferences used α = 0.99
and EMA(0.75). In (b), how often the L2O update is “bad” and the safeguard activates for Safe-L2O is indicated in reference
to the right vertical axis. The safeguard is used about 10% and 30% of the time when k = 4 and k = 5, respectively.
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Figure 4: Plot of error versus iteration for AdaLISTA ex-
ample. Here ISTA is the classic algorithm, AdaLISTA is
the L2O operator in Algorithm 1 and Safe-L2O is the safe-
guarded version of AdaLISTA in Algorithm 2.

Conclusions
Numerous insights may be drawn from our examples. The
first observation is, roughly speaking, each L2O scheme in
our numerical examples reduces computational costs by at
least one order of magnitude when applied to data from the
same distribution as the training data (as compared to ana-
lytic optimization algorithms). This is consistent with results
of previous works (n.b. on seen distributions, the safeguard
is never triggered in our experiments, making the iterates
for L2O and Safe-L2O identical). More importantly, plots
in Figures 1b and 2b, and 5 show the safeguard steers up-
dates to convergence when they would otherwise diverge or
converge slower than the conventional algorithm. That is,
Safe-L2O converges with data distinct from training while
the nonsafeguarded L2O schemes diverge.
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Figure 5: Plot of error versus iteration for AdaLISTA ex-
ample. Here ISTA is the classic algorithm, AdaLISTA is
the L2O operator in Algorithm 1 and Safe-L2O is the safe-
guarded version of AdaLISTA in Algorithm 2. Inferences
used α = 0.99 and EMA(0.25). In (b), how often the L2O
update is “bad” and the safeguard activates for Safe-L2O
is indicated in reference to the right vertical axis. This plot
shows the safeguard is used intermittently for k > 7.

This work proposes a framework for ensuring conver-
gence of L2O algorithms. Sequences generated by our Safe-
L2O method provably converge to solutions of the opti-
mization problems. Our Safe-L2O algorithm is also easy
to implement as a wrapper around trained neural networks.
Numerical experiments demonstrate rapid convergence by
Safe-L2O methods and effective safeguarding when the L2O
schemes appear to otherwise diverge. Future work will pro-
vide a better data-driven fallback method and investigate
stochastic extensions.
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