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Abstract

Source free domain adaptation (SFDA) transfers a single-
source model to the unlabeled target domain without accessing
the source data. With the intelligence development of various
fields, a zoo of source models is more commonly available,
arising in a new setting called multi-source-free domain adap-
tation (MSFDA). We find that the critical inborn challenge of
MSFDA is how to estimate the importance (contribution) of
each source model. In this paper, we shed new Bayesian light
on the fact that the posterior probability of source importance
connects to discriminability and transferability. We propose
Discriminability And Transferability Estimation (DATE), a
universal solution for source importance estimation. Specifi-
cally, a proxy discriminability perception module equips with
habitat uncertainty and density to evaluate each sample’s sur-
rounding environment. A source-similarity transferability per-
ception module quantifies the data distribution similarity and
encourages the transferability to be reasonably distributed
with a domain diversity loss. Extensive experiments show
that DATE can precisely and objectively estimate the source
importance and outperform prior arts by non-trivial margins.
Moreover, experiments demonstrate that DATE can take the
most popular SFDA networks as backbones and make them
become advanced MSFDA solutions.

Introduction
Learning machines, especially deep neural networks (DNNs),
show proficiency in multiple arrays of real-world tasks under
stationary environments where we draw training (source) and
test (target) examples from an identical distribution (LeCun,
Bengio, and Hinton 2015; Redmon et al. 2016; Huang et al.
2017). However, many studies in theory and practice have
demonstrated that learning machines fail to generalize even
if the source and target distributions slightly differ (Valiant
1984; Acuna et al. 2021). To guarantee generalizability under
non-stationary environments, unsupervised domain adapta-
tion (UDA) has gained momentum in the past decade with
prominent theoretical advances and effective algorithms (Han
et al. 2020; Courty et al. 2017). Thanks to the free access
to source data, the UDA algorithms for learning domain-
invariant representations yield state-of-the-art performance
on many visual tasks (Tzeng et al. 2017).
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Figure 1: Problem setup of MSFDA. The key is to estimate
the importance (contribution degree) of each source model.

Source data are often distributed on edge devices and carry
private information, e.g., those on medical instruments or
from corporate financial data (Liang, Hu, and Feng 2020).
Source-free domain adaptation (SFDA) relaxes the require-
ment on the source data and aims to transfer a previously
trained source model instead of the source data to the un-
labeled target domain. A series of seminal studies have
achieved significant success on effective algorithms for SFDA
variants, such as white-box SFDA (Kim, Cho, and Hong 2020;
Liang, Hu, and Feng 2020; Wang et al. 2022a), black-box
SFDA (Nelakurthi, Maciejewski, and He 2018; Sahoo, Shan-
mugam, and Guttag 2020), class-mismatch SFDA (Kundu
et al. 2020), and active SFDA (Wang et al. 2022b).

In real-world applications, a zoo of well-trained source
models is more easily obtainable under the umbrella of
multiple decentralized sources and privacy protection (Feng
et al. 2021). Accordingly, a new SFDA variant termed multi-
source-free domain adaptation (MSFDA) is emerged, adapt-
ing multi-source models to the unlabeled target domain, as
illustrated in Fig. 1. MSFDA enables transferring adequate
source knowledge and obtaining more increased performance
than SFDA. MSFDA has also more practical significance
in real-world applications, such as object recognition (Feng
et al. 2021), semantic segmentation (He et al. 2021), person
re-identification (Wu et al. 2019; Ding, Duan, and Li 2022),
etc. MSFDA is under-explored as only two general studies
have made a solid step (Ahmed et al. 2021; Dong et al. 2021).

A new and inborn challenge of MSFDA is how to accu-
rately estimate the importance of each source model in a zoo
(briefly described as source importance)? The reason is that
some source models are helpful while others are helpless or
negatively influence the target learning. Pioneering MSFDA
studies show that selecting the best source model and treat-
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ing each source domain as an equal contributor are naive
solutions (Ahmed et al. 2021; Dong et al. 2021). Further, con-
ventional multi-source domain adaptation (MSDA) methods
cannot be applied to estimate the source importance without
accessing the source domain data (Guo, Shah, and Barzilay
2018; Yang et al. 2020a; Li et al. 2018). While pioneering
MSFDA studies have recognized the necessity of source im-
portance estimation, their estimated results of source impor-
tance extremely mismatch the actual contributions of source
models, resulting in unsatisfactory performance.

In this paper, we shed new Bayesian light on source im-
portance and find that the prior probability connects to the
discriminability of source models, and the likelihood con-
nects to the transferability of source models on the target
domain. We propose the Discriminability And Transferabil-
ity Estimation (DATE) framework to quantify the posterior
probability of source importance objectively and effectively.
Accordingly, DATE has two novel targeted modules: (1) the
proxy discriminability perception module can objectively
estimate the discriminability of source models by two newly-
designed metrics: habitat uncertainty and habitat density. The
key insight is that, rather than estimating the uncertainty of
each sample point itself, it is better to consider the proxy
environmental uncertainty of the sample habitat in the feature
space. (2) The source-similarity transferability perception
module can effectively estimate the transferability of source
models by learning the data distribution similarity across
domains. It leverages a multi-layer perception to distinguish
the target feature representations extracted by which source
model. Moreover, a domain diversity loss is designed to en-
courage transferability to be reasonably distributed.

We summarize our contributions as follows:

• We investigate a limited-explored problem, multi-source-
free domain adaptation, and propose a novel and universal
framework called DATE.

• We propose two new metrics called habitat uncertainty
and habitat density to support the proxy discriminabil-
ity perception module to evaluate the discriminability of
source models from the perspective of sample habitat.

• We propose the source-similarity transferability percep-
tion module by quantifying the similarity degree of target
data to the unavailable source data and balancing the trans-
ferability and diversity of source models.

• We carry out extensive experiments on four benchmark
datasets, demonstrating that our proposal achieves remark-
able improvements compared with previous methods.

Methodology
In this section, we introduce the necessary notations. Then,
we give an in-depth analysis of the key ingredients of a good
source model and the insights of achieving a comprehensive
source importance estimation. Further, we present the DATE
framework. The framework is illustrated in Fig. 2.

Learning Setup
Definition 1 (Multi-Source-Free Domain Adaptation).
Given a zoo ofm well-trained source modelsHs = {hjs}mj=1,

the jth model hjs: X →Y is a classification model trained us-
ing the jth source domain dataset Dj

s ∼ pj . Y ∈ {1, ...,K}
where K represents the class number. The distributions of m
source dataset {pj}mj=1 are different. Note that the source
datasets {Dj

s}mj=1 cannot be accessed during adaptation.
Without losing generality, a general deep source model hjs
is a two-part network: a feature extractor f : X → Z , and a
classifier g: Z → Y . Z denotes the feature space that plays a
key role in deep unsupervised domain adaptation. The goal
of MSFDA is to adapt and aggregate the m source models
ht =

∑m
j=1 αjh

j
s on the target data Dt = {xi}nt

i=1 ∼ q with
satisfactory performance. αj represents the weight (impor-
tance) of the j-th model and αj ∈ α = {αj}mj=1.

In-depth Analysis
What are the key ingredients of a good source model? We
denote by u : X → Y the target labeling function and
L : Y × Y → R the loss function defined over pairs of
labels. We denote εp(h, u) = Ex∼pL(h(x), u(x)) the ex-
pected source risk and εq(h, u) = Ex∼qL(h(x), u(x)) the
expected target risk. Ben-David et al. (2007) and Blitzer et al.
(2007) proposed a theoretical upper bound on the expected
target risk εq(h, uq). For any hypothesis h ∈ H, the bound
of target expected risk εq(h, uq) is given by

εq(h, uq) ≤ εp(h, up) + discL(p, q) + λ(p, q) ,where

discL(p, q) = sup
h,h′∈H

∣∣εp(h, h′)− εq(h, h′)∣∣ and

λ(p, q) = min
h∈H

εp(h, up) + εq(h, uq) .

(1)

Here, discL(p, q) denotes the discrepancy distance term that
represents the measure of distribution discrepancy between
the source distribution and target distribution. λ(p, q) repre-
sents the joint optimal error, i.e., the error of an ideal hypoth-
esis on both source and target domains.

A discriminability and transferability perspective. The
discriminability of a source model refers to the ability to
distinguish different categories on the source and target do-
mains (Chen et al. 2019). The transferability of a source
model refers to the ability to generalize to other different
domains. The joint optimal error λ(p, q) corresponds to
the discriminability of a source model on the source and
target domains because the smaller the optimal error, the
higher the classification accuracy, and thus the better the dis-
criminability of the model, i.e., the discriminability metric
γD = 1− λ(p, q). The discrepancy distance discL(p, q) cor-
responds to the transferability of a source model to the target
domain because the smaller the discrepancy distance, the
more transferability to the target domain, i.e., the transferabil-
ity metric γT = 1− discL(p, q). Further, the studies in the
literature (Chen et al. 2019; Kundu et al. 2022) have proved
that exclusively improving the transferability leads to a drop
in discriminability and vice versa, i.e., they are at odds with
each other. Thus, the increase of discriminability γD would
decrease the transferability γT . Based on the above analysis,
we draw the following insights.
Insight 1. A good source model should have high discrim-
inability and transferability with a reasonable tradeoff.
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Figure 2: An overview of DATE, mainly including a proxy discriminability perception strategy to quantify the discriminability of
source models without target labels, and a source-similarity transferability perception strategy to quantify the transferability.

Remark 1. Since transferability and discriminability have
a tradeoff, transferability and discriminability are the two
most essential components of a sound source model w.r.t.
MSFDA, and one cannot be missing. Next, there is still a
question to be analyzed: What are the connections between
transferability or discriminability and the importance of the
source model? We analyze the source importance from the
Bayesian perspective to give a comprehensive answer.

A Bayesian perspective. The core of the MSFDA frame-
work is to assign a set of importance α = {αj}mj=1 to each
source model, and

∑m
j=1 αj = 1, 0 ≤ αj ≤ 1. From the

Bayesian perspective, given a zoo of source modelsHs and
a set of unlabeled target data Dt, the objective of MSFDA is
to maximize the posterior probability of target labels:

logP (Y|Hs, Dt) = log

∫
P (Y|α, Hs, Dt)P (α|Hs, Dt)dα .

(2)
P (Y|α, Hs, Dt) indicates that α impacts the learning of tar-
get labels, which is intuitive. The second term P (α|Hs, Dt)
plays a key role in the source importance estimation. Thus,
we further dissect the second term as follows.

P (α|Hs, Dt) =
P (α,Hs, Dt)

P (Hs, Dt)
=
P (α|Dt)P (Hs|α, Dt)

P (Hs)
.

(3)
Since P (Hs, Dt) = P (Hs)P (Dt), the denominator is
P (Hs), which is uniform, i.e., the probability of occurrence
is equal for each source model. Thus the posterior probability
of source importance P (α|Hs, Dt) is approximated to

P (α|Hs, Dt) ∝ P (α|Dt)P (Hs|α, Dt) . (4)

P (α|Dt) is the prior source importance conditioned on the
target data. It represents the latent prior knowledge entailed
in the target data Dt w.r.t. source modelsHs. Since we can-
not access the source data, we can view the unlabeled target
data as proxy information to evaluate the discriminability of

source models and further inflect the corresponding source
importance. P (Hs|α, Dt) is the likelihood of source mod-
els conditioned on the source importance and target data.
Assume the feature representations Zt of target data are ex-
tracted by source models. P (Hs|α, Dt) indicates the simi-
larity between the source and target data because if the target
data has the highest similarity to the j-th source data, the
probability of Zt being extracted by the j-th source model
is the largest. Therefore, P (Hs|α, Dt) can reflect the trans-
ferability. To summarize, the posterior probability of source
importance is approximated to

P (α|Hs, Dt) ∝ Discriminability× Transferability . (5)

Accordingly, we would better simultaneously estimate the
discriminability and transferability of source models on the
target domain. However, a key question remains: How do we
estimate the discriminability and transferability objectively?
The discriminability metric γD and transferability metric γT
are impossible to estimate directly. First, without the target
labels, we cannot directly compute the performance on the
target domain and quantify the discriminability metric γD
of source models. To solve this challenge, we propose the
proxy discriminability perception module to objectively eval-
uate the discriminability based on the unlabeled target data.
Second, without the source data, we cannot directly com-
pute the discrepancy distance and measure the transferability
metric γT . To solve this challenge, we propose the novel
source-similarity transferability perception module.

Proxy Discriminability Perception
Motivation. Without the target label, entropy is widely used
to measure uncertainty from the perspective of information
theory. For any source model hjs, the self-entropy of a target
instance xi is defined by

E(xi) = −
K∑
k=1

[η ◦ g(f(xi))]k log[η ◦ g(f(xi))]k , (6)
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and the self-entropy of target data Dt is

E(Dt) =
1

n

n∑
i=1

E(xi) , (7)

where η denotes the softmax function and symbol ◦ denotes
function composition. The lower the entropy, the more un-
ambiguous cluster assignments, and the lower the discrim-
inability (Hu et al. 2017). While self-entropy is intuitive as a
generic metric, it poses some limitations. First, self-entropy
exhibits low discriminability for highly uncertain and ex-
tremely sharp predictions (Fu et al. 2020). Second, when the
source model has an over-confidence or under-confidence
problem, self-entropy does not truly reflect the actual model
discriminability. To avoid these limitations, we turn to esti-
mate the uncertainty of sample habitat because the sample
habitat can accurately reflect the actual uncertainty of each
target instance and further can reflect the discriminability.
Definition 2 (Sample Habitat). Sample habitat is a place
where an instance lives in nature. Based on the feature space
Z = {z1, z2, .., znt

} of target data and the cosine similar-
ity measurement, we define the samples that are close to
xi in the feature space as the neighbors of xi: N(xi) =
{xi1, xi2, · · · , xiq}, where q denotes the number of the close
neighbors. Accordingly, three key ingredients (dimensions)
build the sample habitat: instance habitat ΞX , uncertainty
habitat ΞE , and distance habitat ΞD:

ΞX = {xi, xi1, xi2, · · · , xiq},
ΞE = {Ei, Ei1, Ei2, · · · , Eiq}, and

ΞD = {di,i, di,1, di,2, · · · , di,q},
(8)

where Eiq represents the entropy of the neighbor xiq , and di,q
represents the cosine distance from it q-th neighbor.

Sample habitat can reasonably evaluate the target instance
uncertainty in high-dimensional feature space by the inherent
structure of the target features and provides a new perspective
to evaluate the sample uncertainty from the sample environ-
ment. Intuitively, if the sample habitat has low uncertainty,
i.e., the sample has the same pseudo-label as its most neigh-
bors, the sample uncertainty is low. In contrast, the sample in
the label-chaotic habitat has large uncertainty. Based on this
intuitive insight, we design the habitat uncertainty.
Definition 3 (Habitat Uncertainty). Based on the sample
habitat, for any source model hjs, we define the habitat uncer-
tainty HU(xi) of the i-th instance as

HU(xi) = Ei +
1

q

q∑
a=1

Eia, s.t., Eia ∈ ΞE , (9)

and the habitat uncertainty of all target data Dt is

HU(Dt) =
1

n

n∑
i=1

HU(xi) . (10)

In essence, the habitat uncertainty of target data quanti-
fies the entropy of reliable samples repeatedly identified as
neighbors of other samples, appearing in multiple sample

habitats. Since the uncertainties of the reliable samples are
objective, the entire habitat uncertainty can reflect the true
discriminability of every source model. However, habitat un-
certainty can be susceptible to interference from outliers if a
fixed range of habitats contains few samples. To avoid this
problem, we propose habitat density as a strong complement.

Definition 4 (Habitat Density). Based on the sample habi-
tat, for any source model hjs, we define the habitat density
HD(xi) of the i-th instance as

HD(xi) = di,i +
1

q

q∑
a=1

di,a, s.t., di,a ∈ ΞD , (11)

and the habitat density of all target data Dt is

HD(Dt) =
1

n

n∑
i=1

HD(xi) . (12)

Habitat density describes how close a sample is to its
neighbors and measures the compactness of feature space.
From an angle, habitat density reveals the intra-class distance,
i.e., if the neighbors with the same labels have the closest
distances, the decision boundary of each class will be easily
found. Therefore, the higher the habitat density of the entire
target data, the higher the source model’s discriminability.

Since the larger the discriminability, the higher the habi-
tat density and the lower the habitat uncertainty, the proxy
discriminability ϑ(hjs) of a source model hjs is defined by

ϑ(hjs) =
HD(Dt)

HU(Dt)
. (13)

Source-Similarity Transferability Perception
Motivation. We have two key principles in the design: (1)
Each sample of the target domain should have a different simi-
larity from the source data since each sample holds a disparity
discrepancy with the source data (Wang et al. 2022b). (2) The
transferability perception module should be biased toward
the source model with high prior importance of P (α|Dt)
since α is the conditional information of P (Hs|α, Dt).

In light of this, the feature representation zji of a target
sample xi extracted by the j-th source model hjs can be
considered as the representative information of hjs, which is
then employed as network input to quantify the transferability.
We concatenate the feature representations of a batch sample
together to obtain Zj

b = [zj1, z
j
2, · · · , z

j
b ] ∈ Rb×c. Zj

b is then
forwarded into a Multi-Layer Perceptron (MLP) network Γ
to quantify the transferability µ(hjs) of the source model:

µ(hjs) =
1

b

b∑
i=1

[η ◦ Γ(zji )]j , (14)

and the transferability µ of a zoo of source models is µ =
[µ(h1s),µ(h2s), · · · ,µ(hms )], such that

∑m
j=1 µ(hjs) = 1.

[η ◦Γ(zji )]j represents the probability of the feature represen-
tation zji extracted by the j-th source model. If the sample xi
is most similar to the source data, its feature representation
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Method Source Data Office-31 Office-Caltech

R→W R→D R→A Avg. R→W R→D R→A R→C Avg.

Source only " 97.1 92.0 51.6 80.2 93.5 94.2 90.6 87.5 91.5
MDAN " 99.2 95.4 55.2 83.3 99.4 98.7 93.5 91.6 95.8
DCTN " 99.6 96.9 54.9 83.8 99.3 99.4 94.1 91.3 96.0
M3SDA " 99.4 96.2 55.4 83.7 99.5 99.2 94.5 92.2 96.4
MDDA " 99.2 97.1 56.2 84.2 99.3 99.6 95.3 92.3 96.6
LtC-MSDA " 99.6 97.2 56.9 84.6 99.4 99.7 93.7 95.1 97.0

Source model % 95.4 97.5 60.2 84.4 98.0 99.5 96.3 92.1 96.5
BAIT % 98.5 98.8 71.1 89.5 98.0 97.5 97.5 95.7 97.2
PrDA % 93.8 96.7 73.2 87.9 97.6 97.1 97.3 94.6 96.7
SHOT % 94.9 97.8 75.0 89.3 99.6 96.8 95.7 95.8 97.0
MA % 96.1 97.3 75.2 89.5 99.8 97.2 95.7 95.6 97.1
NRC % 95.9 97.9 72.4 88.7 99.3 97.5 95.9 94.9 96.9

DECISION % 97.9 98.6 75.3 90.6 99.3 96.8 95.6 95.4 96.8
CAiDA % 97.1 99.7 72.7 89.8 99.7 98.1 95.2 95.6 97.1
DATE (NRC) % 98.1 99.8 73.6 90.5 99.3 98.1 95.9 94.9 97.1
DATE (SHOT) % 99.8 99.6 76.4 91.9 99.8 98.1 95.6 95.7 97.3

Table 1: Results on Office-31 and Office-Caltech (ResNet-50). R is the rest domains.

zji extracted by the j-th source model has a larger probability
to have a large µ(hjs) than other source models.

While Γ can be optimized by integrating its outputs into the
optimization objective as shown in Eq. (18), transferability
collapse often appears in some difficult tasks, i.e., the transfer-
ability of a source model tends to be one and the other to be
zero. Thus, a domain diversity lossLdd is designed for encour-
aging the outputs to be reasonably distributed and enlarging
the diversity of feature representations. To be specific, the do-
main label of a target sample xi via the j-th source model fea-
ture extractor is formulated as vji = j. The collection of do-
main labels [{v1i }bi=1, · · · , {v

j
i }bi=1, · · · , {vmi }bi=1] ∈ Rm×b

represents a kind of ground matrix associated with all source
models, encoding the unique domain characterization. Given
a set of prior source importance (i.e., the proxy discriminabil-
ity {ϑ(hjs)}mj=1), Ldd aims to make Γ distinguish its inputs
from which source model:

Ldd =
1

m× b

m∑
j=1

b∑
i=1

ϑ(hjs)v
j
i log(η ◦ Γ(zji )) , (15)

where ϑ(hjs) plays a weighting role to make the module
biased toward the source model with high prior importance.

Guided by Eq. (5), the source importance of j-th source
model is estimated by combining the proxy discriminability
and the source-similarity transferability:

αj = ϑ(hjs)× µ(hjs) . (16)

We normalize α = {αj}mj=1 of a zoo of source models, such
that

∑m
j=1 αj = 1, 0 ≤ αj ≤ 1.

Universal Decision and Optimization

Decision process. Similar to previous MSFDA stud-
ies (Ahmed et al. 2021; Dong et al. 2021), we take a convex
combination of source models with source importance α to
obtain the target predictor:

ŷi = arg max
m∑
j=1

αjη ◦ g(f(xi)) . (17)

Optimization goal. Given m source models {hjs}mj=1, and
target data Dt, we optimize over the parameters {φjs}mj=1 of
source models and the parameters φΓ of source-similarity
transferability perception with source importance. With a
hyper-parameter β, the final objective is

minimize
{φj

s}mj=1,φΓ,{αj}mj=1

Lbackbone + βLdd

subject to 0 ≤ αj ≤ 1, ∀j ∈ {1, 2, · · · ,m} ,
m∑
j=1

αj = 1 .

(18)

In practice, Lbackbone represents the whole loss function of
backbone methods that are integrated into our framework.
The source importance α is also embedded into the opti-
mization process of backbones and plays weighting roles in
the feature combination and decision combination processes
via the above convex combination (Eq.(17)), such as pseudo-
labeling, information maximization (Liang, Hu, and Feng
2020), neighborhood clustering (Wang et al. 2022b), etc.
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Method Source Data R→ AR R→ CL R→ PR R→ RW Avg.

Source only " 53.4 51.8 71.3 67.8 61.1
MDAN " 65.4 62.2 77.6 77.3 70.6
DCTN " 66.4 63.8 78.3 78.7 71.8
M3SDA " 67.2 63.5 79.1 79.4 72.3
MDDA " 66.7 62.3 79.5 79.6 71.0
LtC-MSDA " 67.4 64.1 79.2 80.1 72.7

Source model only % 50.9 50.1 78.8 76.3 64.0
BAIT % 71.1 59.6 79.4 77.2 71.8
PrDA % 69.3 57.5 79.1 76.8 70.7
SHOT-best % 72.1 57.2 83.4 81.3 73.5
SHOT % 72.2 59.3 82.8 82.9 74.3
MA % 72.5 57.4 82.3 81.7 73.5
NRC % 72.7 58.1 82.3 82.1 73.8

DECISION % 73.3 58.7 82.9 84.0 74.7
CAiDA % 70.3 55.0 83.0 80.7 72.2
DATE (NRC) % 73.3 58.3 82.3 82.5 74.1
DATE (SHOT) % 75.2 60.9 85.2 84.0 76.3

Table 2: Results on Office-Home. R is the rest domains.

Experiment
We evaluate DATE on four datasets against state-of-the-art
methods. The code is at https://github.com/zhyhan/DATE.

Setup

Datasets To verify the feasibility of the proposed learning
method in MSFDA, we thoroughly evaluate the performance
of DATE on four benchmark datasets. Office-31 (Saenko et al.
2010) is a standard DA dataset consisting of three distinct
domains: Amazon, Webcam, and DSLR. It has 4,652 images
with 31 unbalanced classes. Extended from the Office-31
dataset, Office-Caltech (Gong et al. 2012) includes four do-
mains: Amazon, Webcam, DSLR, and Caltech256, in which
each domain has 10 categories. Office-Home (Venkateswara
et al. 2017) is a more challenging DA dataset consisting of
15,599 images with 65 unbalanced classes and four more
distinct domains: Artistic images, Clip Art images, Product
images, and Real-world images. Digits-Five contains five
practical domains: MNIST (MN), SVHN (SV), USPS (US),
MNIST-M (MM), and Synthetic Digits (SY).

Baselines We compare our designed Discriminability And
Transferability Estimation (DATE) algorithm against mul-
tiple state-of-the-art methods: (1) MSDA: MDAN (Zhao
et al. 2018), DCTN (Wang et al. 2019), M3SDA (Peng et al.
2019), MDDA (Zhao et al. 2020) and LtC-MSDA (Wang et al.
2020). (2) SFDA: BAIT (Yang et al. 2020b), PrDA (Kim
et al. 2021), SHOT (Liang, Hu, and Feng 2020), NRC (Yang
et al. 2021), and MA (Li et al. 2020). (3) MSFDA: DECI-
SION (Ahmed et al. 2021), CAiDA (Dong et al. 2021). Note
that the MSDA baselines are trained with accessing source
data. We extend the SFDA baselines by averaging the predic-

tions of all adapted source models following the pioneering
works (Dong et al. 2021). Furthermore, we also build two
supervised learning baselines: Source Only (He et al. 2016)
combines source data as a training set and views the target
data as a test set, and Source Model Only takes an average
over the predictions of all source models. Finally, we take
SHOT as the backbone of DATE (i.e., DATE-SHOT). Note
that the results of DECISION and CAiDA are implemented
by ourselves according to the public source code strictly.

Results
Table 1 reports the results on Office-31 and Office-Caltech.
Our algorithm significantly outperforms all compared meth-
ods. Table 2 and Table 3 report the effects on Office-Home
and Digits-Five, where we make a remarkable performance
boost. After taking SHOT as the backbone, our algorithm
outperforms SHOT by a large margin, showing the necessity
of source importance. These results also confirm that our
method possesses both simplicity and performance strength.

We find several impressive results: (1) As shown in Table 2,
SHOT-best (i.e., selecting the best source model) underper-
forms the SHOT ensemble method (i.e., taking a uniform
average), verifying that selecting the best source model is a
naive solution. (2) As shown in Table 1, the SFDA ensem-
ble methods underperform the MSFDA methods, confirming
that treating each source domain as an equal contributor is
not a practical solution. (3) As shown in all the tasks, our
algorithm achieves state-of-the-art results compared to the
other MSFDA methods, demonstrating that the estimation of
discriminability and transferability of source models can en-
hance the performance. (4) In most tasks, DATE outperforms
MSDA methods that require the source data when adaptation.
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Method Source Data R→MM R→MT R→ UP R→ SV R→ SY Avg.

Source only " 63.4 90.5 88.7 63.5 82.4 77.7
MDAN " 69.5 98.0 92.4 69.2 87.4 83.3
DCTN " 70.5 96.2 92.8 77.6 86.8 84.8
M3SDA " 72.8 98.4 96.1 81.3 89.6 87.7
MDDA " 78.6 98.8 93.9 79.3 89.7 88.1
LtC-MSDA " 85.6 99.0 98.3 83.2 93.0 91.8

Source model only % 25.2 90.0 93.3 42.8 77.8 65.8
BAIT % 87.6 96.2 96.7 60.6 90.5 86.3
PrDA % 86.2 95.4 95.8 57.4 84.8 83.9
SHOT % 90.4 98.9 97.7 58.3 83.9 85.8
MA % 90.8 98.4 98.0 59.1 84.5 86.2
NRC % 74.9 97.6 94.6 73.5 73.5 82.8

DECISION % 85.6 98.6 98.0 69.3 95.2 89.4
CAiDA % 83.2 98.2 97.8 68.7 94.3 88.4
DATE (NRC) % 73.0 98.1 96.0 85.6 89.7 88.5
DATE (SHOT) % 86.5 98.6 98.2 73.8 97.5 90.9

Table 3: Results on Digits-Five (LeNet).

Method R→ AR R→ CL R→ PR R→ RW Avg.

DATE (SHOT) 75.2 60.9 85.2 84.0 76.3
w/o domain diversity loss 74.2 59.8 84.5 82.4 75.2
w/o discriminability 73.7 59.0 84.5 83.6 75.2
w/o habitat uncertainty 74.3 59.9 83.9 83.7 75.4
w/o habitat density 74.7 60.3 82.9 89.9 75.5
w/o transferability 73.7 59.8 82.7 83.5 74.9

Table 4: Ablation study on Office-Home (ResNet-50).

Analyses

Universality analysis. As stated above, we incorporate
SHOT into the DATE framework on the four datasets to
demonstrate the effectiveness of DATE. To further confirm
the universality of DATE, we also conduct experiments on all
four datasets by incorporating another type of SFDA method
NRC into the DATE framework (DATE-NRC). As depicted
in Tables 1, 2, 3, DATE-NRC remarkably outperforms NRC
on all the MSFDA tasks, showing its universality.

Ablation analysis. We dissect the efficacy of the proposed
method by evaluating the variants of DATE on Office-Home
as shown in Table 4. DATE remarkably exceeds these vari-
ants, proving the necessity of the corresponding modules. (1)
DATE w/o discriminability is the variant without using proxy
discriminability perception. DATE w/o habitat uncertainty
or density is the variant without the specific metric. DATE
outperforms each variant, indicating the contribution of the
novel habitat uncertainty and habitat density to enable accu-
rate discriminability evaluation. (2) DATE w/o transferability
is the variant without using the source-similarity transferabil-
ity perception. (3) DATE w/o domain diversity loss is the

variant without the loss to resolve the transferability collapse
and enlarge the diversity of source models.

Discriminability analysis. Fig. 3(a-d) shows the perfect
consistent relationship between the estimated discriminability
and the actual accuracy of source models without fine-tuning
on the target domain (epoch is 0). This result gives strong
empirical evidence that the proxy discriminability perception
can accurately estimate the discriminability of source models.
Fig. 4 displays the t-SNE embeddings (Donahue et al. 2014)
of the learned features by DATE and source models on the
two tasks of Office-Home. While the features learned by
source models are mixed up, the features of each class learned
by DATE are more compact, which verifies that our algorithm
can learn more discriminative representations.

Transferability analysis. The distribution distance value
is a gold standard to represent the actual transferability of
source models. Fig. 3(e-h) shows the consistent relationship
between the distribution distance and the transferability es-
timated by the source-similarity transferability perception
module. The distribution distance is measured by the proxy
A-distance based on the feature representations extracted
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(a) Discriminability (b) Discriminability (c) Discriminability (d) Discriminability

(e) Transferability (f) Transferability (g) Transferability (h) Transferability

(i) Source importance (j) Source importance (k) Source importance (l) Source importance

Figure 3: Our estimated discriminability, transferability, and source importance strictly match the true contributions of source
models. The horizontal axis represents the tasks of the Office-Home, while the vertical axis represents the metric value.

(a) Source model(W) (b) DATE (W) (c) Source model (D) (d) DATE (D)

Figure 4: The t-SNE visualization of target data features.

by ImageNet pre-trained model, which supports objective
assessment (Han, Sun, and Yin 2022). The results confirm
that source-similarity transferability perception can measure
the similarity of target data to the source data end-to-end.

Source importance analysis. Fig. 3(i-l) shows the source
importance estimated by DATE and the other MSFDA meth-
ods, DECISION, and CAiDA, on the Office-Home dataset.
We can see that the source importance estimated by our
method strictly matches the actual contribution of the source
model on the four tasks. The source importance estimated
by the CAiDA is opposite to the source model’s contribu-
tion, while the DECISION cannot accurately estimate source
importance. These intuitive results verify the necessity and
advantage of simultaneously evaluating the discriminability
and transferability of source models.

Conclusion

This paper emphasizes the new and critical problem of source
importance estimation to achieve robust multi-source-free
domain adaptation. We shed new light on source importance
estimation that the prior probability (w.r.t. discriminability)
and the likelihood (w.r.t. transferability) of source domains
contribute to the source model importance estimation compre-
hensively and objectively. Therefore, we propose the Discrim-
inability And Transferability Estimation framework with two
novel tailored modules. Extensive experiments on four usual
datasets have demonstrated that our method could achieve
more accurate estimation in various real-world applications.
Our approach is simple and orthogonal to other methods. In
future work, we believe that our method opens up new possi-
bilities in the topics of multi-source-free domain adaptation.
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