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Abstract

Deep learning methods have demonstrated promising per-
formance on the NP-hard Graph Matching (GM) problems.
However, the state-of-the-art methods usually require the
ground-truth labels, which may take extensive human efforts
or be impractical to collect. In this paper, we present a robust
self-supervised bidirectional learning method (IA-SSGM) to
tackle GM in an unsupervised manner. It involves an affin-
ity learning component and a classic GM solver. Specifically,
we adopt the Hungarian solver to generate pseudo correspon-
dence labels for the simple probabilistic relaxation of the
affinity matrix. In addition, a bidirectional recycling consis-
tency module is proposed to generate pseudo samples by re-
cycling the pseudo correspondence back to permute the input.
It imposes a consistency constraint between the pseudo affin-
ity and the original one, which is theoretically supported to
help reduce the matching error. Our method further develops
a graph contrastive learning jointly with the affinity learning
to enhance its robustness against the noise and outliers in real
applications. Experiments deliver superior performance over
the previous state-of-the-arts on five real-world benchmarks,
especially under the more difficult outlier scenarios, demon-
strating the effectiveness of our method.

Introduction
Graph matching (GM) aims to find the structural correspon-
dence of nodes in two graphs or multiple graphs by tak-
ing both node and edge similarities (affinities) into account
(Zanfir and Sminchisescu 2018; Yan et al. 2016; Wang,
Yan, and Yang 2019). It has various real-world applications,
e.g., protein matching (Krissinel and Henrick 2004; Sha-
ran and Ideker 2006), molecules comparing (Koch, Kriege,
and Humbeck 2019), image matching (Wang, Zhou, and
Daniilidis 2018), objects tracking, 2D/3D shapes matching
(Vento and Foggia 2013), entity alignment (Mao et al. 2021)
and model fusion (Liu et al. 2022). Mathematically, for two-
graphs with n1 and n2 nodes, GM can be formulated as an
NP-hard quadratic assignment problem (QAP) (Loiola et al.
2007):

max J(Z) = vec(Z)⊤K vec(Z),

subject to Z1n2
= 1n1

,Z⊤1n1
≤ 1n2

,
(1)
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where Z ∈ Rn1×n2 is a (partial) permutation matrix encod-
ing the node-to-node correspondence, vec(Z) is its column-
vectorized version, and 1n is a column vector of length n
whose elements all equal to 1. K ∈ Rn1n2×n1n2 is called
affinity matrix, and denotes the node-to-node and edge-to-
edge similarity in its diagonal and off-diagonal elements, re-
spectively. Since it is intractable to compute a global opti-
mum for the general QAP, traditional methods are usually
approximate relaxation algorithms, under a given affinity
matrix (Leordeanu, Hebert, and Sukthankar 2009; Gold and
Rangarajan 1996; Yu et al. 2018).

Predefined hand-crafted graph attributes and affinity func-
tions may not fit the underlying structure of the real-world
matching problem. Advances in machine learning inspire
researchers to construct learnable models for graph repre-
sentation and affinity metrics, so that efficient GM algo-
rithms may be appropriately developed to solve the practical
task (Caetano et al. 2009). Recently, with the strong learn-
ing ability of deep neural networks, various deep learning
methods have been proposed to solve the GM problem in a
data-dependent fashion. They have achieved superior perfor-
mance over those with fixed graph representation and affin-
ity functions on challenging real benchmarks. However, the
existing deep learning GM methods usually require a large
amount of training data with ground-truth matching solu-
tions. This limits the applications on real-world tasks where
the ground-truth correspondences may be difficult and ex-
pensive to annotate.

This paper is concerned with developing a self-supervised
learning method for the GM problem. It is difficult to per-
form self-supervised learning on GM without ground-truth
labels as it usually involves a non-differentiable discretiza-
tion optimization step through which the learning gradi-
ents cannot pass. The challenge also lies in the node/edge-
wise structural graph representation, which has been demon-
strated to significantly affect the performance (Fey et al.
2018). There exist only a few attempts in this direc-
tion, which either need the empirically hand-drafted ini-
tial node/edge features by shape context (Leordeanu, Suk-
thankar, and Hebert 2012; Zhao, Tu, and Xu 2021) or adopt
a classic GM solver with annealing parameters to grad-
ually approach the discrete solution (Wang et al. 2021),
which is approximate and time-consuming. Their perfor-
mances are still not satisfactory. Motivated by the IA-DSM
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scheme (Xu 2019a), which was proposed for solving doubly
stochastic matrix (DSM) featured combinatorial tasks with
complementary benefit between the inbound yAng-mapping
for learning and the outbound yIng-mapping for optimiza-
tion, we develop a self-supervised bidirectional GM learn-
ing method (IA-SSGM) to tackle the above challenges. To
summarize, we make the following contributions:
• We propose a robust self-supervised bidirectional deep

learning method for solving GM. We not only employ
the bidirectional learning to generate pseudo correspon-
dence labels for training, but also permute the input
by the pseudo correspondence to produce pseudo sam-
ples for affinity computation, which transforms the non-
differentiable discrete optimization result into a continu-
ous and differentiable feature form.

• We impose a consistency loss on the probabilistic relax-
ation of the affinity matrix between the original input
and the pseudo sample. We provide a theoretical anal-
ysis of the consistency loss, which helps further reduce
the matching error and strengthens the capacity of our
self-supervised learning.

• We introduce a Graph Contrastive Learning (GCL)
jointly with the affinity learning, whose inner causality
guarantees its success (Mitrovic et al. 2020). We empir-
ically demonstrate that our method outperforms the ex-
isting self-supervised GM learning methods, which sig-
nificantly narrows the gap between unsupervised and su-
pervised learning in efficiency and quality, while avoid-
ing the time-consuming, costly manual labelling of
ground-truth correspondences. Our code is available at
https://github.com/CMACH508/IA-SSGM.

Related Work
Learning of Graph Matching
Early structure-based shallow models sought to learn differ-
ent affinity weights of nodes and edges for matching, re-
gardless of the node-wise feature representation and struc-
tural information, leading to limited the model capacity
(Leordeanu, Sukthankar, and Hebert 2012; Cho, Alahari,
and Ponce 2013). Recently, a seminal work (Zanfir and
Sminchisescu 2018) firstly adopted a Convolutional Neu-
ral Network to extract features from images to build the
affinity matrix, and used the differentiable spectral method
(Leordeanu and Hebert 2005) to obtain the node correspon-
dence. In this line of work, various pipelines were proposed
to extract more dedicated features by effectively embedding
the structural information into graph node representation via
graph neural network (GNN) (Wang, Yan, and Yang 2019;
Yu et al. 2019; Fey et al. 2020; Zhao, Tu, and Xu 2021;
Jiang et al. 2021). Some works were devoted to construct-
ing the topology in a parametric fashion through structure
learning (Zhang and Lee 2019; Yu et al. 2021). Meanwhile,
other investigations focused on the decision part. Rolı́nek et
al. incorporated the classical GM solver into the end-to-end
pipeline (Rolı́nek et al. 2020). Wang et al. scored the assign-
ment solution via embedding on the so-called association
graph whose weighted adjacency matrix is the affinity ma-
trix (Wang, Yan, and Yang 2021). However, these methods

need large amounts of node correspondences as ground-truth
labels that are usually labour-intensive to annotate, which re-
stricts their applications to real-world problems.

A few works tried to solve the GM problem in an unsu-
pervised manner (Leordeanu, Sukthankar, and Hebert 2012;
Wang et al. 2021; Zhao, Tu, and Xu 2021). Particularly,
hand-crafted shape context (Belongie, Malik, and Puzicha
2002) was adopted to generate the initial node features
to support the subsequent matching algorithm (Leordeanu,
Sukthankar, and Hebert 2012; Zhao, Tu, and Xu 2021).
Wang et al. proposed a dual-branch framework, and gradu-
ated assignment was used in one branch to generate pseudo
labels as references to the other branch of network predic-
tions (Wang et al. 2021). Due to the limitations of the feed-
forward pipeline, their method’s performance is still not sat-
isfactory. Recently, Bai et al. (Bai et al. 2021) using Deep
Q-Network on the Maximum Common Subgraph Detec-
tion task, which requires the isomorphism between two sub-
graphs and can be thought as exact GM (Yan et al. 2016). In
contrast, our method focuses on the maximum affinity rather
than zero-distortion, and employs bidirectional learning to
use the predicted results to generate pseudo labels, and is
able to further minimize the matching error via a consistency
loss for the graph embedding.

Self-Supervised Learning for GNNs
Common taxonomies in recent works (Liu et al. 2021;
Xie et al. 2022) categorized the GNN-based self-supervised
learning methods into contrastive and predictive models.
Graph contrastive learning (GCL) employs pair-wise dis-
crimination as their pretext learning tasks (Xie, Xu, and
Ji 2022). It trains GNNs to maximize the mutual informa-
tion between the augmented instances of the same objects
through the so-called InfoNCE loss (Oord, Li, and Vinyals
2018). Many investigations designed graph augmentation
methods on different tasks at either node-level or graph-level
(Zhu et al. 2020; Hassani and Khasahmadi 2020; You et al.
2020). All these works focused on GCL’s performance on
graph or node classification, whereas in this paper, we intro-
duce the GCL to work as a auxiliary module to enhance the
graph representation learning for solving GM.

Predictive models trained GNNs to predict certain labels
for the input data, including graph reconstruction, prop-
erty prediction, or self-training prediction (Ding et al. 2022;
Hwang et al. 2020; Hamilton, Ying, and Leskovec 2017;
Wang et al. 2021). Unlike these approaches that obtained
the labels from another branch (task), our method generates
the pseudo labels from the network predictions. It further re-
cycles them to produce pseudo-data, which are forced to get
identical graph embeddings under a bidirectional paradigm.

Method
Problem Definition and Notation
We give mathematical details of GM below. A graph
G = (V,X,E,A) consists of a finite set of nodes V =
{1, 2, . . . , n}, a nodes feature matrix X , an adjacency ma-
trix A ∈ {0, 1}n×n and an edges feature matrix E, where
n denotes the number of nodes |V|. Formally, we are given
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Figure 1: Overview of our self-supervised bidirectional
method for GM. The method is built on an affinity learn-
ing component for probability and a Hungarian solver for
pseudo label generation (the red line). We generate pseudo
samples by recycling the pseudo correspondence back to
permute the input (the black line), and impose a consistency
loss to reduce the matching error to a great extent (the green
line). Besides, we introduce a GCL module to enhance the
graph representation learning (the purple line).

a source graph Gs = (Vs,Xs,Es,As) and a target graph
Gt = (Vt,Xt,Et,At), with ns ≤ nt, and hope to find a
matching matrix Z ∈ {0, 1}ns×nt to maximize the QAP
objective in Eq. (1) subject to the one-to-one mapping con-
straints

∑
j∈Vt

zij = 1, ∀i ∈ Vs and
∑

i∈Vs
zij ≤ 1, ∀j ∈

Vt, where zij = 1 indicates the node i in Gs is correspond-
ing to the node j in Gt, and zij = 0 denotes no corre-
spondence. In this sense, Z deduces an injective mapping
from Gs to Gt. Recent deep learning GM methods usually
learn from data an affinity matrix K ∈ Rnsnt×nsnt for
QAP in Eq. (1) for the subsequent GM solvers. The edge-
wise or higher order structural affinity across graphs may
also be integrated into a relaxed node-wise affinity matrix
M ∈ Rns×nt that can be efficiently solved by linear as-
signment algorithms. Following the line of learning GM,
we consider the scenario of unsupervised learning in the
absence of ground-truth correspondences, which are rarely
considered in the literature while being critical in real-world

applications.

Overview of Our Method
An overview of our method is given in Fig. 1. It falls into
a paradigm of deep bidirectional learning, i.e., an inbound
graph representation learning for affinity metrics and an
outbound off-the-shelf classic GM solver for pseudo cor-
respondence labels, as well as a feedback loop from the
pseudo correspondences to the input space. A GNN encoder
is adopted to extract node-wise and structure-wise affinity
across graphs. The affinities are normalized as probabili-
ties of correspondences, and the classic Hungarian solver is
designated as the reference to generate pseudo correspon-
dence labels for training. The pseudo labels are exploited to
guide the affinity learning via a cross-entropy loss. More-
over, we recycle the pseudo GM correspondences to per-
mute the two input graphs to generate pseudo data, which
are fed into the GNN encoder again to compute a pseudo
estimate for the probability of correspondence. This allows
us to devise a bidirectional consistency between the first and
the second round (i.e., the pseudo estimate) computation of
the probability of correspondence, which is used to guide the
self-supervised representation learning. We introduce a GCL
module that maximizes the agreement between the embed-
dings of two different augmented views of the input data, to
enhance the graph structure learning by the GNN encoder.

Pseudo Correspondence Generation
For the given input source graph Gs and target graph Gt, we
first employ a deep shared GNN Ψθ to encode them into

Hs = Ψθ (Xs,As,Es) ,Ht = Ψθ (Xt,At,Et) . (2)

We then compute the node-to-node, edge-to-edge, or
higher-order affinities into a node-wise affinity matrix M ,
similar to (Wang, Yan, and Yang 2019; Fey et al. 2020; Zhao,
Tu, and Xu 2021). Therefore, the QAP is turned into a lin-
ear assignment problem, i.e., maxZ Tr

(
Z⊤M

)
, where Z

is constrained to be a permutation matrix with binary en-
tries as in Eq. (1). Specifically, we employ a simple bi-linear
mapping to compute M as

M = HsH
⊤
t , (3)

where Hs and Ht are the embeddings of the two input
graphs in Eq. (2).

The permutation matrix variable in the linear assignment
problem is further relaxed to a doubly-stochastic matrix,
and the resulted problem is a continuous approximation that
can be solved by the Sinkhorn algorithm (Sinkhorn 1964;
Adams and Zemel 2011). However, Sinkhorn is inefficient to
compute due to its alternations between row normalization
and column normalization, and has the risk of vanishing gra-
dients (Zhang, Hare, and Prügel-Bennett 2018). Motivated
by (Fey et al. 2020; Zhao, Tu, and Xu 2021), we simply ap-
ply the row-wise softmax normalization on the linear affinity
matrix M in Eq. (3) to generate predictive probability score
P = [pij ]ns×nt

, which indicates how likely a target node
in the column would be matched to each source node in the
row. In other words, the binary matching matrix constraints
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are relaxed to be
∑

j∈Vt
pi,j = 1, ∀i ∈ Vs. Although the

constraint
∑

i∈Vs
pi,j ≤ 1, ∀j ∈ Vt may be violated, this

violation is resolved by the subsequent GM solver.
As GM is relaxed to be a linear assignment problem by the

affinity learning, we adopt the classic Hungarian algorithm
(Kuhn 1955) to compute pseudo correspondence labels, i.e.,

Z = Hungarian(P ), (4)

where P is the probability score normalized from the affin-
ity matrix M in Eq. (3), and Z = [zij ]ns×nt

is (partial) per-
mutation matrix with binary entries. Similar to (Zhao, Tu,
and Xu 2021), the Hungarian algorithm can be regarded as
an improvement operator for the probability score, and the
following cross-entropy matching loss is adopted for train-
ing the network parameters in affinity learning:

Lmat = −
∑

i∈Vs,j∈Vt

(zi,j log pi,j + (1− zi,j) log (1− pi,j)) .

(5)
It should be noted that the above matching loss is in-

duced from the deep bidirectional learning paradigm (Xu
2019b; Zhao, Tu, and Xu 2021). This differs from the dual-
branch self-supervised learning framework for GM in (Wang
et al. 2021), which is developed based on the common self-
supervised paradigm in the literature. The dual-branch is
parallelly implemented in a feedforward manner, with one
branch for graph representation learning and the other for an
off-the-shelf classic GM solver.

Our method is related to the unsupervised learning in
(Leordeanu, Sukthankar, and Hebert 2012), which is based
on the statistical properties of the affinity matrix M . A spec-
tral algorithm was derived in (Leordeanu and Hebert 2005)
to find a binary solution to the GM problem. Specifically, we
restate a theoretical property from (Leordeanu, Sukthankar,
and Hebert 2012) as follows:

Proposition 1. Any normalized vector z gives a quadratic
score that obeys the following optimality bound (Leordeanu,
Sukthankar, and Hebert 2012):

z⊤K(w)z

zopt(w)⊤K(w)zopt(w)
≥ 2

(
z⊤V(w)

)2 − 1, (6)

where zopt(w) is the optimal solution to the Eq. (1) for
a given parameter w, and V (w) is the eigenvector of the
K(w).

Accordingly, it immediately follows that maximizing
z⊤V (w) would maximize the lower bound in Eq. (6) to
approach to 1, pushing z to approximate zopt(w). We per-
form the Hungarian algorithm in Eq. (4) to tackle the linear
assignment problem. According to (Leordeanu, Sukthankar,
and Hebert 2012), it is reasonable to use the probability
score P to replace the eigenvector V (w) in Eq. (6). Then,
the computed Z in Eq. (4) can be further used by maxZ⊤P
to train the network parameters. In practice, we use the
cross-entropy in Eq. (5), and empirical findings indicate that
it is very robust and effective for the final GM performance.

Bidirectional Recycling Consistency
Our bidirectional self-supervised learning paradigm, as il-
lustrated in Fig. 1, enables us to develop a consistency con-
straint to improve the affinity learning. Based on the gener-
ated pseudo correspondence labels Z by Eq. (4), we further
generate pseudo source and target graphs by permuting the
original ones via Z, i.e.,

X̂t = Z⊤Xs; X̂s = ZXt. (7)

We feed the pseudo data Ĝs = (Vs, X̂s,Es,As), Ĝt =

(Vt, X̂t,Et,At) back into the graph encoder to compute
the graph embeddings, affinity matrix, and the probability
score matrix P̂ , following the same process as Eq. (2)&(3)
and the softmax normalization layer for probability scores.
It is reasonable to enforce an optimality condition that P̂
should be identical or consistent with P , which is the prob-
ability score matrix for the raw source and target graph, if the
current solution Z is optimal. Mathematically, we compute
the consistency by the following cross-entropy loss function:

Lcon = −
∑

i∈Vs,j∈Vt

p̂i,j log pi,j , (8)

where p̂i,j and pi,j are the (i, j)-th element of P̂ and P ,
respectively. When the current solution is far from the op-
timum, the consistency loss transforms the discrete corre-
spondence error into a continuous feature discrepancy by
graph embedding. When the current solution is close to the
optimum, the consistency loss still measures the level of sen-
sitivity or smoothness of the graph embedding. Both cases
together help reduce the matching error and enhance the
graph representation learning. In the following, we provide
a theoretical analysis of the consistency loss.
Proposition 2. Let Gs = (Xs,As) and Gt = (Xt,At) be
the two given graphs, the permutation matrix Z∗ and Zθ

be the optimal node matching solution and the predictive
correspondence with GNN parameter θ, respectively. Define
Zϵ

θ = ZθZ
∗⊤, and then Zϵ

θ = I if and only if Zθ = Z∗.
For any permutation-equivariant GNN Ψθ, we define the
following function:

J (θ) =
∥∥∥f (

ĤsĤ
⊤
t

)
− f

(
HsH

⊤
t

)∥∥∥ , (9)

where Ĥs = Ψθ(Ĝs), Ĥt = Ψθ(Ĝt) are the embedding of
synthetic graphs according to Eq. (7)&(2), f means the row-
wise softmax normalization and ∥·∥ denotes the L2 norm.
Then, the function J (θ) achieves its minimum when Zϵ

θ be-
comes the identity matrix I .

Proof. Based on the definitions, we have

J (θ) = ∥f
(
[Ψθ (AsZ

ϵ
θXs)] [Ψθ (AsZ

ϵ
θXs)]

⊤
Zϵ

θ
2Z∗

)
− f

(
[Ψθ (AsXs)] [Ψθ (AsXs)]

⊤
Z∗

)
∥ ≥ 0,

where [·] denotes the output of Ψθ in the matrix form, i.e.,
H . Then, J (θ) = 0 when Zϵ

θ = I . So minimising J (θ)
will force Zθ to reach Z∗, which means the matching error
is 0.
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The function J(θ) actually measures the discrepancy be-
tween the predictive probability scores P by the original
data and the one P̂ by the pseudo data. Specifically, we

have P̂ = f
(
ĤsĤ

⊤
t

)
, P = f

(
HsH

⊤
t

)
, and J(θ) =

∥P̂−P ∥. Proposition 2 indicates that the matching error be-
comes small when P̂ is close to P . Since the cross-entropy
loss function is more suitable than L2 norm for measuring
the difference between probability values, in practice, we
use Eq. (8) to push P̂ towards P , which implicitly reduces
the matching error according to the Proposition 2.

From another perspective, we also note that the probabil-
ity score matrix f

(
[Ψθ (AsZ

ϵ
θXs)] [Ψθ (AsZ

ϵ
θXs)]

⊤
)

and f
(
[Ψθ (AsXs)] [Ψθ (AsXs)]

⊤
)

both approach to I

when optimizing Lmat in Eq. (5). In this way, J (θ) ≈
∥Zϵ

θ
2Z∗ − Z∗∥, so that minimise J (θ) will further reduce

the error Zϵ
θ.

Graph Contrastive Learning (GCL) to Enhance
Graph Representation Learning
It is critical to perform a high-quality graph representation
learning, because the affinity between the two input graphs
is computed from the graph embeddings and it may fur-
ther affect the performance of the subsequent GM solver via
Eq. (4). This problem becomes more difficult in the absence
of matching labels that contain helpful human experience
implicitly. Here, we resort to GCL to enhance the graph rep-
resentation learning for GM.

We adopt the GCL framework proposed by (You et al.
2020; Zhu et al. 2021), and jointly implement it with affin-
ity learning. For notation brevity, we omit the subscript
for source and target graph, because they are treated with
the same process in GCL module. Given a batch of N
graphs, {G1, . . . ,GN}, for each graph Gi = {Xi,Ei,Ai},
we sample two data augmentation functions u1, u2 ∼ U
to generate two correlated views G(1)

i = u1(Gi) and
G(2)
i = u2(Gi) as a positive pair, where U is a set of

all possible transformation functions, including topology
transformation and feature transformation. Then, all of the
augmentation views in a batch can be denoted as a set{
G(k)
i | k ∈ {1, 2}, 1 ≤ i ≤ N

}
. We then feed each view

into the GNN encoder to obtain the augmented node repre-
sentation: H(k)

i = Ψθ

(
G(k)
i

)
. They are further transformed

by a two-layer multilayer perceptron (MLP) to obtain the fi-
nal embedding y for GCL, as below:

y
(k)
i =MLP

(
H

(k)
i

)
/
∥∥∥MLP

(
H

(k)
i

)∥∥∥ . (10)

The goal of GCL is to maximize the agreements from the
same graph, which in essence can be regarded as a classifi-
cation problem. We utilize a cross-entropy loss function for
each augmented view, i.e.,

Lgcl =
N∑
i=1

− log
ψ(y

(1)
i ,y

(2)
i )

ψ(y
(1)
i ,y

(2)
i ) +

∑
k,ℓ,j ̸=i ψ(y

(k)
i ,y

(l)
j )

,

(11)

where ψ(y,y′) = exp (⟨y,y′⟩ /τ), and τ denotes the tem-
perature parameter, and ⟨·, ·⟩ means the dot product.

Model Training
The overall loss function for the self-supervised training is
obtained by integrating the matching loss in Eq. (5), the bidi-
rectional recycling consistency loss in Eq. (8), and the GCL
loss in Eq. (11), i.e.,

Loverall = αLmat + βLcon + γLgcl, (12)
where α, β, γ ≥ 0 are the hyperparameters to control the
relative importance of three loss functions.

It is noted that the consistency loss can be regarded as
an extension of the matching loss, by transforming the dis-
crete solution Z to the continuous probability score P̂ . This
implies that Lmat and Lcon both measure the matching er-
ror between the network prediction and the pseudo corre-
spondence. So, it is reasonable to set α = β. We further set
α = β = (1−γ) in order to remove the scale redundancy. In
practice, we may simply use the GCL module to pre-train the
GNN encoder first and fine-tune the network with the match-
ing loss later, by setting γ from 1 to 0 after GCL converges.
Although such two-stage training is effective, it is still not
optimal. Here, we present a dynamic, annealing technique
to adjust the hyperparameters so that the three loss functions
are implemented jointly. Specifically, we set

α = β = tanh(m/5), γ = 1− tanh(m/5), (13)
where m denotes the learning epoch. When the loss change
is smaller than 0.001 among 3 epochs, which means the pre-
dictive result of our model converges for each pair graphs,
we stop the training.

Experiment
Experimental Settings
We verify our method on datasets including PASCALVOC
with Berkeley annotation (Everingham et al. 2010; Bour-
dev and Malik 2009), WILLOW-OBJECTCLASS (Cho,
Alahari, and Ponce 2013), CMU (Belongie, Malik, and
Puzicha 2002), CUB2011 (Wah et al. 2011), and IMC-PT-
SPARSEGM (Jin et al. 2021; Wang et al. 2021). Per the
experiments, we first resize each object in these datasets
in bounding box to 256×256, and interpolate at each key-
point from the pre-trained VGG16’s (Simonyan and Zis-
serman 2014) two feature maps (relu4 2 and relu5 1) via
bilinear interpolation, then concatenate them as the graph’s
node feature. We use the relative Cartesian coordinates of
the linked nodes as the edge feature for each graph, which
is identical with (Fey et al. 2020). The evaluation metric
for all experiments is the average matching accuracy on all
classes of each dataset, which is computed between the self-
supervised prediction and the ground-truth correspondence
label. We conduct comparison experiments with the recent
state-of-the-art self-supervised GM methods, i.e., the unsu-
pervised version of IA-GM (Zhao, Tu, and Xu 2021), as well
as GANN (Wang et al. 2021).

For fair comparisons, we follow the experimental setup
in (Rolı́nek et al. 2020; Wang et al. 2021) of the keypoints
filtering procedure, and include two scenarios:
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METHOD PASCALVOC WILLOW CUB2011 CMU IMC-PT-SPARSEGM
INLIER OUTLIER INLIER INLIER OUTLIER INLIER INLIER OUTLIER

IA-GM 56.1 41.7 93.5 62.0 46.4 98.7 85.3 19.3
GANN 57.2 24.3 92.0 79.0 70.8 100.0 82.3 67.9

IA-SSGM (pretrain) 63.4 61.3 95.6 84.8 84.3 100.0 84.7 71.5
IA-SSGM 65.2 62.8 98.2 86.5 85.6 100.0 86.3 69.0

Table 1: Overall average performance on all datasets under INLIER scenario (same keypoints at both source and target images)
and OUTLIER scenario (some key points in target but not in source images).

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv ave

IA-GM 25.1 39.2 41.5 56.6 78.4 79.6 61.4 39.2 33.7 38.5 100. 38.5 39.4 39.6 37.9 98.1 43.1 47.6 93.3 92.1 56.1
GANN 26.6 41.4 44.3 57.9 80.8 79.2 64.8 41.5 34.4 40.1 91.4 40.6 41.7 40.7 40.1 98.4 43.6 50.2 92.9 93.8 57.2

IA-SSGM 38.2 50.3 52.2 61.2 79.0 87.7 69.9 56.7 41.5 55.0 92.8 61.3 65.8 54.9 40.6 98.9 59.3 57.7 89.3 92.8 65.3

IA-GM 18.7 34.8 26.4 35.8 72.8 56.8 37.5 23.9 26.7 26.3 66.8 24.0 28.0 28.1 25.4 92.7 25.5 30.4 70.9 82.6 41.7
GANN 12.6 19.5 16.6 18.5 41.1 32.4 19.3 12.3 24.3 17.2 38.0 12.2 15.9 18.2 19.4 35.5 14.8 15.4 41.5 60.8 24.3

IA-SSGM 33.2 53.2 51.7 66.1 85.0 88.6 77.6 62.3 33.9 49.4 100. 51.4 65.3 46.1 51.6 96.1 51.8 100. 90.3 84.1 62.8

Table 2: Matching accuracies (%) on the PASCALVOC Keypoint dataset. Upper part and bottom part refer INLIER and OUT-
LIER scenarios, respectively.

• INLIER (keypoints intersection): Only the keypoints
present in both source and target image are preserved for
the matching task.

• OUTLIER (keypoints inclusion): Target image keypoints
have to include all the source image keypoints. The
source keypoints that are not present in the target image
are then deleted. The target image will contain outliers.

Generally, the OUTLIER scenario is more difficult than the
INLIER, and the dataset with a larger number of classes or
a higher partial rate is also harder. Since the WILLOW and
CMU datasets do not contain any outliers, they are used only
in the INLIER scenario.

Our method is implemented in PYTORCH, using PY-
TORCH GEOMETRIC (Fey and Lenssen 2019) and PYGCL
(Zhu et al. 2021) libraries. For all experiments, optimiza-
tion is done via ADAM (Da 2014) with decaying learning
rate. Experiments run on Intel(R) Xeon(R) Gold 6226R CPU
(2.90GHz) and one Nvidia A100 (40G) GPU.

Results
We report the overall average matching accuracies in Ta-
ble 1. It is observed that all methods achieve higher accu-
racies in INLIER scenario than in OUTLIER. IA-GM and
GANN have their own relative advantages under different
settings, while our method outperforms them consistently
for all cases. Most of the increments by our method are large
over both GANN and IA-GM. In particular, our method is
extremely robust against others under the OUTLIER scenar-
ios of PASCALVOC, CUB2011, and IMC-PT-SPARSEGM
benchmarks, with accuracy increments being 21.1%, 14.8%,
and 1.1%, respectively. We also include the GCL-pretrained
version of the proposed method for comparisons, i.e., setting
γ from 1 to 0 after GCL converges with α = β = 1 − γ in
Eq. (12). This simple hyperparameter setting still makes our
method the best in comparisons with IA-GM and GANN.

Notice that all methods perform well on WILLOW and
CMU-HOUSE/HOTEL datasets, which are relatively easy
with a small number of classes in the data. In the following,
we report the detailed results on every benchmark dataset.

Results on Pascal VOC. This dataset(Everingham et al.
2010; Bourdev and Malik 2009) consists of 7020 training
images and 1682 test images with 20 classes in total. It con-
tains instances of varying scale, poses and illumination, and
the number of keypoints ranges from 1 to 19. We construct
graphs via the Delaunay triangulation of keypoints follow
with (Wang, Yan, and Yang 2019). We adopt SPLINECNN
(Fey et al. 2018) as our GNN encoder with trainable B-spline
kernel function conditioned on edge features between node-
pairs. The matching accuracies for each of the 20 classes
are given in Table 2. It is observed that our method achieves
much higher accuracies than the others on over 80% classes,
and has comparable results on the rest ones. In particular,
our method is extremely robust against the outliers in all
kinds of objects. The improvements on both scenarios are
significant, with paired t-test p-values being 2.04 × 10−2

and 3.07× 10−12, respectively.
Results on CUB2011. The CUB2011 images are from

200 kinds of birds. We randomly sample image pairs from
the dataset following (Fey et al. 2020; Wang et al. 2021). As
in (Wang et al. 2021), we construct fully-connected graphs,
making the graph data more complex. The GNN encoder
is implemented by stacking two layers of the GIN operator
(Xu et al. 2018). Since there are 200 classes in CUB2011,
we report the results for every class in a barplot in Fig. 2
(left). Our method is significantly better than GANN (and
IA-GM), according to the paired t-test p-values being 4.73×
10−15 for INLIER and 5.41× 10−40 for OUTLIER scenario,
respectively.

Results on IMC-PT-SparseGM. This dataset is released
by (Wang et al. 2021) based on the IMC-PT 2020 (Jin et al.
2021). Its images are tourist attractions around the world
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Figure 2: (left) Mean and standard deviation of matching accuracies for all classes in CUB2011 dataset under INLIER and
OUTLIER scenarios. (middle) Matching accuracies (%) on the Willow Object dataset. (right) Matching accuracies (%) on the
IMC-PT-SparseGM testing dataset. The left four bars refer to INLIER scenarios, and the remaining ones refer to OUTLIER.

METHOD PASCALVOC WILLOW CUB2011 CMU IMC-PT-SPARSEGM
INLIER OUTLIER INLIER INLIER OUTLIER INLIER INLIER OUTLIER

Lmat 60.9 59.4 94.5 69.9 64.5 100.0 77.1 51.5
Lmat + Lgcl 61.1 60.8 96.4 73.5 76.5 100.0 81.3 67.4
Lmat + Lcon 62.7 60.0 95.8 68.8 56.2 100.0 79.7 64.1

Lmat + Lcon + Lgcl 65.2 62.8 98.2 86.5 85.6 100.0 86.3 69.0

Table 3: Selectively deactivating loss on PASCALVOC dataset. Average accuracy (%) is reported.

collected from Yahoo Flickr with the number of keypoints
ranging from 1 to 50. It is a very challenging dataset be-
cause 57.3% of the nodes are invisible. In line with (Wang
et al. 2021), we use Reichstag, Sacre Coeur, and St. Pe-
ters Square as the testing set and the rest 13 tourism attrac-
tions as the training set. Similar to CUB2011, we construct
the fully-connected graph. We stack one layer SPLINECNN
(Fey et al. 2018) and one layer GIN (Xu et al. 2018) as GNN
encoder. The results in Fig. 2 (right) indicate that our method
surpasses or at least comparable to the competing methods
on all testing classes.

Results on Willow Object and CMU. Since the average
matching accuracies on CMU dataset are 100% for most
of the methods in Table 1, we omit their detailed accura-
cies on each category. The WILLOW dataset is collected by
(Cho, Alahari, and Ponce 2013) for real images with 5 cat-
egories from Caltech256. The images in each category are
with relatively fixed pose and their backgrounds are much
cleaner than those in PASCALVOC. We construct graphs
via the Delaunay triangulation of keypoints. We also use
SPLINECNN as the GNN encoder to capture both localized
node and global features. Results in Fig. 2 (middle) suggest
that our method is very robust on all categories. In particular,
the FACE and MBIKE categories are relatively difficult for
IA-GM and GANN, and their matching accuracies are im-
proved to be 100% and 99.6% by our method.

Ablation Study
We conduct the ablation study to evaluate the contributions
of the pseudo-label induced matching loss in Eq. (4), the
pseudo-sample induced bidirectional recycling consistency

in Eq. (8), and the GCL learning module in Eq. (11). Specif-
ically, we activate the designated loss functions in a one-
by-one way. We constantly use the matching loss as it is
essential for GM matching. The ablation study on all five
benchmark datasets is reported in Table 3. We see that the
consistency loss and the GCL loss can effectively enhance
the matching performance. It is noted that the consistency
constraint is able to bring significant performance gain when
the GCL module is activated for the baseline.

Conclusion
Learning GM has been made mostly in a supervised manner
which requires the ground-truth labels. We propose a robust
deep self-supervised bidirectional learning method for GM
in the absence of labels. Our method is built on an affin-
ity metric learning component by GNN for probability pre-
diction of correspondence labels, and a classic Hungarian
solver for pseudo correspondences that are used to guide the
affinity learning. Meanwhile, our method generates pseudo
samples by recycling the pseudo correspondences back to
permute the raw input graphs, and imposes a consistency
constraint between the pseudo sample induced probability
prediction and the original prediction, which is theoretically
demonstrated to reduce the matching error. Moreover, we
employ a GCL module to enhance the graph representation
learning against the noise and outliers in real applications.
Experiments on five real-world benchmark datasets demon-
strate that our method outperforms the current state-of-the-
art methods. Admittedly, due to the lack of label, it is more
difficult for unsupervised methods to train powerful models,
which deserves more work in the future to explore.
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